Constraining the Thickness of the Galactic Halo through Cosmic-Ray Anisotropy Using the Spatial-Dependent-Propagation Model
Abstract
:1. Introduction
2. Model Description
2.1. Spatial-Dependent Diffusion
2.2. Local Source
2.3. Solar Offset
3. Results
3.1. Effect of Halo Thickness
3.2. B/C and CR Spectra
3.3. Anisotropy and Solar Offset
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Sample Availability
Abbreviations
SDP | spatial-dependent propagation |
CRs | cosmic rays |
GCR | galactic cosmic ray |
SNRs | supernova remnants |
ISM | interstellar medium |
ISRF | interstellar radiation |
outer halo | OH |
inter halo | IH |
References
- Panov, A.D.; Adams, J.H.; Ahn, H.S.; Bashindzhagyan, G.L.; Batkov, K.E.; Chang, J.; Christl, M.; Fazely, A.R.; Ganel, O.; Gunashingha, R.M.; et al. The results of ATIC-2 experiment for elemental spectra of cosmic rays. arXiv 2006, arXiv:astro-ph/astro-ph/0612377. [Google Scholar]
- Ahn, H.S.; Allison, P.; Bagliesi, M.G.; Beatty, J.J.; Bigongiari, G.; Childers, J.T.; Conklin, N.B.; Coutu, S.; DuVernois, M.A.; Ganel, O.; et al. Discrepant Hardening Observed in Cosmic-ray Elemental Spectra. Astrophys. J. Lett. 2010, 714, L89–L93. [Google Scholar] [CrossRef] [Green Version]
- Adriani, O.; Barbarino, G.C.; Bazilevskaya, G.A.; Bellotti, R.; Boezio, M.; Bogomolov, E.A.; Bonechi, L.; Bongi, M.; Bonvicini, V.; Borisov, S.; et al. PAMELA Measurements of Cosmic-Ray Proton and Helium Spectra. Science 2011, 332, 69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giesen, G.; Boudaud, M.; Génolini, Y.; Poulin, V.; Cirelli, M.; Salati, P.; Serpico, P.D. AMS-02 antiprotons, at last! Secondary astrophysical component and immediate implications for Dark Matter. J. Cosmol. Astropart. Phys. 2015, 9, 23. [Google Scholar] [CrossRef]
- An, Q.; Asfandiyarov, R.; Azzarello, P.; Bernardini, P.; Bi, X.J.; Cai, M.S.; Chang, J.; Chen, D.Y.; Chen, H.F.; Chen, J.L.; et al. Measurement of the cosmic ray proton spectrum from 40 GeV to 100 TeV with the DAMPE satellite. Sci. Adv. 2019, 5, eaax3793. [Google Scholar] [CrossRef] [Green Version]
- Yoon, Y.S.; Anderson, T.; Barrau, A.; Conklin, N.B.; Coutu, S.; Derome, L.; Han, J.H.; Jeon, J.A.; Kim, K.C.; Kim, M.H.; et al. Proton and Helium Spectra from the CREAM-III Flight. Astrophys. J. 2017, 839, 5. [Google Scholar] [CrossRef] [Green Version]
- Atkin, E.; Bulatov, V.; Dorokhov, V.; Gorbunov, N.; Filippov, S.; Grebenyuk, V.; Karmanov, D.; Kovalev, I.; Kudryashov, I.; Kurganov, A.; et al. New Universal Cosmic-Ray Knee near a Magnetic Rigidity of 10 TV with the NUCLEON Space Observatory. Sov. J. Exp. Theor. Phys. Lett. 2018, 108, 5–12. [Google Scholar] [CrossRef] [Green Version]
- Thoudam, S.; Hörandel, J.R. Nearby supernova remnants and the cosmic ray spectral hardening at high energies. Mon. Not. R. Astron. Soc. 2012, 421, 1209–1214. [Google Scholar] [CrossRef] [Green Version]
- Biermann, P.L.; Becker, J.K.; Dreyer, J.; Meli, A.; Seo, E.S.; Stanev, T. The Origin of Cosmic Rays: Explosions of Massive Stars with Magnetic Winds and Their Supernova Mechanism. Astrophys. J. 2010, 725, 184–187. [Google Scholar] [CrossRef] [Green Version]
