Atom Interferometry in the Presence of an External Test Mass
Abstract
:1. Introduction
Estimated Phase Corrections Resulting from the Test Mass
2. Basic Formalism
2.1. Density Matrix Evolution between the Raman Pulses
2.2. Changes in Density Matrix Elements Produced by the Raman Pulses
2.3. AI Signal
2.3.1. Atom Trajectories in the Presence of the Test Mass
2.3.2. Phases
3. Point Source Test Mass
- (1)
- maximum of the magnitude of the phase obtained from Eqs. (62c) and (66), Plots aa;
- (2)
- maximum of the magnitude of the phase difference obtained from Eqs. (62c), (66), (70), (99a), Plots bb;
- (3)
- maximum of the magnitude of the quantum correction obtained from Eqs. (62d) and (73), Plots cc
- (4)
- maximum of the magnitude of the phase difference obtained from Eqs. (62d), (73), (75a) and (77), Plots dd;
- (5)
- maximum of the magnitude of the phase difference obtained from Eqs. (62d), (73), (81) and (99b), Plots ee;
- (6)
- maximum of the magnitude of the quantum correction obtained from Eq. (91), Plots ff;
- (7)
- maximum of the magnitude of the phase difference obtained from Eqs. (91), (94), and (99c), Plots gg.
- Region 1.
- One should use the exact expression, Eq. (91), for in this region; only outside this region are the approximate expressions given by Eqs. (94) and (99c) valid (see Plots in the figures);
- Region 2.
- The phase is negligible in this region (see Plots in the figures);
- Region 3.
- One should use the exact expressions, Eqs. (62d) and (73), for the quantum correction in this region; only outside this region does the approximate expression given by Eqs. (75a) and (77) become valid (see Plots in the figures);
- Region 4.
- One can use the approximate expressions for given by Eqs. (81) and (99b) in this region (see Plots in the figures);
- Region 5.
- One should use the exact expressions, Eqs. (62c) and (66), for the classical part of the phase ; only outside this region does the approximate expression given by Eqs. (70) and (99a) become valid (see Plots in the figures);
- Region 6.
- The phase is negligible in this region (see Plots in the figures);
- Region 7.
- The phase produced by the test mass falls below the phase noise , so the effect of the test mass cannot be measured in this region (see Plots in the figures).
4. Conclusion
Supplementary Files
Supplementary File 1Acknowledgments
Author Contributions
Conflicts of Interest
Appendix
References and Notes
- Dubetsky, B.; Kazantsev, A.P.; Chebotayev, V.P.; Yakovlev, V.P. Interference of atoms and formation of atomic spatial arrays in light fields. JETP Lett. 1984, 39, 649–651. [Google Scholar]
- Weiss, D.S.; Young, B.C.; Chu, S. Precision measurement of the photon recoil of an atom using atomic interferometry. Phys. Rev. Lett. 1993, 70, 2706–2709. [Google Scholar] [CrossRef] [PubMed]
- Estey, B.; Yu, C.; Müller, H.; Kuan, P.-C.; Lan, S.-Y. High-resolution atom interferometers with suppressed diffraction phases. Phys. Rev. Lett. 2015, 115, 083002. [Google Scholar] [CrossRef] [PubMed]
- Fixler, J.B.; Foster, G.T.; McGuirk, J.M.; Kasevich, M.A. Atom interferometer measurement of the newtonian constant of gravity. Science 2007, 315, 74–77. [Google Scholar] [CrossRef] [PubMed]
