Methane Cluster Fragmentation by Fast Electron Impact
Abstract
:1. Introduction
2. Experimental Methods
3. Results and Discussions
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Boogert, A.; Gerakines, P.A.; Whittet, D.C. Observations of the icy universe. Annu. Rev. Astron. Astrophys. 2015, 53, 541. [Google Scholar] [CrossRef]
- Gibb, E.; Mumma, M.; Russo, N.D.; DiSanti, M.; Magee-Sauer, K. Methane in Oort cloud comets. Icarus 2003, 165, 391. [Google Scholar] [CrossRef]
- Qasim, D.; Fedoseev, G.; Chuang, K.J.; He, J.; Ioppolo, S.; van Dishoeck, E.F.; Linnartz, H. An experimental study of the surface formation of methane in interstellar molecular clouds. Nat. Astron. 2020, 4, 781. [Google Scholar] [CrossRef]
- Formisano, V.; Atreya, S.; Encrenaz, T.; Ignatiev, N.; Giuranna, M. Detection of methane in the atmosphere of Mars. Science 2004, 306, 1758. [Google Scholar] [CrossRef]
- Mousis, O.; Lunine, J.I.; Pasek, M.; Cordier, D.; Waite, J.H., Jr.; Mandt, K.E.; Lewise, W.S.; Nguyen, M.J. A primordial origin for the atmospheric methane of Saturn’s moon Titan. Icarus 2009, 204, 749. [Google Scholar] [CrossRef]
- Molina-Cuberos, G.J.; López-Moreno, J.J.; Rodrigo, R.; Lara, L.M. Chemistry of the galactic cosmic ray induced ionosphere of Titan. J. Geophys. Res. Planets 1999, 104, 21997. [Google Scholar] [CrossRef]
- Ding, A.; Cassidy, R.A.; Futrell, J.H.; Cordis, L. Ion-molecule reactions within methane clusters initiated by photoionization. J. Phys. Chem. 1987, 91, 2562. [Google Scholar] [CrossRef]
- Herman, Z.; Henchman, M.; Friedrich, B. A beam scattering study of the dynamics of CH4+ (CH4, CH3) CH5+ reaction in the eV collision energy range: Three competing mechanisms of CH5+formation. J. Chem. Phys. 1990, 93, 4916. [Google Scholar] [CrossRef]
- Iwan, B.; Andreasson, J.; Bergh, M.; Schorb, S.; Thomas, H.; Rupp, D.; Gorkhover, T.; Adolph, M.; Möller, T.; Bostedt, C.; et al. Explosion, ion acceleration, and molecular fragmentation of methane clusters in the pulsed beam of a free-electron laser. Phys. Rev. A 2012, 86, 033201. [Google Scholar] [CrossRef]
- Zaag, A.S.; Yazidi, O.; Jaidane, N.E.; Ross, M.W.; Castleman, A.W., Jr.; Al Mogren, M.M.; Linguerri, R.; Hochlaf, M. Structure, reactivity, and fragmentation of small multi-charged methane clusters. J. Phys. Chem. A 2016, 120, 1669. [Google Scholar] [CrossRef]
- Tian, C.; Vidal, C.R. Electron impact dissociative ionization and the subsequent ion-molecule reactions in a methane beam. Chem. Phys. 1997, 222, 105. [Google Scholar] [CrossRef]
- Yi, H.; Kim, Y.; Choi, C.; Jung, K.-H. Intracluster ion–molecule reactions within methane homoclusters. J. Mass Spectrom. 1998, 33, 599. [Google Scholar] [CrossRef]
- Leidlmair, C.; Bartl, P.; Schöbel, H.; Denifl, S.; Yang, S.; Ellis, A.M.; Scheier, P. Ionization of methane clusters in helium nanodroplets. ChemPhysChem 2012, 13, 469. [Google Scholar] [CrossRef] [PubMed]
- Ren, X.; Pflüger, T.; Weyland, M.; Baek, W.Y.; Rabus, H.; Ullrich, J.; Dorn, A. High-resolution (e, 2e+ ion) study of electron-impact ionization and fragmentation of methane. J. Chem. Phys. 2015, 142, 174313. [Google Scholar] [CrossRef]
- Field, T.A.; Eland, J.H. The fragmentation of CH4+ ions from photoionization between 12 and 40 eV. J. Electron. Spectrosc. Relat. Phenom. 1995, 73, 209. [Google Scholar] [CrossRef]
- Furuya, K.; Hayakawa, H.; Matsuo, A.; Ogawa, T. Translational energy distributions of excited CH+ ions produced by electron impact on methane. J. Phys. B At. Mol. Opt. Phys. 1999, 32, 621. [Google Scholar] [CrossRef]
- Wolff, W.; Sigaud, L.; Montenegro, E.C.; de Jesus, V.L.B.; Cavasso Filho, R.L.; Pilling, S.; Santos, A.C.F. Ionization and Fragmentation of Methane Induced by 40 eV to 480 eV Synchrotron Radiation: From Valence to Beyond Core Electron Ionization. J. Phys. Chem. A 2013, 117, 56. [Google Scholar] [CrossRef]
- Luna, H.; Cavalcanti, E.G.; Nickles, J.; Sigaud, G.M.; Montenegro, E.C. CH4 ionization and dissociation by proton and electron impact. J. Phys. B At. Mol. Opt. Phys. 2003, 36, 4717. [Google Scholar] [CrossRef]