- Thoudam, S.; Hörandel, J.R. GeV-TeV cosmic-ray spectral anomaly as due to reacceleration by weak shocks in the Galaxy. Astron. Astrophys. 2014, 567, A33. [Google Scholar] [CrossRef] [Green Version]
- Zatsepin, V.I.; Sokolskaya, N.V. Three component model of cosmic ray spectra from 10 GeV to 100 PeV. Astron. Astrophys. 2006, 458, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Yuan, Q.; Zhang, B.; Bi, X.J. Cosmic ray spectral hardening due to dispersion in the source injection spectra. Phys. Rev. D 2011, 84, 043002. [Google Scholar] [CrossRef] [Green Version]
- Tomassetti, N. Origin of the Cosmic-Ray Spectral Hardening. Astrophys. J. Lett. 2012, 752, L13. [Google Scholar] [CrossRef]
- Gaggero, D.; Grasso, D.; Marinelli, A.; Urbano, A.; Valli, M. The Gamma-Ray and Neutrino Sky: A Consistent Picture of Fermi-LAT, Milagro, and IceCube Results. Astrophys. J. Lett. 2015, 815, L25. [Google Scholar] [CrossRef] [Green Version]
- Jin, C.; Guo, Y.Q.; Hu, H.B. Spatial dependent diffusion of cosmic rays and the excess of primary electrons derived from high precision measurements by AMS-02. Chin. Phys. C 2016, 40, 015101. [Google Scholar] [CrossRef] [Green Version]
- Joshi, Y.C. Displacement of the Sun from the Galactic plane. Mon. Not. R. Astron. Soc. 2007, 378, 768–776. [Google Scholar] [CrossRef] [Green Version]
- Bobylev, V.V.; Bajkova, A.T. The z distribution of hydrogen clouds and masers with kinematic distances. Astron. Lett. 2016, 42, 182–192. [Google Scholar] [CrossRef] [Green Version]
- van Tulder, J.J.M. A new determination of the galactic pole and the distance of the Sun from the galactic plane. Bull. Astronomi. Inst. Nether. 1942, 9, 315. [Google Scholar]
- Conti, P.S.; Vacca, W.D. The Distribution of Massive Stars in the Galaxy. I. The Wolf-Rayet Stars. Astronomi. J. 1990, 100, 431. [Google Scholar] [CrossRef]
- Humphreys, R.M.; Larsen, J.A. The Sun’s Distance Above the Galactic Plane. Astronomi. J. 1995, 110, 2183. [Google Scholar] [CrossRef]
- Chen, B.; Stoughton, C.; Smith, J.A.; Uomoto, A.; Pier, J.R.; Yanny, B.; Ivezić, Ž.; York, D.G.; Anderson, J.E.; Annis, J.; et al. Stellar Population Studies with the SDSS. I. The Vertical Distribution of Stars in the Milky Way. Astrophys. J. 2001, 553, 184–197. [Google Scholar] [CrossRef]
- Maíz-Apellániz, J. The Spatial Distribution of O-B5 Stars in the Solar Neighborhood as Measured by Hipparcos. Astronomi. J. 2001, 121, 2737–2742. [Google Scholar] [CrossRef] [Green Version]
- Majaess, D.J.; Turner, D.G.; Lane, D.J. Characteristics of the Galaxy according to Cepheids. Mon. Not. R. Astron. Soc. 2009, 398, 263–270. [Google Scholar] [CrossRef] [Green Version]
- Olausen, S.A.; Kaspi, V.M. The McGill Magnetar Catalog. Astrophys. J. Suppl. 2014, 212, 6. [Google Scholar] [CrossRef] [Green Version]
- Buckner, A.S.; Froebrich, D. Properties of star clusters-II. Scaleheight evolution of clusters. Mon. Not. R. Astron. Soc. 2014, 444, 290–302. [Google Scholar] [CrossRef] [Green Version]