- Rosi, G.; Sorrentino, F.; Cacciapuoti, L.; Prevedelli, M.; Tino, G.M. Precision measurement of the Newtonian gravitational constant using cold atoms. Nature 2014, 510, 518–521. [Google Scholar] [CrossRef] [PubMed]
- Kasevich, M.; Chu, S. Atomic interferometry using stimulated raman transitions. Phys. Rev. Lett. 1991, 67, 181–184. [Google Scholar] [CrossRef] [PubMed]
- Cahn, S.B.; Kumarakrishnan, A.; Shim, U.; Sleator, T.; Berman, P.R.; Dubetsky, B. Time-domain de broglie wave interferometry. Phys. Rev. Lett. 1997, 79, 784–787. [Google Scholar] [CrossRef]
- Peters, A.; Chung, K.Y.; Chu, S. Measurement of gravitational acceleration by dropping atoms. Nature 1999, 400, 849–852. [Google Scholar]
- Mok, C.; Barrett, B.; Carew, A.; Berthiaume, R.; Beattie, S.; Kumarakrishnan, A. Demonstration of improved sensitivity of echo interferometers to gravitational acceleration. Phys. Rev. A 2013, 88, 023614. [Google Scholar] [CrossRef]
- Snadden, M.J.; McGuirk, J.M.; Bouyer, P.; Haritos, K.G.; Kasevich, M.A. Measurement of the earth’s gravity gradient with an atom interferometer-based gravity gradiometer. Phys. Rev. Lett. 1998, 81, 971–974. [Google Scholar] [CrossRef]
- McGuirk, J.M.; Foster, G.T.; Fixler, J.B.; Snadden, M.J.; Kasevich, M.A. Sensitive absolute-gravity gradiometry using atom interferometry. Phys. Rev. A 2002, 65, 033608. [Google Scholar] [CrossRef]
- Rosi, G.; Cacciapuoti, L.; Sorrentino, F.; Menchetti, M.; Prevedelli, M.; Tino, G.M. Measurement of the gravity-field curvature by atom interferometry. Phys. Rev. Lett. 2015, 114, 013001. [Google Scholar] [CrossRef] [PubMed]
- Riehle, F.; Kisters, T.; Witte, A.; Helmcke, J.; Borde, C.J. Optical ramsey spectroscopy in a rotating frame: Sagnac effect in a matter-wave interferometer. Phys. Rev. Lett. 1991, 67, 177–180. [Google Scholar] [CrossRef] [PubMed]
- Lenef, A.; Hammond, T.D.; Smith, E.T.; Chapman, M.S.; Rubenstein, R.A.; Pritchard, D.E. Rotation sensing with an atom interferometer. Phys. Rev. Lett. 1997, 78, 760–763. [Google Scholar] [CrossRef]
- Gustavson, T.L.; Bouyer, P.; Kasevich, M.A. Precision rotation measurements with an atom interferometer gyroscope. Phys. Rev. Lett. 1997, 78, 2046–2049. [Google Scholar] [CrossRef]
- Canuel, B.; Leduc, F.; Holleville, D.; Gauguet, A.; Fils, J.; Virdis, A.; Clairon, A.; Dimarcq, N.; Borde, C.J.; Landragin, A. Six-axis inertial sensor using cold-atom interferometry. Phys. Rev. Lett. 2006, 97, 010402. [Google Scholar] [CrossRef] [PubMed]
- Dubetsky, B.; Kasevich, M.A. Atom interferometer as a selective sensor of rotation or gravity. Phys. Rev. A 2006, 74, 023615. [Google Scholar] [CrossRef]
- Barrett, B.; Geiger, R.; Dutta, I.; Meunier, M.; Canuel, B.; Gauguet, A.; Bouyer, P.; Landragin, A. The Sagnac effect: 20 years of development in matter-wave interferometry. C. R. Physique 2014, 15, 875–883. [Google Scholar] [CrossRef]
- Wu, B.; Wang, Z.Y.; Cheng, B.; Wang, Q.Y.; Xu, A.P.; Lin, Q. Accurate measurement of the quadratic Zeeman coefficient of 87Rb clock transition based on the Ramsey atom interferometer. J. Phys. B At. Mol. Opt. Phys. 2014, 47, 015001. [Google Scholar] [CrossRef]
