Quantum-Chemical Study of the Benzene Reaction with Fluorine
Abstract
:1. Introduction
2. Calculation Method
Method | AO Basis | HF (X1Σ+) | CF(X2Π) | ||||
---|---|---|---|---|---|---|---|
Re | we | De | Re | we | De | ||
B3LYP | A | 0.9277 | 4075 | 5.96 | 1.2901 | 1270 | 5.65 |
B | 0.9259 | 4066 | 5.97 | 1.2906 | 1244 | 5.62 | |
C | 0.9225 | 4094 | 5.94 | 1.2761 | 1305 | 5.80 | |
M06 | A | 0.9196 | 4225 | 6.11 | 1.2786 | 1331 | 5.73 |
B | 0.9182 | 4238 | 6.09 | 1.2785 | 1305 | 5.67 | |
C | 0.9153 | 4230 | 6.04 | 1.2622 | 1371 | 5.91 | |
M06-2X | A | 0.9227 | 4180 | 5.93 | 1.2781 | 1337 | 5.67 |
B | 0.9212 | 4167 | 5.94 | 1.2788 | 1311 | 5.66 | |
C | 0.9183 | 4193 | 5.94 | 1.2681 | 1358 | 5.78 | |
M06-HX | A | 0.9234 | 4128 | 6.10 | 1.2842 | 1294 | 5.65 |
B | 0.9213 | 4113 | 6.10 | 1.2848 | 1261 | 5.64 | |
C | 0.9183 | 4135 | 6.05 | 1.2726 | 1316 | 5.73 | |
CCSD(T) | A | 0.9250 | 4123 | 5.77 | 1.3012 | 1253 | 5.26 |
B | 0.9239 | 4080 | 5.84 | 1.3056 | 1206 | 5.20 | |
C | 0.9163 | 4193 | 5.97 | 1.2735 | 1332 | 5.61 | |
Experiment | – | 0.9168 a,b | 4138 a | 6.14 b 6.11 c | 1.2718 a | 1308 a,d | 5.50 e 5.75 f |
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cochrain, E.L.; Adrian, F.J.; Bowers, V.A. Electron Spin Resonance Study of Elementary Reactions of Fluorine Atoms. J. Phys. Chem. 1970, 74, 2083–2090. [Google Scholar] [CrossRef]
- Ebrecht, J.; Hack, W.; Wagner, H.G. Elementary Reactions of Fluorine Atoms with Benzene, Toluene, p-Xylene and Etylbenzene. Bericht. Bunseng. Phys. Chem. 1989, 93, 619–626. [Google Scholar] [CrossRef]
- Vasek, A.H.; Sams, L.C. The Reaction of Atomic Fluorine with Fluorobenzene. J. Fluor. Chem. 1974, 3, 397–401. [Google Scholar] [CrossRef]
- Parson, J.M.; Lee, Y.T. Crossed Molecular Beam Study of F + C2H4, C2D4. J. Chem. Phys. 1972, 56, 4658–4666. [Google Scholar] [CrossRef]
- Parson, J.M.; Shobatake, K.; Lee, Y.T.; Rice, S.A. Unimolecular Decomposition of the Long-lived Complex Formed in the Reaction F + C4H8. J. Chem. Phys. 1973, 59, 1402–1415. [Google Scholar] [CrossRef]
- Parson, J.M.; Shobatake, K.; Lee, Y.T.; Rice, S.A. Substitution Reactions of Fluorine Atoms with Unsaturated Hydrocarbons. Crossed Molecular Beam Studies of Unimolecular Decomposition. Farad. Disc. Chem. Soc. 1973, 55, 344–356. [Google Scholar] [CrossRef]
- Shobatake, K.; Parson, J.M.; Lee, Y.T.; Rice, S.A. Laboratory Angular Dependence and the Recoil-Energy Spectrum of the Products of the Reaction F + C6D6 → D + C6D5F. J. Chem. Phys. 1973, 59, 1427–1434. [Google Scholar] [CrossRef]
- Shobatake, K.; Lee, Y.T.; Rice, S.A. Reactions of F atoms and Aromatic and Heterocyclic Molecules: Energy Distribution in the Reaction Complex. J. Chem. Phys. 1973, 59, 1435–1448. [Google Scholar] [CrossRef]
- Grover, J.R.; Wen, Y.; Lee, Y.T.; Shobatake, K. Crossed-Beam Reactive Scattering of F2 Plus C6H6: Heat of Formation of Ipso-Fluorocyclohexadienyl Radical. J. Chem. Phys. 1988, 89, 938–946. [Google Scholar] [CrossRef]
- Jacox, M.E. Reaction of F Atoms with C6H6 Vibrational Spectrum of the C6H6F Intermediate Trapped in Solid Argon. J. Phys. Chem. 1982, 86, 670–675. [Google Scholar] [CrossRef]
- Cramer, J.A.; Rowland, F.S. Gas Phase Fluorination of Benzene, Fluorobenzene, m-difluorobenzene, and Trifluoromethylbenzene by Reactions of Thermal Fluorine-18 Atoms. J. Am. Chem. Soc. 1974, 96, 6579–6584. [Google Scholar] [CrossRef]