- Joshi, Y.C.; Dambis, A.K.; Pandey, A.K.; Joshi, S. Study of open clusters within 1.8 kpc and understanding the Galactic structure. Astron. Astrophys. 2016, 593, A116. [Google Scholar] [CrossRef]
- Yao, J.M.; Manchester, R.N.; Wang, N. Determination of the Sun’s offset from the Galactic plane using pulsars. Mon. Not. R. Astron. Soc. 2017, 468, 3289–3294. [Google Scholar] [CrossRef] [Green Version]
- Bell, A.R. The acceleration of cosmic rays in shock fronts. I. Mon. Not. R. Astron. Soc. 1978, 182, 147–156. [Google Scholar] [CrossRef] [Green Version]
- Bell, A.R. The acceleration of cosmic rays in shock fronts. II. Mon. Not. R. Astron. Soc. 1978, 182, 443–455. [Google Scholar] [CrossRef] [Green Version]
- Blandford, R.D.; Ostriker, J.P. Particle acceleration by astrophysical shocks. Astrophys. J. Lett. 1978, 221, L29–L32. [Google Scholar] [CrossRef]
- Garcia-Munoz, M.; Mason, G.M.; Simpson, J.A. The age of the galactic cosmic rays derived from the abundance of 10Be. Astrophys. J. 1977, 217, 859–877. [Google Scholar] [CrossRef]
- Guo, Y.Q.; Yuan, Q. Understanding the spectral hardenings and radial distribution of Galactic cosmic rays and Fermi diffuse γ rays with spatially-dependent propagation. Phys. Rev. D 2018, 97, 063008. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Yao, Y.h.; Guo, Y.Q. Revisiting the Spatially Dependent Propagation Model with the Latest Observations of Cosmic-Ray Nuclei. Astrophys. J. 2018, 869, 176. [Google Scholar] [CrossRef] [Green Version]
- Evoli, C.; Gaggero, D.; Grasso, D.; Maccione, L. Cosmic ray nuclei, antiprotons and gamma rays in the galaxy: A new diffusion model. J. Cosmol. Astropart. Phys. 2008, 10, 018. [Google Scholar] [CrossRef] [Green Version]
- Case, G.; Bhattacharya, D. Revisiting the galactic supernova remnant distribution. Astron. Astrophys. Suppl. 1996, 120, 437–440. [Google Scholar]
- Aguilar, M.; Aisa, D.; Alpat, B.; Alvino, A.; Ambrosi, G.; Andeen, K.; Arruda, L.; Attig, N.; Azzarello, P.; Bachlechner, A.; et al. Precision Measurement of the Proton Flux in Primary Cosmic Rays from Rigidity 1 GV to 1.8 TV with the Alpha Magnetic Spectrometer on the International Space Station. Phys. Rev. Lett. 2015, 114, 171103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aguilar, M.; Ali Cavasonza, L.; Alpat, B.; Ambrosi, G.; Arruda, L.; Attig, N.; Aupetit, S.; Azzarello, P.; Bachlechner, A.; Barao, F.; et al. Observation of the Identical Rigidity Dependence of He, C, and O Cossmic Rays at High Rigidities by the Alpha Magnetic Spectrometer on the International Space Station. Phys. Rev. Lett. 2017, 119, 251101. [Google Scholar] [CrossRef] [Green Version]
- DAMPE Collaboration. Detection of spectral hardenings in cosmic-ray boron-to-carbon and boron-to-oxygen flux ratios with DAMPE. Sci. Bull. 2022, 67, 2162–2216. [Google Scholar] [CrossRef]
