Ab Initio Double-Differential Ionization Cross-Section Calculations in Antiproton–Helium Collisions
Abstract
:1. Introduction
2. Theory
- (1)
- (2)
- The radial and the azimuthal coordinates have to be integrated to obtain the polar angle distribution of the ionized electrons:
3. Results and Discussions
4. Summary and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- International Workshop on Atomic Collisions and Atomic Spectroscopy with Slow Antiproton, Book of Abstracts Tsurumi, Yokohama, Kanagawa, Japan. Available online: http://radphys4.c.u-tokyo.ac.jp/pbar99/AbstractFinal3.pdf (accessed on 22 August 1999).
- Andersen, L.H.; Hvelplund, P.; Knudsen, H.; Moller, S.P.; Pedersen, J.O.P.; Tang-Petersen, S.; Uggerhoj, E.; Elsner, E.K.; Morenzoni, E. Single ionization of helium by 40-3000-keV antiprotons. Phys. Rev. A 1990, 40, 7366. [Google Scholar] [CrossRef]
- Hvelplund, P.; Knudsen, H.; Mikkelsen, H.U.; Morenzoni, E.; Moller, S.P.; Uggerhoj, E.; Worm, T. Ionization of helium and molecular hydrogen by slow antiprotons. J. Phys. B 1994, 27, 925. [Google Scholar] [CrossRef]
- Knudsen, H.; Kristiansen, H.-P.E.; Thomsen, H.D.; Uggerhoj, U.I.; Ichioka, T.; Moller, S.P.; Hunniford, C.A.; Mullough, R.W.; Charlton, W.; Kuroda, M.N.; et al. Target Structure Induced Suppression of the Ionization Cross Section for Very Low Energy Antiproton-Hydrogen Collisions. Phys. Rev. Lett. 2008, 101, 043201. [Google Scholar] [CrossRef] [PubMed]
- Ford, A.L.; Reading, J.F. Improved forced impulse method calculations of single and double ionization of helium by collision with high-energy protons and antiprotons. J. Phys. B At. Mol. Opt. Phys. 1994, 30, 4215. [Google Scholar] [CrossRef]
- Reading, J.K.; Bronk, T.; Ford, A.L.; Wherman, L.; Hall, K.A. Multi-cut forced impulse method single-ionization cross sections for slow antiprotons on helium. J. Phys. B 1997, 30, L189. [Google Scholar] [CrossRef]
- Bent, G.; Krstic, P.S.; Schultz, D.R. The multielectron, hidden crossings method for inelastic processes in slow ion/atom–atom collisions. J. Chem. Phys. 1998, 108, 1459. [Google Scholar] [CrossRef]
- Lüdde, H.J.; Kirchner, T.; Horbatsch, M. Quantum Mechanical Treatment of Ion Collisions with Many-Electron Atoms. In Photonic, Electronic, and Atomic Collisions; Burgdörfer, J., Ed.; Rinton Press: Princeton, UK, 2020; p. 708. [Google Scholar]
- Keim, M.; Achenbach, A.; Lüdde, H.J.; Kirchner, T. Microscopic response effects in collisions of antiprotons with helium atoms and lithium ions. Phys. Rev. A 2003, 67, 062711. [Google Scholar] [CrossRef]
- Henkel, N.; Keim, M.; Lüdde, H.J.; Kirchner, T. Density functional theory investigation of antiproton-helium collisions. Phys. Rev. A 2003, 80, 032704. [Google Scholar] [CrossRef]
- Tong, X.-M.; Watanabe, T.; Kato, D.; Ohtani, S. Ionization of atomic hydrogen by antiproton impact: A direct solution of the time-dependent Schrödinger equation. Phys. Rev. A 2002, 66, 032709. [Google Scholar] [CrossRef]
- Schiwietz, G.; Willie, U.; Muino, R.D.; Fainstein, P.D.; Grande, P.L. Comprehensive analysis of the stopping power of antiprotons and negative muons in He and H 2 gas targets. J. Phys. B 1996, 29, 307. [Google Scholar] [CrossRef]
- Wherman, L.A.; Ford, A.L.; Reading, J.F. Double ionization of helium by slow antiprotons. J. Phys. B 1996, 29, 5831. [Google Scholar] [CrossRef]
- Igarashi, A.; Ohsaki, A.; Nakazaki, S. Single ionization of helium by antiproton impact. Phys. Rev. A 2000, 62, 052722. [Google Scholar] [CrossRef]
- Díaz, C.; Martin, F.; Salin, A. Time-dependent close-coupling calculations of double ionization of helium by protons and antiprotons. J. Phys. B 2002, 35, 2555. [Google Scholar] [CrossRef]
- Lee, T.G.; Tseng, H.C.; Lin, C.D. Evaluation of antiproton-impact ionization of He atoms below 40 keV. Phys. Rev. A 2000, 61, 062713. [Google Scholar] [CrossRef]
