Proposal of a New Double-Nozzle Technique for In-Gas-Jet Laser Resonance Ionization Spectroscopy
Abstract
:1. Introduction
2. Results for GSI Nozzle
2.1. The Exit Flow Channel
2.2. GSI Nozzle at Gas Cell Pressure Pcell = 100 mbar and Pbg = 6.47 × 10−2 mbar
2.3. GSI Nozzle at Gas Cell Pressure Pcell = 50 mbar and Pbg = 3.23 × 10−2 mbar
3. Results for Double-Nozzle Technique
3.1. Historical Notes
3.2. Double-Nozzle Design
3.3. Double-Nozzle at Pcell = 100 mbar, Pnoz = 81 mbar and Pbg = 2 × 10−2 mbar
3.4. Effect of the Pumping Speed
3.5. Effect of the Input (Stagnation) Pressure in the 2nd Nozzle
3.6. Effect of the Stagnation Pressure in the Gas Cell
3.7. Effect of the Laser-1 Beam Diameter
3.8. Monte Carlo Simulations for Nobelium Atoms in the Gas Jet
4. Discussion and Outlook
Funding
Data Availability Statement
Conflicts of Interest
References
- Dendooven, P. The development and status of the IGISOL technique. Nucl. Instrum. Methods Phys. Res. B 1997, 126, 182–189. [Google Scholar] [CrossRef]
- Äystö, J. Development and applications of the IGISOL technique. Nucl. Instrum. Methods Phys. Res. A 2001, 693, 477–494. [Google Scholar] [CrossRef]
- Moore, I.D.; Dendooven, P.; Ärje, J. The IGISOL technique—Three decades of development. Hyperfine Interact 2014, 223, 17–62. [Google Scholar] [CrossRef]
- Schwarz, S.; Bollen, G.; Lawton, D.; Lofy, P.; Morrissey, D.J.; Ottarson, J.; Ringle, R.; Schury, P.; Sun, T.; Varentsov, V.; et al. The low-energy-beam and ion-trap facility at NSCL/MSU. Nucl. Instrum. Methods Phys. Res. B 2003, 204, 507–511. [Google Scholar] [CrossRef]
- Varentsov, V.L.; Habs, D. A cooler for intense low-energy ion beams. Nucl. Instrum. Methods Phys. Res. A 2003, 496, 286–292. [Google Scholar] [CrossRef]
- Varentsov, V.L.; Habs, D. Fair-wind gas cell—A new concept of a buffer gas cell design. Nucl. Instrum. Methods Phys. Res. A 2002, 490, 16–29. [Google Scholar] [CrossRef]
- Sonoda, T.; Fujita, M.; Yamazaki, A.; Endo, T.; Shinozuka, T.; Miyashita, Y.; Sato, N.; Goto, A.; Tanaka, E.; Suzuki; et al. Development of the RF-IGISOL at CYRIC. Nucl. Instrum. Methods Phys. Res. B 2007, 254, 295–299. [Google Scholar] [CrossRef]
- Moore, I.D. New concepts for the ion guide technique. Nucl. Instrum. Methods Phys. Res. B 2008, 266, 4434–4441. [Google Scholar] [CrossRef]
- Sonoda, T.; Wada, M.; Tomita, H.; Sakamoto, C.; Takatsuka, T.; Furukawa, T.; Iimura, H.; Ito, Y.; Kubo, T.; Matsuo, Y.; et al. Development of a resonant laser ionization gas cell for high-energy, short-lived nuclei. Nucl. Instrum. Methods Phys. Res. B 2013, 295, 1–10. [Google Scholar] [CrossRef]
- Schury, P.; Wada, M.; Ito, Y.; Arai, F.; Kaji, D.; Kimura, S.; Morimoto, K.; Haba, H.; Jeong, S.; Koura, H.; et al. Status of the low-energy super-heavy element facility at RIKEN. Nucl. Instrum. Methods Phys. Res. B 2016, 376, 425–428. [Google Scholar] [CrossRef]
- Cooper, K.; Sumithrarachchi, C.S.; Morrissey, D.J.; Levand, A.; Rodriguez, J.A.; Savard, G.; Schwarz, S.; Zabransky, B. Extraction of thermalized projectile fragments from a large volume gas cell. Nucl. Instrum. Methods Phys. Res. A 2014, 763, 543–546. [Google Scholar] [CrossRef]