- Moehlmann, J.G.; Gleaves, J.T.; Hudgens, J.W.; McDonald, J.D. Infrared Chemiluminescence Studies of the Reaction of Fluorine Atoms with Monosubstituted Ethylene Compounds. J. Chem. Phys. 1974, 60, 4790–4799. [Google Scholar] [CrossRef]
- Moehlmann, J.G.; McDonald, J.D. Infrared Chemiluminescence Investigation of the Abstraction Reactions between Fluorine Atoms and Unsaturated Compounds. J. Chem. Phys. 1975, 62, 3061–3065. [Google Scholar] [CrossRef]
- Obara, M.; Fujioka, T. Pulsed HF Chemical Lasers from Reactions of Fluorine Atoms with Benzene, Toluene, Xylene, Methanol, and Acetone. Jpn. J. Appl. Phys. 1975, 14, 1183–1187. [Google Scholar] [CrossRef]
- Tsao, M.L.; Hadad, C.M.; Platz, M.S. Computational Study of the Halogen Atom-Benzene Complexes. J. Am. Chem. Soc. 2003, 125, 8390–8399. [Google Scholar] [CrossRef]
- Zhao, Y.; Truhlar, D.G. Density Functionals with Broad Applicability in Chemistry. Acc. Chem. Res. 2008, 41, 157–167. [Google Scholar] [CrossRef]
- Zhao, Y.; Truhlar, D.G. Exploring the Limit of Accuracy of the Global Hybrid Meta Density Functional for Main-Group Thermochemistry, Kinetics, and Noncovalent Interactions. J. Chem. Theory Comp. 2008, 4, 1849–1868. [Google Scholar] [CrossRef]
- Adamson, S.O. Reactions C2H2 + OH and C2 + H2O: Ab Initio Study of the Potential Energy Surfaces. Russ. J. Phys. Chem. B 2016, 10, 143–152. [Google Scholar] [CrossRef]
- Hehre, W.J.; Ditchfield, R.; Pople, J.A. Self-Consistent Molecular Orbital Methods. XII. Further Extensions of Gaussian-Type Basis Sets for Use in Molecular Orbital Studies of Organic Molecules. J. Chem. Phys. 1972, 56, 2257–2261. [Google Scholar] [CrossRef]
- Hariharan, P.C.; Pople, J.A. The Influence of Polarization Functions on Molecular Orbital Hydrogenation Energies. Theor. Chim. Acta 1973, 28, 213–222. [Google Scholar] [CrossRef]
- Clark, T.; Chandrasekhar, J.; Spitznagel, G.W.; Schleyer, P.V.R. Efficient Diffuse Function-Augmented Basis Sets for Anion Calculations. III. The 3-21 + G Basis Set for First-Row Elements, Li-F. J. Comp. Chem. 1983, 4, 294–301. [Google Scholar] [CrossRef]
- Dunning, T.H., Jr. Gaussian Basis Sets for Use in Correlated Molecular Calculations. I. The Atoms Boron through Neon and Hydrogen. J. Chem. Phys. 1989, 90, 1007–1023. [Google Scholar] [CrossRef]
- Kendall, R.A.; Dunning, T.H., Jr.; Harrison, R.J. Electron Affinities of the First-Row Atoms Revisited. Systematic Basis Sets and Wave Functions. J. Chem. Phys. 1992, 96, 6796–6806. [Google Scholar] [CrossRef]
- Schmidt, M.W.; Baldridge, K.K.; Boatz, J.A.; Elbert, S.T.; Gordon, M.S.; Jensen, J.H.; Koseki, S.; Matsunaga, N.; Nguyen, K.A.; Su, S.; et al. General Atomic and Molecular Electronic Structure System. J. Comp. Chem. 1993, 14, 1347–1363. [Google Scholar] [CrossRef]
- Gordon, M.S.; Schmidt, M.W. Advances in electronic structure theory: GAMESS a decade later. In Theory and Applications of Computational Chemistry: The First Forty Years; Dykstra, C.E., Frenking, G., Kim, K.S., Scuseria, G.E., Eds.; Elsevier: Amsterdam, The Netherlands, 2005; pp. 1167–1189. [Google Scholar] [CrossRef]
- Huber, K.P.; Herzberg, G. Molecular Spectra and Molecular Structure. IV. Constants of Diatomic Molecules, 1st ed.; Springer: New York, NY, USA, 1979; 716p. [Google Scholar] [CrossRef]