- Adriani, O.; Akaike, Y.; Asano, K.; Asaoka, Y.; Berti, E.; Bigongiari, G.; Binns, W.R.; Bongi, M.; Brogi, P.; Bruno, A.; et al. Observation of Spectral Structures in the Flux of Cosmic-Ray Protons from 50 GeV to 60 TeV with the Calorimetric Electron Telescope on the International Space Station. Phys. Rev. Lett. 2022, 129, 101102. [Google Scholar] [CrossRef]
- Adriani, O.; Akaike, Y.; Asano, K.; Asaoka, Y.; Berti, E.; Bigongiari, G.; Binns, W.R.; Bongi, M.; Brogi, P.; Bruno, A.; et al. Direct Measurement of the Cosmic-Ray Helium Spectrum from 40 GeV to 250 TeV with the Calorimetric Electron Telescope on the International Space Station. Phys. Rev. Lett. 2023, 130, 171002. [Google Scholar] [CrossRef]
- Antoni, T.; Apel, W.D.; Badea, A.F.; Bekk, K.; Bercuci, A.; Blümer, J.; Bozdog, H.; Brancus, I.M.; Chilingarian, A.; Daumiller, K.; et al. KASCADE measurements of energy spectra for elemental groups of cosmic rays: Results and open problems. Astropart. Phys. 2005, 24, 1–25. [Google Scholar] [CrossRef] [Green Version]
- Apel, W.D.; Arteaga-Velázquez, J.C.; Bekk, K.; Bertaina, M.; Blümer, J.; Bozdog, H.; Brancus, I.M.; Cantoni, E.; Chiavassa, A.; Cossavella, F.; et al. KASCADE-Grande measurements of energy spectra for elemental groups of cosmic rays. Astropart. Phys. 2013, 47, 54–66. [Google Scholar] [CrossRef] [Green Version]
- Aartsen, M.G.; Ackermann, M.; Adams, J.; Aguilar, J.A.; Ahlers, M.; Ahrens, M.; Alispach, C.; Andeen, K.; Anderson, T.; Ansseau, I.; et al. Cosmic ray spectrum and composition from PeV to EeV using 3 years of data from IceTop and IceCube. Phys. Rev. D 2019, 100, 082002. [Google Scholar] [CrossRef] [Green Version]
- Hörandel, J.R. On the knee in the energy spectrum of cosmic rays. Astropart. Phys. 2003, 19, 193–220. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Guo, Y.Q.; Yuan, Q. Indication of nearby source signatures of cosmic rays from energy spectra and anisotropies. J. Cosmol. Astropart. Phys. 2019, 2019, 010. [Google Scholar] [CrossRef] [Green Version]
- Sakakibara, S.; Ueno, H.; Fujimoto, K.; Kondo, I.; Nagashima, K. Sidereal Time Variation of Small Air Showers Observed at Mt. Norikura. Int. Cosm. Ray Conf. 1973, 2, 1058. [Google Scholar]
- Bercovitch, M.; Agrawal, S.P. Cosmic ray anisotropies at median primary rigidities between 100 and 1000 GV. Int. Cosm. Ray Conf. 1981, 10, 246–249. [Google Scholar]
- Thambyahpillai, T. The Sidereal Diurnal Variation Measured Underground in London. Int. Cosm. Ray Conf. 1983, 3, 383. [Google Scholar]
- Swinson, D.B.; Nagashima, K. Corrected sidereal anisotropy for underground muons. Planet. Space Sci. 1985, 33, 1069–1072. [Google Scholar] [CrossRef]
- Andreyev, Y.M.; Chudakov, A.E.; Kozyarivsky, V.A.; Sidorenko, A.M.; Tulupova, T.I.; Voevodsky, A.V. Cosmic Ray Sidereal Anisotropy Observed by Baksan Underground Muon Telescope. Int. Cosm. Ray Conf. 1987, 2, 22. [Google Scholar]
- Lee, Y.W.; Ng, L.K. Observation of Cosmic-Ray Intensity Variation Using AN Underground Telescope. Int. Cosm. Ray Conf. 1987, 2, 18. [Google Scholar]