- Schwarz, S.; Bollen, G.; Chouhan, S.; Das, J.J.; Green, M.; Magsig, C.; Morrissey, D.J.; Ottarson, J.; Sumithrarachchi, C.; Villari, A.C.C.; et al. The NSCL cyclotron gas stopper—Entering commissioning. Nucl. Instrum. Methods Phys. Res. B 2016, 376, 256–259. [Google Scholar] [CrossRef]
- Constantin, P.; Balabanski, D.L.; Anh, L.T.; Cuong, P.V.; May, B. Design of the gas cell for the IGISOL facility at ELI-NP. Nucl. Instrum. Methods Phys. Res. B 2017, 397, 1–10. [Google Scholar] [CrossRef]
- Savard, G.; Levand, A.F.; Zabransky, B.J. The CARIBU gas catcher. Nucl. Instrum. Methods Phys. Res. A 2012, 685, 70–77. [Google Scholar] [CrossRef]
- Saastamoinen, A.; Moore, I.D.; Ranjan, M.; Dendooven, P.; Penttilä, H.; Peräjärvi, K.; Popov, A.; Äystö, J. Characterization of a cryogenic ion guide at IGISOL. Nucl. Instrum. Methods Phys. Res. B 2016, 376, 246. [Google Scholar] [CrossRef]
- Ranjan, M.; Dendooven, P.; Purushothaman, S.; Dickel, T.; Reiter, M.P.; Ayet, S.; Haettner, E.; Moore, I.D.; Kalantar-Nayestanaki, N.; Geissel, H.; et al. Design, construction and cooling system performance of a prototype cryogenic stopping cell for the super-FRS at FAIR. Nucl. Instrum. Methods Phys. Res. A 2015, 770, 87–97. [Google Scholar] [CrossRef]
- Varentsov, V.; Yakushev, A. Concept of a new Universal High-Density Gas Stopping Cell Setup for study of gas-phase chemistry and nuclear properties of Super Heavy Elements (UniCell). Nucl. Instrum. Methods Phys. Res. A 2019, 940, 206–214. [Google Scholar] [CrossRef]
- Varentsov, V.L.; Wada, M. Computer experiments on ion beam cooling and guiding in fair-wind gas cell and extraction RF-funnel system. Nucl. Instrum. Methods Phys. Res. A 2004, 532, 210. [Google Scholar] [CrossRef]
- Varentsov, V.; Yakushev, A. Fair-wind gas cell for the UniCell setup. Nucl. Instrum. Methods Phys. Res. A 2021, 1010, 165487. [Google Scholar] [CrossRef]
- Boussaid, R.; Ban, G.; Quéméner, G.; Merrer, Y.; Lorry, J. Development of a radio-frequency quadrupole cooler for high beam currents. Phys. Rev. Accel. Beams 2017, 20, 124701. [Google Scholar] [CrossRef]
- Barquest, B.R.; Bollen, G.; Mantica, P.F.; Minamisono, K.; Ringle, R.; Schwarz, S. RFQ beam cooler and buncher for collinear laser spectroscopy of rare isotopes. Nucl. Instrum. Methods Phys. Res. A 2017, 866, 18–28. [Google Scholar] [CrossRef]
- Schwarz, S.; Bollen, G.; Ringle, R.; Savory, J.; Schury, P. The LEBIT ion cooler and buncher. Nucl. Instrum. Methods Phys. Res. A 2017, 816, 131–141. [Google Scholar] [CrossRef]
- Franberg, H.; Delahaye, P.; Billowes, J.; Blaum, K.; Catherall, R.; Duval, F.; Gianfrancesco, O.; Giles, T.; Jokinen, A.; Lindroos, M.; et al. Off-line commissioning of the ISOLDE cooler. Nucl. Instrum. Methods Phys. Res. A 2008, 266, 4502–4504. [Google Scholar] [CrossRef]
- Barquest, B.R.; Bale, J.C.; Dilling, J.; Gwinner, G.; Kanungo, R.; Krücke, R.; Pearson, M.R. Development of a new RFQ beam cooler and buncher for the CANREB project at TRIUMF. Nucl. Instrum. Methods Phys. Res. B 2016, 376, 207–210. [Google Scholar] [CrossRef]
- Brunner, T.; Smith, M.J.; Brodeur, M.; Ettenauer, S.; Gallant, A.T.; Simon, V.V.; Chaudhuri, A.; Lapierre, A.; Mane, E.; Ringle, R.; et al. TITAN’s digital RFQ ion beam cooler and buncher, operation and performance. Nucl. Instrum. Methods Phys. Res. A 2012, 676, 32–43. [Google Scholar] [CrossRef]