- Feller, D.; Peterson, K.A. Hydrogen Fluoride: A Critical Comparison of Theoretical and Experimental Results. J. Mol. Struct. Theochem. 1997, 400, 69–92. [Google Scholar] [CrossRef]
- Gondal, M.A.; Rohrbeck, W.; Urban, W. Vibration-Rotation Transitions in the CF Radical, Studied by Laser Magnetic Resonance Spectroscopy at 7.8 p.m. J. Mol. Spectr. 1983, 100, 290–302. [Google Scholar] [CrossRef]
- Smith, D.J.; Setser, D.W.; Kim, K.C.; Bogan, D.J. HF Infrared Chemiluminescence. Relative Rate Constants for Hydrogen Abstraction from Hydrocarbons, Substituted Methanes, and Inorganic Hydrides. J. Phys. Chem. 1977, 81, 898–905. [Google Scholar] [CrossRef]
- Vasiliev, E.S.; Volkov, N.D.; Karpov, G.V.; Savilov, S.V.; Morozov, I.I.; Lunin, V.V. Mass Spectrometry Study of the Reaction of Fluorine Atoms with Benzene. Russ. J. Phys. Chem. A 2020, 94, 2004–2009. [Google Scholar] [CrossRef]
- Darwent, B. Bond Dissociation Energies in Simple Molecules; National Bureau of Standarts: Washington, DC, USA, 1970; 48p. [Google Scholar]
- Porter, T.L.; Mann, D.E.; Acquista, N. Emission Spectrum of CF. J. Mol. Spectr. 1965, 16, 228–263. [Google Scholar] [CrossRef]
- Hildenbrand, D.L. Dissociation Energy and Ionization Potentlal of the Molecule CF. Chem. Phys. Lett. 1975, 32, 523–526. [Google Scholar] [CrossRef]
- Burgess, D.R., Jr.; Manion, J.A. Rate Constants for Abstraction of H from the Fluoromethanes by H, O, F, and OH. J. Phys. Chem. Ref. Data 2021, 50, 023102:1–023102:47. [Google Scholar] [CrossRef]
- Atkinson, R.; Baulch, D.L.; Cox, R.A.; Hampson, R.F.; Kerr, J.A.; Rossi, M.J.; Troe, J. Evaluated Kinetic, Photochemical and Heterogeneous Data for Atmospheric Chemistry: Supplement V. IUPAC Subcommittee on Gas Kinetic Data Evaluation for Atmospheric Chemistry. J. Phys. Chem. Ref. Data 1997, 26, 521–1011. [Google Scholar] [CrossRef]
- Foon, R.; Reid, G.P. Kinetics of the Gas Phase Fluorination of Hydrogen and Alkanes. Trans. Faraday Soc. 1971, 67, 3513–3520. [Google Scholar] [CrossRef]
- Persky, A. Kinetics of the Reactions F + H2S and F + D2S at 298 K. Chem. Phys. Lett. 1998, 298, 390–394. [Google Scholar] [CrossRef]
- Espinosa-Garcia, J.; Bravo, J.L.; Rangel, C. New Analytical Potential Energy Surface for the F(2P) + CH4 Hydrogen Abstraction Reaction: Kinetics and Dynamics. J. Phys. Chem. A 2007, 111, 2761–2771. [Google Scholar] [CrossRef]
- Vasiliev, E.S.; Volkov, N.D.; Karpov, G.V.; Morozov, I.I.; Nigmatullin, D.R.; Saigina, E.A.; Savilov, S.V.; Umanskii, S.Y.; Butkovskaya, N.I. Determination of the Rate Constant of the Reaction of Benzene with Atomic Fluorine by the Method of Competing Reactions. Russ. J. Phys. Chem. B 2021, 15, 789–794. [Google Scholar] [CrossRef]
- Hrusak, J.; Schroder, D.; Weiske, T.; Schwarz, H. Combined ab Initio MO and Experimental Studies on the Unimolecular HF Loss from Protonated Fluorobenzene in the Gas Phase. J. Am. Chem. Soc. 1993, 115, 2015–2020. [Google Scholar] [CrossRef]
- Dopfer, O.; Solca, N.; Lemaire, J.; Maitre, P.; Crestoni, M.-E.; Fornarini, S. Protonation Sites of Isolated Fluorobenzene Revealed by IR Spectroscopy in the Fingerprint Range. J. Phys. Chem. A 2005, 109, 7881–7887. [Google Scholar] [CrossRef]
- Dopfer, O. IR Spectroscopic Strategies for the Structural Characterization of Isolated and Microsolvated Arenium Ions. J. Phys. Organ. Chem. 2006, 19, 540–551. [Google Scholar] [CrossRef]