- Sharifi, M.; Kong, F.; Chin, S.L.; Mineo, H.; Dyakov, Y.; Mebel, A.M.; Chao, S.D.; Hayashi, M.; Lin, S.H. Experimental and theoretical investigation of high-power laser ionization and dissociation of methane. J. Phys. Chem. A 2007, 111, 9405. [Google Scholar] [CrossRef]
- Rajput, J.; Garg, D.; Cassimi, A.; Méry, A.; Fléchard, X.; Rangama, J.; Guillous, S.; Iskandar, W.; Agnihotri, A.N.; Matsumoto, J.; et al. Unexplained dissociation pathways of two-body fragmentation of methane dication. J. Chem. Phys. 2022, 156, 054301. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Ma, X.; Ren, X.; Senftleben, A.; Pflüger, T.; Dorn, A.; Ullrich, J. Formation of protons from dissociative ionization of methane induced by 54 eV electrons. Phys. Rev. A 2011, 83, 052702. [Google Scholar] [CrossRef]
- Buck, U.; Krohne, R. Cluster size determination from diffractive He atom scattering. J. Chem. Phys. 1996, 105, 5408. [Google Scholar] [CrossRef]
- Yan, S.; Zhang, P.; Stumpf, V.; Gokhberg, K.; Zhang, X.C.; Xu, S.; Li, B.; Shen, L.L.; Zhu, X.L.; Feng, W.T.; et al. Interatomic relaxation processes induced in neon dimers by electron-impact ionization. Phys. Rev. A 2018, 97, 010701. [Google Scholar] [CrossRef]
- Yan, S.; Zhu, X.L.; Zhang, S.F.; Zhao, D.M.; Zhang, P.; Wei, B.; Ma, X. Enhanced damage induced by secondary high-energy electrons. Phys. Rev. A 2020, 102, 032809. [Google Scholar] [CrossRef]
- Dörner, R.; Mergel, V.; Jagutzki, O.; Spielberger, L.; Ullrich, J.; Moshammer, R.; Schmidt-Böcking, H. Cold target recoil ion momentum spectroscopy: A “momentum microscope” to view atomic collision dynamics. Phys. Rep. 2000, 330, 95. [Google Scholar] [CrossRef]
- Ullrich, J.; Moshammer, R.; Dorn, A.; Dörner, R.; Schmidt, L.P.H.; Schmidt-Böcking, H. Recoil-ion and electron momentum spectroscopy: Reaction-microscopes. Rep. Prog. Phys. 2003, 66, 1463. [Google Scholar] [CrossRef]
- Smith, D.; Adams, N.G. Reaction of simple hydrocarbon ions with molecules at thermal energies. Int. J. Mass Spectrom. Ion Phys. 1977, 23, 123. [Google Scholar] [CrossRef]
- Herman, Z.; Hierl, P.; Lee, A.; Wolfgang, R. Direct Mechanism of Reaction CH3+ + CH4 → C2H5+ + H2. J. Chem. Phys. 1969, 51, 454. [Google Scholar] [CrossRef]
- Momoh, P.O.; Abrash, S.A.; Mabrouki, R.; El-Shall, M.S. Polymerization of ionized acetylene clusters into covalent bonded ions: Evidence for the formation of benzene radical cation. J. Am. Chem. Soc. 2006, 128, 12408. [Google Scholar] [CrossRef]
- Stein, T.; Bandyopadhyay, B.; Troy, T.P.; Fang, Y.; Kostko, O.; Ahmed, M.; Head-Gordon, M. Ab initio dynamics and photoionization mass spectrometry reveal ion–molecule pathways from ionized acetylene clusters to benzene cation. Proc. Natl. Acad. Sci. USA 2017, 114, E4125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Momoh, P.O.; El-Shall, M.S. Stepwise hydration of ionized acetylene trimer. Further evidence for the formation of benzene radical cation. Chem. Phys. Lett. 2007, 436, 25. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, E.; Zhou, J.; Dorn, A.; Ren, X. Formation of covalently bound C4H4+ upon electron-impact ionization of acetylene dimer. J. Chem. Phys. 2021, 154, 144301. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, S.; Zhang, R.; Zhang, S.; Ma, X. Methane Cluster Fragmentation by Fast Electron Impact. Atoms 2023, 11, 35. https://doi.org/10.3390/atoms11020035
Yan S, Zhang R, Zhang S, Ma X. Methane Cluster Fragmentation by Fast Electron Impact. Atoms. 2023; 11(2):35. https://doi.org/10.3390/atoms11020035
Chicago/Turabian StyleYan, Shuncheng, Ruitian Zhang, Shaofeng Zhang, and Xinwen Ma. 2023. "Methane Cluster Fragmentation by Fast Electron Impact" Atoms 11, no. 2: 35. https://doi.org/10.3390/atoms11020035
APA StyleYan, S., Zhang, R., Zhang, S., & Ma, X. (2023). Methane Cluster Fragmentation by Fast Electron Impact. Atoms, 11(2), 35. https://doi.org/10.3390/atoms11020035