- Herfurth, F.; Dilling, J.; Kellerbauer, A.; Bollen, G.; Henry, S.; Kluge, H.-J.; Lamour, E.; Lunney, D.; Moore, R.B.; Scheidenberger, C.; et al. A linear radiofrequency ion trap for accumulation, bunching, and emittance improvement of radioactive ion beams. Nucl. Instrum. Methods Phys. Res. A 2001, 469, 254–275. [Google Scholar] [CrossRef]
- Varentsov, V. Review of Gas Dynamic RF-Only Funnel Technique for Ion Beams Cooling and Extraction into Vacuum; FAIR: Darmstadt, Germany, 2022. [Google Scholar] [CrossRef]
- Yanga, X.F.; Wang, S.J.; Wilkins, S.G.; Ruiz, R.F.G. Laser Spectroscopy for the Study of Exotic Nuclei. Prog. Part. Nucl. Phys. 2023, 129, 104005. [Google Scholar] [CrossRef]
- Block, M.; Giacoppo, F.; Heßberger, F.-P.; Raeder, S. Recent progress in experiments on the heaviest nuclides at SHIP. Riv. Nuovo Cim. 2022, 45, 279–323. [Google Scholar] [CrossRef]
- Van Duppen, P. In-Gas Jet Laser Ionization Spectroscopy of Heavy Elements. Available online: https://www.psi.ch/sites/default/files/import/ltp/ThursdayColloquiaEN/2018_11_Laser_spectroscopy_Heavy_Elements_Piet_Van_Duppen.pdf (accessed on 23 May 2023).
- Kudryavtsev, Y.; Ferrer, R.; Huyse, M.; Van den Bergh, P.; Van Duppen, P. The in-gas-jet laser ion source: Resonance ionization spectroscopy of radioactive atoms in supersonic gas jets. Nucl. Instrum. Methods Phys. Res. B 2013, 297, 7–22. [Google Scholar] [CrossRef]
- Raeder, S.; Block, M.; Chhetri, P.; Ferrer, R.; Kraemer, S.; Kron, T.; Laatiaoui, M.; Nothhelfer, S.; Schneider, F.; Van Duppen, P.; et al. A gas-jet apparatus for high-resolution laser spectroscopy on the heaviest elements at SHIP. Nucl. Instrum. Methods Phys. Res. B 2020, 463, 272–276. [Google Scholar] [CrossRef]
- Münzberg, D.; Block, M.; Claessens, A.; Ferrer, R.; Laatiaoui, M.; Lantis, J.; Nothhelfer, S.; Raeder, S.; Van Duppen, P. Resolution Characterizations of JetRIS in Mainz Using 164Dy. Atoms 2022, 10, 57. [Google Scholar] [CrossRef]
- Ferrer, R.; Barzakh, A.; Bastin, B.; Beerwerth, R.; Block, M.; Creemers, P.; Grawe, H.; de Groote, R.; Delahaye, P.; Fle, X.; et al. Towards high-resolution laser ionization spectroscopy of the heaviest elements in supersonic gas jet expansion. Nat. Commun. 2017, 8, 14520. [Google Scholar] [CrossRef] [PubMed]
- Ferrer, R.; Verlinde, M.; Verstraelen, E.; Claessens, A.; Huyse, M.; Kraemer, S.; Kudryavtsev, Y.; Romans, J.; Van den Bergh, P.; Van Duppen, P.; et al. Hypersonic nozzle for laser-spectroscopy studies at 17 K characterized by resonance-ionization-spectroscopy-based flow mapping. Phys. Rev. Res. 2021, 3, 043041. [Google Scholar] [CrossRef]
- Sels, S.; Ferrer, R.; Dockx, K.; Buitrago, C.G.; Huyse, M.; Kudryavtsev, Y.; Kraemer, S.; Raedera, S.; Van Den Bergh, P.; Van Duppen, P.; et al. Design and commissioning of an ion guide system for In-Gas Laser Ionization and Spectroscopy experiments. Nucl. Instrum. Methods Phys. Res. B 2020, 463, 148–153. [Google Scholar] [CrossRef]
- Romans, J.; Ajayakumar, A.; Authier, M.; Boumard, F.; Caceres, L.; Cam, J.-F.; Claessens, A.; Damoy, S.; Delahaye, P.; Desrues, P.; et al. First Offline Results from the S3 Low-Energy Branch. Atoms 2022, 10, 21. [Google Scholar] [CrossRef]
