Dataset for Optical Processes in Dense Astrophysical and Laboratory Plasmas
Abstract
:1. Introduction
2. Results and Discussion
2.1. Calculated Quantities
2.2. Computation and Datasets
3. Conclusions and Further Directions
- For laboratory research (laser-driven plasma, spectroscopic investigation, fusion experiments, etc.);
- For use in technology and industry;
- For potential astrophysical use (the modeling of different atmospheres, AGNs);
- For different theoretical investigations (in confined systems in the generation of new materials and investigating stars).
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AI | Artificial intelligence |
CP | Coulomb potential |
ELI | Extreme light infrastructure |
HF | Hartree–Fock |
ML | Machine learning |
NI | Non-ideality |
Appendix A. The Method and Important Quantities
References
- Srećković, V.A.; Ignjatović, L.M.; Dimitrijević, M.S. Photodestruction of diatomic molecular ions: Laboratory and astrophysical application. Molecules 2020, 26, 151. [Google Scholar] [CrossRef] [PubMed]
- Marinković, B.P.; Vujčić, V.; Sushko, G.; Vudragović, D.; Marinković, D.B.; Đorđević, S.; Ivanović, S.; Nešić, M.; Jevremović, D.; Solov’yov, A.V.; et al. Development of collisional data base for elementary processes of electron scattering by atoms and molecules. Nucl. Instrum. Methods Phys. Res. 2015, 354, 90–95. [Google Scholar] [CrossRef]
- Shevelko, V.; Tawara, H. Atomic Processes in Basic and Applied Physics; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012; Volume 68. [Google Scholar]
- Albert, D.; Antony, B.K.; Ba, Y.A.; Babikov, Y.L.; Bollard, P.; Boudon, V.; Delahaye, F.; Del Zanna, G.; Dimitrijević, M.S.; Drouin, B.J.; et al. A Decade with VAMDC: Results and Ambitions. Atoms 2020, 8, 76. [Google Scholar] [CrossRef]
- Pop, N.; Iacob, F.; Niyonzima, S.; Abdoulanziz, A.; Laporta, V.; Reiter, D.; Schneider, I.F.; Mezei, J.Z. Reactive collisions between electrons and BeT+: Complete set of thermal rate coefficients up to 5000 K. At. Data Nucl. Data Tables 2021, 139, 101414. [Google Scholar] [CrossRef]
- Anirudh, R.; Archibald, R.; Asif, M.S.; Becker, M.M.; Benkadda, S.; Bremer, P.T.; Budé, R.H.S.; Chang, C.S.; Chen, L.; Churchill, R.M.; et al. 2022 Review of Data-Driven Plasma Science. IEEE Trans. Plasma Sci. 2023, 51, 1750–1838. [Google Scholar] [CrossRef]
- Iacob, F. Spectral characterization of hydrogen-like atoms confined by oscillating systems. Cent. Eur. J. Phys. 2014, 12, 628–636. [Google Scholar] [CrossRef]
- Iacob, T.F.; Lute, M.; Iacob, F. A Numerical Approach for the Solution of Schrödinger Equation With Pseudo-Gaussian Potentials. Ann. West Univ. Timis.-Phys. 2015, 58, 1–6. [Google Scholar] [CrossRef]
- Iacob, F.; Lute, M. Exact solution to the Schrödinger’s equation with pseudo-Gaussian potential. J. Math. Phys. 2015, 56, 121501. [Google Scholar] [CrossRef]
- Treumann, R.A.; Baumjohann, W. Advanced Space Plasma Physics; Imperial College Press: London, UK, 1997; Volume 30. [Google Scholar]
- Fortov, V.E.; Iakubov, I.T. The Physics of Non-Ideal Plasma; World Scientific: Singapore, 2000. [Google Scholar]
- Murillo, M.S. Data-driven electrical conductivities of dense plasmas. Front. Phys. 2022, 10, 867990. [Google Scholar] [CrossRef]
- Johnson, Z.A.; Silvestri, L.G.; Petrov, G.M.; Stanton, L.G.; Murillo, M.S. Comparison of transport models in dense plasmas. Phys. Plasmas 2024, 31, 082701. [Google Scholar] [CrossRef]