- Pindzola, M.S.; Lee, T.G.; Colgan, J. Antiproton-impact ionization of H, He and Li. J. Phys. B. At. Mol. Opt. Phys. 2011, 44, 205204. [Google Scholar] [CrossRef]
- Schulz, D.R.; Krstic, P.S. Ionization of helium by antiprotons: Fully correlated, four-dimensional lattice approach. Phys. Rev. A 2003, 67, 022712. [Google Scholar] [CrossRef]
- Sahoo, S.; Mukherjee, S.C.; Walters, H.R.J. Ionization of atomic hydrogen and He+ by slow antiprotons. J. Phys. B 2004, 37, 3227. [Google Scholar] [CrossRef]
- Martin, F. Ionization and dissociation using B-splines: Photoionization of the hydrogen molecule. J. Phys. B 1997, 32, R197. [Google Scholar] [CrossRef]
- Foster, M.; Colgan, J.; Pindzola, M.S. Fully Correlated Electronic Dynamics for Antiproton Impact Ionization of Helium. Phys. Rev. Lett. 2008, 100, 033201. [Google Scholar] [CrossRef]
- Fainstein, P.D.; Ponce, V.H.; Rivarola, R.D. Z3P effects in the ionization of helium by ion impact. Phys. Rev. A 1987, 36, 3639. [Google Scholar] [CrossRef]
- Schultz, D.R. Comparison of single-electron removal processes in collisions of electrons, positrons, protons, and antiprotons with hydrogen and helium. Phys. Rev. A 1989, 40, 2330. [Google Scholar] [CrossRef]
- Barna, I.F.; Gulyás, L.; Tokési, K.; Burgdörfer, J. Total and angular differential cross sections of electrons emitted in collision between antiprotons and helium atoms. Rad. Phys. Chem. 2007, 76, 495. [Google Scholar] [CrossRef]
- Tokési, K.; Wang, J.; Gulyás, L.; Burgdörfer, J. Angular and energy differential electron emission cross sections in collisions between antiprotons and helium atoms. Hyperfine Interact. 2009, 194, 45. [Google Scholar] [CrossRef]
- Kirchner, T.; Knudsen, H. Current status of antiproton impact ionization of atoms and molecules: Theoretical and experimental perspectives. J. Phys. B 2011, 44, 122001. [Google Scholar] [CrossRef]
- Baxter, M.; Kirchner, T. Correlation in time-dependent density-functional-theory studies of antiproton-helium collisions. Phys. Rev. A 2013, 87, 062507. [Google Scholar] [CrossRef]
- Pindzola, M.S.; Lee, T.G.; Colgan, J. Antiproton-impact ionization of H2 at low incident energies. J. Phys. B. At. Mol. Opt. Phy. 2014, 47, 185202. [Google Scholar] [CrossRef]
- Borbély, S.; Tong, X.-M.; Nagele, S.; Feist, J.; Bøezinová, I.; Lackner, F.; Nagy, L.; Tőkési, K.; Burgdörfer, J. Electron correlations in the antiproton energy-loss distribution in He. Phys. Rev. A 2014, 98, 012707. [Google Scholar] [CrossRef]
- Abdurakhmanov, I.B.; Kadyrov, A.S.; Bray, I.; Bartschat, K. Wave-packet continuum-discretization approach to single ionization of helium by antiprotons and energetic protons. Phys. Rev. A 2017, 96, 022702. [Google Scholar] [CrossRef]
- Jonsell, S. Collisions involving antiprotons and antihydrogen: An overview. Phil. Trans. R. Soc. A 2018, 376, 20170271. [Google Scholar] [CrossRef]
- Gao, J.W.; Miteva, T.; Wu, Z.; Wang, J.G.; Dubois, A.; Sisourat, N. Single- and double-ionization processes using Gaussian-type orbitals: Benchmark on antiproton-helium collisions in the keV-energy range. Phys. Rev. A 2021, 103, L030803. [Google Scholar] [CrossRef]
- Lüdde, H.J.; Horbatsch, M.; Kirchner, T. Calculation of energy loss in antiproton collisions with many-electron systems using Ehrenfest’s theorem. Phys. Rev. A 2021, 104, 032813. [Google Scholar] [CrossRef]
- Jia, C.C.; Kirchner, T.; Gao, J.W.; Wu, Y.; Wang, J.G.; Sisourat, N. Single- and double-ionization processes of antiproton-helium and antiproton–molecular hydrogen collisions in the keV energy range. Phys. Rev. A 2023, 107, 012808. [Google Scholar] [CrossRef]
- Crooks, G.B.; Rudd, M.E. Experimental Evidence for the Mechanism of Charge Transfer into Continuum States. Phys. Rev. Lett. 1970, 25, 1599. [Google Scholar] [CrossRef]