- Ueno, H.; Fujii, Z.; Yamada, T. 11 Years Variations of Sidereal Anisotropy Observed at Sakashita Underground Station. Int. Cosm. Ray Conf. 1990, 6, 361. [Google Scholar]
- Cutler, D.J.; Groom, D.E. Mayflower Mine 1500 GV detector—Cosmic-ray anisotropy and search for Cygnus X-3. Astrophys. J. 1991, 376, 322–334. [Google Scholar] [CrossRef]
- Munakata, K.; Yasue, S.; Mori, S.; Kato, C.; Koyama, M.; Akahane, S.; Fujii, Z.; Ueno, H.; Humble, J.E.; Fenton, A.G.; et al. Two Hemisphere Observations of the North–South Sidereal Asymmetry at ∼1 TeV. Int. Cosm. Ray Conf. 1995, 4, 639. [Google Scholar]
- Mori, S.; Yasue, S.; Munakata, K.; Kato, C.; Akahane, S.; Koyama, M.; Kitawada, T. Observation of Sidereal Anisotropy of Cosmic Rays at ∼1 TV. Int. Cosm. Ray Conf. 1995, 4, 648. [Google Scholar]
- Fenton, K.B.; Fenton, A.G.; Humble, J.E. Sidereal Variations at High Energies—Observations at Poatina. Int. Cosm. Ray Conf. 1995, 4, 635. [Google Scholar]
- Munakata, K.; Kiuchi, T.; Yasue, S.; Kato, C.; Mori, S.; Hirata, K.S.; Kihara, K.; Oyama, Y.; Mori, M.; Fujita, K.; et al. Large-scale anisotropy of the cosmic-ray muon flux in Kamiokande. Phys. Rev. D 1997, 56, 23–26. [Google Scholar] [CrossRef] [Green Version]
- Ambrosio, M.; Antolini, R.; Baldini, A.; Barbarino, G.C.; Barish, B.C.; Battistoni, G.; Becherini, Y.; Bellotti, R.; Bemporad, C.; Bernardini, P.; et al. Search for the sidereal and solar diurnal modulations in the total MACRO muon data set. Phys. Rev. D 2003, 67, 042002. [Google Scholar] [CrossRef] [Green Version]
- Guillian, G.; Hosaka, J.; Ishihara, K.; Kameda, J.; Koshio, Y.; Minamino, A.; Mitsuda, C.; Miura, M.; Moriyama, S.; Nakahata, M.; et al. Observation of the anisotropy of 10TeV primary cosmic ray nuclei flux with the Super-Kamiokande-I detector. Phys. Rev. D 2007, 75, 062003. [Google Scholar] [CrossRef] [Green Version]
- Gombosi, T.; Kóta, J.; Somogyi, A.J.; Varga, A.; Betev, B.; Katsarski, L.; Kavlakov, S.; Khirov, I. Galactic cosmic ray anisotropy at ≈6 × 1013 eV. Int. Cosm. Ray Conf. 1975, 2, 586–591. [Google Scholar]
- Alexeyenko, V.V.; Chudakov, A.E.; Gulieva, E.N.; Sborschikov, V.G. Anisotropy of Small EAS (about 10(13) Ev). Int. Cosm. Ray Conf. 1981, 2, 146. [Google Scholar]
- Nagashima, K.; Fujimoto, K.; Sakakibara, S.; Fujii, Z.; Ueno, H.; Murakami, K.; Morishita, I. Galactic cosmic-ray anisotropy and its modulation in the heliomagnetosphere, inferred from air shower observation at Mt. Norikura. Nuovo C. Geophys. Space Phys. 1989, 12, 695–749. [Google Scholar] [CrossRef]
- Aglietta, M.; Alessandro, B.; Antonioli, P.; Arneodo, F.; Bergamasco, L.; Bertaina, M.; Bosio, A.; Castellina, A.; Castagnoli, C.; Chaivasa, A.; et al. Study of the Cosmic Ray Anisotropy at Eo∼ 100 TeV from EAS-TOP: 1992–1994. Int. Cosm. Ray Conf. 1995, 2, 800. [Google Scholar]
- Aglietta, M.; Alessandro, B.; Antonioli, P.; Arneodo, F.; Bergamasco, L.; Bertaina, M.; Bosio, A.; Castellina, A.; Castagnoli, C.; Chiavassa, A.; et al. A Measurement of the Solar and Sidereal Cosmic-Ray Anisotropy at E 0 approximately 10 14 eV. Astrophys. J. 1996, 470, 501. [Google Scholar] [CrossRef]
