Detection of Optogalvanic Spectra Using Driven Quasi-Periodic Oscillator Dynamics
Abstract
:1. Introduction
2. Techniques for Optogalvanic Spectroscopy
2.1. Conventional Method [3]
2.2. Relaxation Oscillator Method [4]
3. Principles of Driven Oscillator Method
3.1. Concepts of Entrainment and Periodic Pulling [5,6,7,8,9]
3.2. Sensitivity of Beat Frequency to Small Changes in Driving Force
4. Results
5. Discussion and Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barbieri, B.; Beverini, N.; Sasso, A. Optogalvanic spectroscopy. Rev. Mod. Phys. 1990, 82, 603. [Google Scholar] [CrossRef]
- Reddy, M.N. Laser optogalvanic spectroscopy: Experimental details and potential applications in R and D. Def. Sci. J. 1994, 44, 279–293. [Google Scholar] [CrossRef]
- Goldsmith, J.E.M.; Lawler, J.E. Optogalvanic Spectroscopy. Contemp. Phys. 1981, 22, 235. [Google Scholar] [CrossRef]
- Yan, G.Y.; Fujii, K.I.; Schawlow, A.L. Relaxation-oscillator detection of optogalvanic spectra. Opt. Lett. 1990, 15, 142–144. [Google Scholar] [CrossRef] [PubMed]
- Lashinsky, H. Mathematical models for nonlinear mode interactions in bounded plasmas. In Nonlinear Effects in Plasmas; Kalman, G., Feix, M., Eds.; Second Orsay Summer Institute, Gordon and Breach: New York, NY, USA, 1969; p. 451. [Google Scholar]
- Koepke, M.E.; Hartley, D.M. Experimental verification of periodic pulling in a nonlinear electronic oscillator. Phys. Rev. A 1991, 44, 6877. [Google Scholar] [CrossRef] [PubMed]
- Klinger, T.; Greiner, F.; Rohde, A.; Piel, A.; Koepke, M. Van der Pol behavior of relaxation oscillations in a periodically driven thermionic discharge. Phys. Rev. E 1995, 52, 4316. [Google Scholar] [CrossRef] [PubMed]
- Michelsen, P.; Pécseli, H.L.; Rasmussen, J.J.; Schrittwieser, R. The current-driven, ion-acoustic instability in a collisionless plasma. Plasma Phys. 1979, 21, 61. [Google Scholar] [CrossRef]
- Hayashi, C. Nonlinear Oscillations in Physical Systems; McGraw-Hill: New York, NY, USA, 1964. [Google Scholar]
- Minorsky, N. Nonlinear Oscillations; Krieger: Malabar, FL, USA, 1962; Chapter 3. [Google Scholar]
- Pavlidis, T. Biological Oscillators: Their Mathematical Analysis; Academic: New York, NY, USA, 1973; Chapter 4. [Google Scholar]
- Guckenheimer, J.; Holmes, P. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields; Springer: New York, NY, USA, 1983; Section 2.1. [Google Scholar]
- Carnahan, C.W.; Kalmus, H.P. Synchronized oscillators as frequency-modulation receiver limiters. Electronics 1944, 17, 108. [Google Scholar]
- Schneider, F. Oscillations and Traveling Waves in Chemical Systems. Angew. Chem. 1986, 98, 941. [Google Scholar] [CrossRef]
- Dunham, J.S. Isotope shift studies of Gd I transitions using laser optogalvanic spectroscopy. In Optogalvanic Spectroscopy: Proceedings of the Second International Meeting on Optogalvanic Spectroscopy and Allied Topics, Glasgow, UK, 2–3 August 1990; Allied Topics, Stewart, R., Lawler, J.E., Eds.; CRC Press: Boca Raton, FL, USA, 1991. [Google Scholar]
- Sheridan, T.E.; Koepke, M.E.; Selcher, C.A.; Good, T.N. Periodic pulling in a driven relaxation oscillator. Proc. SPIE 1993, 2039, 158–167. [Google Scholar]
- Wilke, C.; Leven, R.W.; Deutsch, H. Experimental and numerical study of prechaotic and chaotic regimes in a helium glow discharge. Phys. Lett. A 1989, 136, 114–120. [Google Scholar] [CrossRef]
- Weltmann, K.-D.; Klinger, T.; Wilke, C. Experimental control of chaos in a periodically driven glow discharge. Phys. Rev. E 1995, 52, 2106. [Google Scholar] [CrossRef] [PubMed]
- Klinger, T.; Piel, A.; Seddighi, F.; Wilke, C. Van der Pol dynamics of ionization waves. Phys. Lett. A 1993, 182, 312. [Google Scholar] [CrossRef]
- Weltmann, K.-D.; Koepke, M.E.; Selcher, C.A. Spatiotemporal laser perturbation of competing ionization waves in a neon glow discharge. Phys. Rev. E 2000, 62, 2773. [Google Scholar] [CrossRef] [PubMed]
- Koepke, M.E.; Dinklage, A.; Klinger, T.; Wilke, C. Spatiotemporal signatures of periodic pulling during ionization-wave-mode transitions. Phys. Plasmas 2001, 8, 1432. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koepke, M. Detection of Optogalvanic Spectra Using Driven Quasi-Periodic Oscillator Dynamics. Atoms 2024, 12, 42. https://doi.org/10.3390/atoms12080042
Koepke M. Detection of Optogalvanic Spectra Using Driven Quasi-Periodic Oscillator Dynamics. Atoms. 2024; 12(8):42. https://doi.org/10.3390/atoms12080042
Chicago/Turabian StyleKoepke, Mark. 2024. "Detection of Optogalvanic Spectra Using Driven Quasi-Periodic Oscillator Dynamics" Atoms 12, no. 8: 42. https://doi.org/10.3390/atoms12080042
APA StyleKoepke, M. (2024). Detection of Optogalvanic Spectra Using Driven Quasi-Periodic Oscillator Dynamics. Atoms, 12(8), 42. https://doi.org/10.3390/atoms12080042