- Salem, C.; Hubert, D.; Lacombe, C.; Bale, S.D.; Mangeney, A.; Larson, D.E.; Lin, R.P. Electron Properties and Coulomb Collisions in the Solar Wind at 1 AU: Wind Observations. Astrophys. J. 2003, 585, 1147. [Google Scholar] [CrossRef]
- Sakan, N.M.; Srećković, V.A.; Simić, Z.J.; Dimitrijević, M.S. The Application of the Cut-Off Coulomb Model Potential for the Calculation of Bound-Bound State Transitions. Atoms 2018, 6, 4. [Google Scholar] [CrossRef]
- Chabrier, G.; Saumon, D.; Potekhin, A. Dense plasmas in astrophysics: From giant planets to neutron stars. J. Phys. A 2006, 39, 4411. [Google Scholar] [CrossRef]
- Francis, F.C. Introduction to Plasma Physics and Controlled Fusion; Spinger: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Akçay, C.; Finn, J.M.; Brennan, D.P.; Burr, T.; Kürkçüoğlu, D.M. Machine learning methods for probabilistic locked-mode predictors in tokamak plasmas. Phys. Plasmas 2021, 28, 082106. [Google Scholar] [CrossRef]
- Das, N.; Ghoshal, A.; Ho, Y.K. Effects of non-ideality of classical plasmas on the 1Se resonance states in H−. Phys. Plasmas 2023, 30, 063511. [Google Scholar] [CrossRef]
- Iakubov, I.T.; Kobzev, G.A. Nonideal Plasma in Nature, Modern Technology, and Physical Experiments. In Transport and Optical Properties of Nonideal Plasma; Kobzev, G.A., Iakubov, I.T., Popovich, M.M., Eds.; Springer US: Boston, MA, USA, 1995; pp. 293–316. [Google Scholar] [CrossRef]
- Rus, B.; Bakule, P.; Kramer, D.; Naylon, J.; Thoma, J.; Green, J.; Antipenkov, R.; Fibrich, M.; Novák, J.; Batysta, F.; et al. Eli-beamlines: Development of next generation short-pulse laser systems. In Research Using Extreme Light: Entering New Frontiers with Petawatt-Class Lasers II; SPIE: Bellingham, WA, USA, 2015; Volume 9515, pp. 34–44. [Google Scholar]
- Cimmino, A.; Horváth, D.; Olšovcová, V.; Stránskỳ, V.; Truneček, R.; Tsinganis, A.; Versaci, R. Radiation Protection at ELI Beamlines: A Unique LaserDriven Accelerator Facility. arXiv 2021, arXiv:2104.05479. [Google Scholar]
- Noumerov, B.V. A Method of Extrapolation of Perturbations. Mon. Not. R. Astron. Soc. 1924, 84, 592–602. [Google Scholar] [CrossRef]
- Numerov, B. Note on the numerical integration of d2x/dt2 = f(x, t). Astron. Nachr. 1927, 230, 359–364. [Google Scholar] [CrossRef]
- Simos, T. A numerov-type method for the numerical solution of the radial Schrödinger equation. Appl. Numer. Math. 1991, 7, 201–206. [Google Scholar] [CrossRef]
- Vanden Berghe, G.; Fack, V.; De Meyer, H. Numerical methods for solving radial Schrödinger equations. J. Comput. Appl. Math. 1989, 28, 391–401. [Google Scholar] [CrossRef]
- Dimitrijević, M.S.; Srećković, V.A.; Sakan, N.M.; Bezuglov, N.N.; Klyucharev, A.N. Free-Free Absorption in Solar Atmosphere. Geomagn. Aeron. 2018, 58, 1067–1072. [Google Scholar] [CrossRef]
- Srećković, V.A.; Sakan, N.; Šulić, D.; Jevremović, D.; Ignjatović, L.M.; Dimitrijević, M.S. Free–free absorption coefficients and Gaunt factors for dense hydrogen-like stellar plasma. Mon. Not. R. Astron. Soc. 2018, 475, 1131–1136. [Google Scholar] [CrossRef]
- Mihajlov, A.A.; Srećković, V.A.; Sakan, N.M. Inverse Bremsstrahlung in Astrophysical Plasmas: The Absorption Coefficients and Gaunt Factors. J. Astrophys. Astron. 2015, 36, 635–642. [Google Scholar] [CrossRef]