- Aglietta, M.; Alekseenko, V.V.; Alessandro, B.; Antonioli, P.; Arneodo, F.; Bergamasco, L.; Bertaina, M.; Bonino, R.; Castellina, A.; Chiavassa, A.; et al. Evolution of the Cosmic-Ray Anisotropy Above 1014 eV. Astrophys. J. Lett. 2009, 692, L130–L133. [Google Scholar] [CrossRef] [Green Version]
- Alekseenko, V.V.; Cherniaev, A.B.; Djappuev, D.D.; Kudjaev, A.U.; Michailova, O.I.; Stenkin, Y.V.; Stepanov, V.I.; Volchenko, V.I. 10–100 TeV cosmic ray anisotropy measured at the Baksan EAS “Carpet” array. Nucl. Phys. B Proc. Suppl. 2009, 196, 179–182. [Google Scholar] [CrossRef]
- Abdo, A.A.; Allen, B.T.; Aune, T.; Berley, D.; Casanova, S.; Chen, C.; Dingus, B.L.; Ellsworth, R.W.; Fleysher, L.; Fleysher, R.; et al. The Large-Scale Cosmic-Ray Anisotropy as Observed with Milagro. Astrophys. J. 2009, 698, 2121–2130. [Google Scholar] [CrossRef] [Green Version]
- Abbasi, R.; Abdou, Y.; Abu-Zayyad, T.; Adams, J.; Aguilar, J.A.; Ahlers, M.; Andeen, K.; Auffenberg, J.; Bai, X.; Baker, M.; et al. Measurement of the Anisotropy of Cosmic-ray Arrival Directions with IceCube. Astrophys. J. Lett. 2010, 718, L194–L198. [Google Scholar] [CrossRef]
- Abbasi, R.; Abdou, Y.; Abu-Zayyad, T.; Ackermann, M.; Adams, J.; Aguilar, J.A.; Ahlers, M.; Allen, M.M.; Altmann, D.; Andeen, K.; et al. Observation of Anisotropy in the Galactic Cosmic-Ray Arrival Directions at 400 TeV with IceCube. Astrophys. J. 2012, 746, 33. [Google Scholar] [CrossRef] [Green Version]
- Aartsen, M.G.; Abbasi, R.; Abdou, Y.; Ackermann, M.; Adams, J.; Aguilar, J.A.; Ahlers, M.; Altmann, D.; Andeen, K.; Auffenberg, J.; et al. Observation of Cosmic-Ray Anisotropy with the IceTop Air Shower Array. Astrophys. J. 2013, 765, 55. [Google Scholar] [CrossRef] [Green Version]
- Bartoli, B.; Bernardini, P.; Bi, X.J.; Cao, Z.; Catalanotti, S.; Chen, S.Z.; Chen, T.L.; Cui, S.W.; Dai, B.Z.; D’Amone, A.; et al. ARGO-YBJ Observation of the Large-scale Cosmic Ray Anisotropy During the Solar Minimum between Cycles 23 and 24. Astrophys. J. 2015, 809, 90. [Google Scholar] [CrossRef] [Green Version]
- Amenomori, M.; Ayabe, S.; Cui, S.W.; Danzengluobu; Ding, L.K.; Ding, X.H.; Feng, C.F.; Feng, Z.Y.; Gao, X.Y.; Geng, Q.X.; et al. Large-Scale Sidereal Anisotropy of Galactic Cosmic-Ray Intensity Observed by the Tibet Air Shower Array. Astrophys. J. Lett. 2005, 626, L29–L32. [Google Scholar] [CrossRef]
- Amenomori, M.; Bi, X.J.; Chen, D.; Chen, T.L.; Chen, W.Y.; Cui, S.W.; Danzengluobu; Ding, L.K.; Feng, C.F.; Feng, Z.; et al. Northern sky Galactic Cosmic Ray anisotropy between 10 and 1000 TeV with the Tibet Air Shower Array. In Proceedings of the 34th International Cosmic Ray Conference (ICRC2015), Hague, The Netherlands, 30 July–6 August 2015; Volume 34, p. 355. [Google Scholar]
- Amenomori, M.; Bi, X.J.; Chen, D.; Chen, T.L.; Chen, W.Y.; Cui, S.W.; Danzengluobu; Ding, L.K.; Feng, C.F.; Feng, Z.; et al. Northern Sky Galactic Cosmic Ray Anisotropy between 10 and 1000 TeV with the Tibet Air Shower Array. Astrophys. J. 2017, 836, 153. [Google Scholar] [CrossRef] [Green Version]