- Hirayama, Y.; Watanabe, Y.X.; Schury, P.; Mukai, M.; Choi, H.; Ahmed, M.; Kakiguchi, Y.; Oyaizu, M.; Wada, M.; Miyatake, H. In-gas-jet laser ionization spectroscopy at KISS. RIKEN Accel. Prog. Rep. 2019, 52, 1. [Google Scholar]
- Varentsov, V.L.; Ignatiev, A.A. Numerical investigations of internal supersonic jet targets formation for storage rings. Nucl. Instrum. Methods Phys. Res. A 1998, 413, 447–456. [Google Scholar] [CrossRef]
- Varentsov, V.L. Focused ion beam source of a new type for micro- and nanoelectronic technologies. In Micro- and Nanoelectronics; SPIE: Philadelphia, PA, USA, 2008; Volume 7025, pp. 702509–702521. [Google Scholar] [CrossRef]
- Varentsov, V. Proposal of an RF-Only Double-Funnel System for Ions Extraction from a Cryogenic Stopping Cell for the Super-FRS at FAIR. GSI Sci. Rep. 2015, 1, 503–504. [Google Scholar] [CrossRef]
- Varentsov, V. Proposal of a new Laser ablation ion source for LaSpec and MATS testing. In Proceedings of the NUSTAR Collaboration Meeting, Darmstadt, Germany, 29 February–4 March 2016. [Google Scholar] [CrossRef]
- Brunner, T.; Fudenberg, D.; Varentsov, V.; Sabourov, A.; Gratta, G.; Dilling, J.; nEXO Collaboration. An RF-only ion-funnel for extraction from high-pressure gases. Int. J. Mass Spectrom. 2015, 379, 110–120. [Google Scholar] [CrossRef]
- Ratajczyk, T.; Bollinger, P.; Lellinger, T.; Varentsov, V.; Nörtershäuser, W. Towards a He-buffered laser ablation ion source for collinear laser spectroscopy. Hyperfine Interact 2020, 241, 52. [Google Scholar] [CrossRef]
- Valverde, A.A.; Brodeur, M.; Burdette, D.P.; Clark, J.A.; Klimes, J.W.; Lascar, D.; O’Malley, P.D.; Ringle, R.; Savard, G.; Varentsov, V. Stopped, bunched beams for the twinsol facility. Hyperfine Interact 2019, 240, 38. [Google Scholar] [CrossRef]
- O’Malley, P.D.; Brodeur, M.; Burdette, D.P.; Klimes, J.W.; Valverde, A.; Clark, J.A.; Savard, G.; Ringle, R.; Varentsov, V. Testing the weak interaction using St. Benedict at the University of Notre Dame. Nucl. Instrum. Methods Phys. Res. B 2020, 463, 488–490. [Google Scholar] [CrossRef]
- Murray, K.; Dilling, J.; Gornea, R.; Ito, Y.; Koffas, T.; Kwiatkowski, A.A.; Lan, Y.; Reiter, M.P.; Varentsov, V.; Brunner, T. With the nEXO collaboration. Design of a Multiple-Reflection time-of-flight Mass-Spectrometer for Barium-tagging. Hyperfine Interact 2019, 240, 97. [Google Scholar] [CrossRef]
- Querci, L.; Varentsov, V.; Günther, D.; Hattendorf, B. An RF-only ion funnel interface for ion cooling in laser ablation time of flight mass spectrometry. Spectrochim. Acta B 2018, 146, 57–68. [Google Scholar] [CrossRef]
- Tiedemann, D.; Stiebing, K.E.; Winters, D.F.A.; Quint, W.; Varentsov, V.; Warczak, A.; Malarz, A.; Stöhlker, T. A pulsed supersonic gas jet target for precision spectroscopy at the HITRAP facility at GSI. Nucl. Instrum. Methods Phys. Res. A 2014, 764, 387–393. [Google Scholar] [CrossRef]
- Varentsov, V.L.; Kuroda, N.; Nagata, Y.; Torii, H.A.; Shibata, M.; Yamazaki, Y. ASACUSA Gas-Jet Target: Present Status and Future Development. AIP Conf. Proc. 2005, 793, 328–340. [Google Scholar] [CrossRef]
- Yakushev, A.; Wey, Y.; Simonovski, D.; Düllmann, C.E.; Vrentsov, V. Towards chemistry beyond moscovium (Mc, Z = 115). In Proceedings of the TASCA Collaboration Meeting, Rennes, France, 9–11 May 2022. [Google Scholar] [CrossRef]