- Stolterfoht, N.; DuBois, R.D.; Rivarola, R.D. Electron Emission in Heavy Ion-Atom Collisions; Springer: Berlin, Germany, 1997. [Google Scholar]
- Reinhold, C.O.; Burgdörfer, J. The classical limit of ionization in fast ion-atom collisions. J. Phys. B 1993, 26, 3101. [Google Scholar] [CrossRef]
- Yamazuki, Y.; Kuroki, K.; Komaki, K.; Andersen, L.H.; Horsdal-Pettersen, E.; Hvelplund, P.; Knudsen, H.; Moller, S.P.; Uggerhoj, E.; Elsner, K. Measurements of Electron Spectra in the Forward Direction in Slow-Antiproton Carbon-Foil Collisions. J. Phys. Soc. Jpn. 1990, 59, 2643. [Google Scholar] [CrossRef]
- Burgdörfer, J.; Wang, J.; Müller, J. Forward electron production in antimatter-solid collisions. Phys. Rev. Lett. 1989, 62, 1599. [Google Scholar] [CrossRef]
- Fainstein, P.D.; Ponce, V.H.; Rivarola, R.D. Ionisation of helium by antiproton and proton impact. J. Phys. B 1989, 21, 2989. [Google Scholar] [CrossRef]
- Olson, R.E.; Gay, T.J. Dynamics of Antimatter-Atom Collisions. Phys. Rev. Lett. 1988, 61, 302. [Google Scholar] [CrossRef]
- Reinhold, C.O.; Olson, R.E. Classical two-center effects in ejected-electron spectra from p+, p-, and He2++He collisions at intermediate energies. Phys. Rev. A 1989, 39, 3861. [Google Scholar] [CrossRef]
- Barna, I.F.; Grün, N.; Scheid, W. Coupled-channel study with Coulomb wave packets for ionization of helium in heavy ion collisions. Eur. Phys. J. D 2003, 25, 239. [Google Scholar] [CrossRef]
- Barna, I.F. Ionization of Helium in Relativistic Heavy-Ion Collisions. Doctoral Thesis, University Gießen, Giessen, Germany, 2002. [Google Scholar]
- Barna, I.F. Ionization of helium in positron collisions. Eur. Phys. J. D 2004, 30, 5. [Google Scholar] [CrossRef]
- Barna, I.F.; Rost, J.M. Photoionization of helium with ultrashort XUV laser pulses. Eur. Phys. J. D 2003, 27, 287. [Google Scholar] [CrossRef]
- Barna, I.F.; Tőkési, K.; Burgdörfer, J. Single and double ionization of helium in heavy-ion impact. J. Phys. B 2005, 38, 1001. [Google Scholar] [CrossRef]
- Pocsai, M.A.; Barna, I.F.; Tőkési, K. Photoionisation of rubidium in strong laser fields. Eur. Phys. J. D 2019, 73, 74. [Google Scholar] [CrossRef]
- Landau, L.D.; Lifshitz, E.M. Mechanics; Pergamon Press: Oxford, UK, 1960; Chapter 19; p. 53. [Google Scholar]
- Frank, W.; Olver, J.; Daniel, W.; Lozier, W.; Boisvert, R.F.; Clark, C.W. NIST Handbook of Mathematical Functions; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Ho, Y.K. Positron annihilation in positronium hydrides. Phys. Rev. A 1986, 34, 4402. [Google Scholar] [CrossRef]
- Maruhn, J.A.; Reinhard, P.-G.; Suraud, E. Simple Models of Many–Fermion Systems; Springer: Berlin/Heidelberg, Germany, 2010; Appendix A5.1; p. 260. [Google Scholar]
- Sulik, B.; Koncz, C.S.; Tőkési, K.; A. Orbán, A.; Berényi, D. Evidence for Fermi–Shuttle Ionization in Intermediate Velocity C++Xe Collisions. Phys. Rev. Lett. 2002, 88, 073201. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barna, I.F.; Pocsai, M.A.; Tőkési, K. Ab Initio Double-Differential Ionization Cross-Section Calculations in Antiproton–Helium Collisions. Atoms 2023, 11, 74. https://doi.org/10.3390/atoms11040074
Barna IF, Pocsai MA, Tőkési K. Ab Initio Double-Differential Ionization Cross-Section Calculations in Antiproton–Helium Collisions. Atoms. 2023; 11(4):74. https://doi.org/10.3390/atoms11040074
Chicago/Turabian StyleBarna, Imre Ferenc, Mihály András Pocsai, and Károly Tőkési. 2023. "Ab Initio Double-Differential Ionization Cross-Section Calculations in Antiproton–Helium Collisions" Atoms 11, no. 4: 74. https://doi.org/10.3390/atoms11040074
APA StyleBarna, I. F., Pocsai, M. A., & Tőkési, K. (2023). Ab Initio Double-Differential Ionization Cross-Section Calculations in Antiproton–Helium Collisions. Atoms, 11(4), 74. https://doi.org/10.3390/atoms11040074