- Evoli, C.; Gaggero, D.; Grasso, D.; Maccione, L. Common Solution to the Cosmic Ray Anisotropy and Gradient Problems. Phys. Rev. Lett. 2012, 108, 211102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Su, M.; Slatyer, T.R.; Finkbeiner, D.P. Giant Gamma-ray Bubbles from Fermi-LAT: Active Galactic Nucleus Activity or Bipolar Galactic Wind? Astrophys. J. 2010, 724, 1044–1082. [Google Scholar] [CrossRef] [Green Version]
- Predehl, P.; Sunyaev, R.A.; Becker, W.; Brunner, H.; Burenin, R.; Bykov, A.; Cherepashchuk, A.; Chugai, N.; Churazov, E.; Doroshenko, V.; et al. Detection of large-scale X-ray bubbles in the Milky Way halo. Nature 2020, 588, 227–231. [Google Scholar] [CrossRef]
- Bai, X.; Bi, B.Y.; Bi, X.J.; Cao, Z.; Chen, S.Z.; Chen, Y.; Chiavassa, A.; Cui, X.H.; Dai, Z.G.; della Volpe, D.; et al. The Large High Altitude Air Shower Observatory (LHAASO) Science White Paper. arXiv 2019, arXiv:astro-ph.HE/1905.02773. [Google Scholar]
[kpc] | [pc] | [] | ||
---|---|---|---|---|
0.5 | 0 | 0.57 | 0.55 | 0.62 |
0.75 | 5 | 6.9 | 0.65 | 0.39 |
1.0 | 10 | 8.75 | 0.65 | 0.39 |
1.15 | 13 | 9.24 | 0.69 | 0.39 |
1.3 | 16 | 10.07 | 0.69 | 0.39 |
1.45 | 19 | 11.05 | 0.7 | 0.39 |
(kpc) | B/C | Proton | Helium | All-Particle | Aniso | Combined |
---|---|---|---|---|---|---|
0.5 | 255.84/99 | 203.17/112 | 238.95/105 | 13.63/33 | 3.42/3 | 715.01/352 |
0.75 | 91.96/99 | 406.94/112 | 134.08/105 | 19.76/33 | 2.43/3 | 655.17/352 |
1.0 | 106.25/99 | 295.72/112 | 134.78/105 | 24.2/33 | 1.29/3 | 562.24/352 |
1.15 | 94.12/99 | 338.66/112 | 147.66/105 | 23.81/33 | 14.53/3 | 618.78/352 |
1.3 | 149.05/99 | 515.05/112 | 157.51/105 | 26.92/33 | 30.47/3 | 879/352 |
1.45 | 233.72/99 | 610.67/112 | 157.51/105 | 22.87/33 | 50.79/3 | 1069.94/352 |
data | A(>15GeV) +C1+D | A(>30GeV)+ C1+C2+D+K | A+C1 +C2+D+K | >PeV |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiao, B.-Q.; Yao, Y.-H.; Liu, W.; Yuan, Q.; Bi, X.-J.; Hu, H.-B.; Guo, Y.-Q. Constraining the Thickness of the Galactic Halo through Cosmic-Ray Anisotropy Using the Spatial-Dependent-Propagation Model. Universe 2023, 9, 363. https://doi.org/10.3390/universe9080363
Qiao B-Q, Yao Y-H, Liu W, Yuan Q, Bi X-J, Hu H-B, Guo Y-Q. Constraining the Thickness of the Galactic Halo through Cosmic-Ray Anisotropy Using the Spatial-Dependent-Propagation Model. Universe. 2023; 9(8):363. https://doi.org/10.3390/universe9080363
Chicago/Turabian StyleQiao, Bing-Qiang, Yu-Hua Yao, Wei Liu, Qiang Yuan, Xiao-Jun Bi, Hong-Bo Hu, and Yi-Qing Guo. 2023. "Constraining the Thickness of the Galactic Halo through Cosmic-Ray Anisotropy Using the Spatial-Dependent-Propagation Model" Universe 9, no. 8: 363. https://doi.org/10.3390/universe9080363
APA StyleQiao, B. -Q., Yao, Y. -H., Liu, W., Yuan, Q., Bi, X. -J., Hu, H. -B., & Guo, Y. -Q. (2023). Constraining the Thickness of the Galactic Halo through Cosmic-Ray Anisotropy Using the Spatial-Dependent-Propagation Model. Universe, 9(8), 363. https://doi.org/10.3390/universe9080363