- Varentsov, V.L.; Yaschuk, V.V. Technique of Phase Volume Decrease of an Atomic Beam. Inventor’s Certificate (USSR) Patent No. 774523, 14 May 1979. [Google Scholar]
- Varentsov, V.L.; Yashchuk, V.V. Gasdynamic method for reducing the phase volume of an atomic beam. Sov. Tech. Phys. Lett. 1983, 9, 65–66. [Google Scholar]
- Varentsov, V.L. The Method of an Atomic Beam Phase Volume Decrease and Its Possible Application for Atomic and Nuclear Physics Problems. Ph.D. Thesis, Leningrad Nuclear Physics Institute, Gatchina, Russia, 1986; pp. 1–140. (In Russian). [Google Scholar]
- Varentsov, V.L. Gas dynamic cooling of low-energy molecular and ion beams. J. Technol. Phys. 1994, 39, 358–363. [Google Scholar]
- Varentsov, V.L.; Ezhov, V.F.; Kniaz’kov, V.A.; Ryabov, V.L.; Khazov, A.Y.; Yaschuk, V.V. Time-of-flight molecular-beam spectrometer. Prib. Tekh. Eksp. 1986, 1, 152–154. [Google Scholar]
- Varentsov, V.L.; Ezhov, V.F.; Kniaz, V.A.; Muratov, V.G.; Ryabov, V.L.; Khazov, A.Y.; Yaschuk, V.V. High-intensity gas dynamic molecular beam source of a new type. J. Tech. Phys. 1987, 57, 755. [Google Scholar]
- Varentsov, V.L.; Hansevarov, D.R. A new approach to the nozzle design of gas-jet targets. Nucl. Instrum. Methods Phys. Res. A 1992, 317, 1–6. [Google Scholar] [CrossRef]
- Varentsov, V.L.; Hansevarov, D.R.; Varentsov, D.V. The generation of an internal molecular-beam target from expensive gaseous and nonvolatile substances for storage rings. Nucl. Instrum. Methods Phys. Res. A 1995, 352, 542–547. [Google Scholar] [CrossRef]
- Varentsov, V. Windowless gas dynamic ion beam cooler and buncher. Nucl. Instrum. Methods Phys. Res. A 2020, 984, 164596. [Google Scholar] [CrossRef]
- Varentsov, V. Gas Dynamic Cooling of Low Energy Molecular and Ion Beams; Stefan Meyer Institute (SMI)): Vienna, Austria, 2004. [Google Scholar] [CrossRef]
1st Nozzle | |
---|---|
Exit diameter | 3.5 mm |
Throat diameter | 1.0 mm |
Length of diverging cone | 2.5 mm |
Connection tube between the 1st and 2nd nozzle | |
Tube diameter | 3.5mm |
Tube length | 3.0 mm |
Inner tube in the 2nd nozzle | |
Exit diameter | 2.0 mm |
Inner entrance diameter | 3.5 mm |
Inner total length | 6.0 mm |
Supersonic part length | 4.0 mm |
Out entrance diameter | 4.0 mm |
Outer total length | 5.0 mm |
Diverging 2nd nozzle | |
Throat diameter | 3.6 mm |
Diverging cone length | 20. mm |
Exit diameter | 15.0 mm |
Annual gap between nozzle throat and inner tube | 0.1 mm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Varentsov, V. Proposal of a New Double-Nozzle Technique for In-Gas-Jet Laser Resonance Ionization Spectroscopy. Atoms 2023, 11, 88. https://doi.org/10.3390/atoms11060088
Varentsov V. Proposal of a New Double-Nozzle Technique for In-Gas-Jet Laser Resonance Ionization Spectroscopy. Atoms. 2023; 11(6):88. https://doi.org/10.3390/atoms11060088
Chicago/Turabian StyleVarentsov, Victor. 2023. "Proposal of a New Double-Nozzle Technique for In-Gas-Jet Laser Resonance Ionization Spectroscopy" Atoms 11, no. 6: 88. https://doi.org/10.3390/atoms11060088
APA StyleVarentsov, V. (2023). Proposal of a New Double-Nozzle Technique for In-Gas-Jet Laser Resonance Ionization Spectroscopy. Atoms, 11(6), 88. https://doi.org/10.3390/atoms11060088