- Sakan, N.; Simić, Z.; Srećković, V.; Dechev, M. The development of simplified approach in describing of the ionic field to emitter interaction in stellar and laboratory plasmas. Contrib. Astron. Obs. Skaln. Pleso 2023, 53, 101–106. [Google Scholar] [CrossRef]
- Hamann, D.R. Optimized norm-conserving Vanderbilt pseudopotentials. Phys. Rev. B 2013, 88, 085117. [Google Scholar] [CrossRef]
- van Setten, M.; Giantomassi, M.; Bousquet, E.; Verstraete, M.; Hamann, D.; Gonze, X.; Rignanese, G.M. The PseudoDojo: Training and grading a 85 element optimized norm-conserving pseudopotential table. Comput. Phys. Commun. 2018, 226, 39–54. [Google Scholar] [CrossRef]
- Dimitrijevic, M.S.; Konjevic, N. Simple estimates for Stark broadening of ion lines in stellar plasmas. Astron. Astrophys. 1987, 172, 345–349. [Google Scholar]
- Dimitrijević, M.S. Stark broadening in astrophysics (Applications of Belgrade school results and collaboration with former soviet republics). Astron. Astrophys. Trans. 2003, 22, 389–412. [Google Scholar] [CrossRef]
- Popović, L.; Dimitrijević, M.; Mediavilla, E.; Danezis, E.; Lyratzi, E.; Bon, E.; Ilić, D.; Jovanović, P.; Theodossiou, E.; Dačić, M. Some Spectroscopic Methods for Astrophysical Plasma Research. In The Physics of Ionized Gases: 22nd Summer School and International Symposium on the Physics of Ionized Gases; Invited Lectures, Topical Invited Lectures and Progress Reports Proceedings of the AIP Conference Proceedings, Bajina Basta, Serbia, 23–27 August 2004; American Institute of Physics: College Park, MD, USA, 2004; Volume 740, pp. 497–508. [Google Scholar]
- Dimitrijević, M.S. Forty years of the applications of Stark broadening data determined with the modified semiempirical method. Data 2020, 5, 73. [Google Scholar] [CrossRef]
- Trieschmann, J.; Vialetto, L.; Gergs, T. Review: Machine learning for advancing low-temperature plasma modeling and simulation. J. Micro/Nanopatterning Mater. Metrol. 2023, 22, 041504. [Google Scholar] [CrossRef]
- Racine, J. Gnuplot 4.0: A Portable Interactive Plotting Utility. J. Appl. Econ. 2006, 21, 0133. [Google Scholar] [CrossRef]
- Biedermann, C.; Radtke, R.; Seidel, R.; Pütterich, T. Spectroscopy of highly charged tungsten ions relevant to fusion plasmas. Phys. Scr. 2009, 134, 014026. [Google Scholar] [CrossRef]
- Ivković, M.; Savović, J.; Stankov, B.; Kuzmanović, M.; Traparić, I. LIBS depth-profile analysis of W/Cu functionally graded material. Spectrochim. Acta B 2024, 213, 106874. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sakan, N.M.; Srećković, V.A.; Simić, Z.J.; Dechev, M. Dataset for Optical Processes in Dense Astrophysical and Laboratory Plasmas. Atoms 2024, 12, 59. https://doi.org/10.3390/atoms12110059
Sakan NM, Srećković VA, Simić ZJ, Dechev M. Dataset for Optical Processes in Dense Astrophysical and Laboratory Plasmas. Atoms. 2024; 12(11):59. https://doi.org/10.3390/atoms12110059
Chicago/Turabian StyleSakan, Nenad M., Vladimir A. Srećković, Zoran J. Simić, and Momchil Dechev. 2024. "Dataset for Optical Processes in Dense Astrophysical and Laboratory Plasmas" Atoms 12, no. 11: 59. https://doi.org/10.3390/atoms12110059
APA StyleSakan, N. M., Srećković, V. A., Simić, Z. J., & Dechev, M. (2024). Dataset for Optical Processes in Dense Astrophysical and Laboratory Plasmas. Atoms, 12(11), 59. https://doi.org/10.3390/atoms12110059