- Solca, N.; Dopfer, O. Protonation of Gas-Phase Aromatic Molecules: IR Spectrum of the Fluoronium Isomer of Protonated Fluorobenzene. J. Am. Chem. Soc. 2003, 125, 1421–1430. [Google Scholar] [CrossRef]
- Mason, R.S.; Parry, A.J.; Milton, D.M.P. Proton Transfer to the Fluorine Atom in Fluorobenzene. Temperature and Pressure Dependence. J. Chem. Soc. Faraday Transact. 1994, 90, 1373–1380. [Google Scholar] [CrossRef]
- Vasiliev, E.S.; Karpov, G.V.; Shartava, D.K.; Morozov, I.I.; Savilov, S.V.; Morozova, O.S.; Khomyakova, P.S. Mass Spectrometric Study of the Reaction of a Fluorine Atom and Monocloroacetic Acid. Russ. J. Phys. Chem. B 2022, 16, 388–394. [Google Scholar] [CrossRef]
Intermediates | Symmetry | Eel | EZPE | Rotational Constants | ||
---|---|---|---|---|---|---|
A | B | C | ||||
C6H6(benzene) | D6h | −232.272728 | 0.100943 | 0.191627 | 0.191568 | 0.095799 |
ipso-C6H6F | Cs | −332.052150 | 0.102067 | 0.164504 | 0.086938 | 0.061077 |
ortho-C6H6F | Cs | −332.057841 | 0.101582 | 0.176125 | 0.083502 | 0.057234 |
meta-C6H6F | Cs | −332.055540 | 0.101194 | 0.176568 | 0.082452 | 0.056778 |
para-C6H6F | Cs | −332.054249 | 0.101224 | 0.178196 | 0.081805 | 0.056636 |
C6H5F·H | Cs | −332.016714 | 0.094209 | 0.175458 | 0.082774 | 0.059285 |
C6H5(phenyl) | C2v | −231.580403 | 0.087849 | 0.211608 | 0.188592 | 0.099719 |
C6H5F | C2v | −331.512398 | 0.092807 | 0.190805 | 0.086191 | 0.059372 |
TS1 | Cs | −331.999392 | 0.097821 | 0.178590 | 0.061472 | 0.047088 |
TS2 | Cs | −332.002118 | 0.094882 | 0.181664 | 0.084046 | 0.058891 |
HF | C∞v | −100.447456 | 0.009419 | 0.000000 | 20.869525 | 20.869525 |
F | — | −99.725232 | — | — | — | — |
H | — | −0.499810 | — | — | — | — |
ipso-C6H6F+ | Cs | −331.774657 | 0.102266 | 0.174515 | 0.085669 | 0.058663 |
ortho-C6H6F+ | Cs | −331.803116 | 0.103179 | 0.179398 | 0.084788 | 0.058169 |
F-C6H6F+ | Cs | −331.752715 | 0.101184 | 0.183284 | 0.078364 | 0.055143 |
C6H5+ | C2v | −231.274621 | 0.085622 | 0.229556 | 0.181645 | 0.101405 |
TS12 | C1 | −331.770214 | 0.100731 | 0.180277 | 0.085217 | 5.851448 |
TS15 | Cs | −331.705236 | 0.097587 | 0.180956 | 0.082377 | 0.057044 |
TS25 | C1 | −331.705170 | 0.097199 | 0.180974 | 0.084688 | 0.058268 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adamson, S.O.; Kharlampidi, D.D.; Shtyrkova, A.S.; Umanskii, S.Y.; Dyakov, Y.A.; Morozov, I.I.; Golubkov, M.G. Quantum-Chemical Study of the Benzene Reaction with Fluorine. Atoms 2023, 11, 132. https://doi.org/10.3390/atoms11100132
Adamson SO, Kharlampidi DD, Shtyrkova AS, Umanskii SY, Dyakov YA, Morozov II, Golubkov MG. Quantum-Chemical Study of the Benzene Reaction with Fluorine. Atoms. 2023; 11(10):132. https://doi.org/10.3390/atoms11100132
Chicago/Turabian StyleAdamson, Sergey O., Daria D. Kharlampidi, Anastasia S. Shtyrkova, Stanislav Y. Umanskii, Yuri A. Dyakov, Igor I. Morozov, and Maxim G. Golubkov. 2023. "Quantum-Chemical Study of the Benzene Reaction with Fluorine" Atoms 11, no. 10: 132. https://doi.org/10.3390/atoms11100132
APA StyleAdamson, S. O., Kharlampidi, D. D., Shtyrkova, A. S., Umanskii, S. Y., Dyakov, Y. A., Morozov, I. I., & Golubkov, M. G. (2023). Quantum-Chemical Study of the Benzene Reaction with Fluorine. Atoms, 11(10), 132. https://doi.org/10.3390/atoms11100132