- Biedermann, G.W.; Wu, X.; Deslauriers, L.; Roy, S.; Mahadeswaraswamy, C.; Kasevich, M.A. Testing gravity with cold-atom interferometers. Phys. Rev. A 2015, 91, 033629. [Google Scholar] [CrossRef]
- Hamilton, P.; Jaffe, M.; Haslinger, P.; Simmons, Q.; Müller, H. Atom-interferometry constraints on dark energy. Science 2015, 349, 849–851. [Google Scholar] [CrossRef] [PubMed]
- Borde, C.J.; Howard, J.-C.; Karasiewicz, A. Relativistic phase shifts for Dirac particles interacting with weak gravitational fields in matter-wave interferometers. Lect. Notes Phys. 2001, 562, 403–438. [Google Scholar]
- Dimopoulos, S.; Graham, P.W.; Hogan, J.M.; Kasevich, M. A. General relativistic effects in atom interferometry. Phys. Rev. D 2008, 78, 042003. [Google Scholar] [CrossRef]
- Wicht, A.; Lä mmerzahl, C.; Lorek, D.; Dittus, H. Rovibrational quantum interferometers and gravitational waves. Phys. Rev. A 2008, 78, 013610. [Google Scholar] [CrossRef]
- Dubetsky, B. Optimization and Error Model for Atom Interferometry Technique to Measure Newtonian Gravitational Constant. 2014; arXiv:1407.7287. [Google Scholar]
- Zorn, A.; Sonnad, V.; Libby, S.B.; Dubetsky, B.; Shverdin, M. A semi-classical, closed form expression for the phase response of a vertical symmetric atomic fountain. 2016; in preparation. [Google Scholar]
- Higher order terms in the expansion of the potential have also been considered in Ref. [42].
- Wolf, P; Tourrenc, P. Gravimetry using atom interferometers: Some systematic effects. Phys. Lett. A 1999, 251, 241–246. [Google Scholar]
- Bongs, K.; Launay, R.; Kasevich, M.A. High-order inertial phase shifts for time-domain atom interferometers. Appl. Phys. B 2006, 84, 599–602. [Google Scholar] [CrossRef]
- Peters, A.; Chung, K.Y.; Chu, S. High-precision gravity measurements using atom interferometry. Metrologia 2001, 38, 25–61. [Google Scholar] [CrossRef]
- Kasevich, M.A.; Dubetsky, B. Kinematic Sensors Employing Atom Interferometer Phases. U.S. Patent 7,317,184, 8 January 2008. [Google Scholar]
- Dickerson, S.M.; Hogan, J.M.; Sugarbaker, A.; Johnson, D.M.S.; Kasevich, M.A. Multiaxis inertial sensing with long-time point source atom interferometry. Phys. Rev. Lett. 2013, 111, 083001. [Google Scholar] [CrossRef] [PubMed]
- Beausoleil, R.G.; Hansch, T.W. Ultrahigh-resolution two-photon optical Ramsey spectroscopy of an atomic fountain. Phys. Rev. A 1986, 33, 1661–1670. [Google Scholar] [CrossRef]
- Dubetsky, B.; (Hallandale, FL, USA). Gradiometer response on parallelepiped test mass. unpublished work. 2008. [Google Scholar]
- For a test mass density the field is of order . For inequality (2) to be satisfied, we must have
- Kol’chenko, A.P.; Rautian, S.G.; Sokolovskii, R.I. Interaction of an atom with a strong electromagnetic field with the recoil effect taken into consideration. J. Exp. Theor. Phys. 1969, 28, 986–990. [Google Scholar]
- Landau, L.D.; Lifshitz, E.M. Statistical Physics, Part 1; Pergamon Press: New York, NY, USA, 1980; p. 20. [Google Scholar]
- Klimontovich, Y.L. Kinetic Theory of Nonideal Gases amd Nonideal Plasmas; Pergamon Press: New York, NY, USA, 1982; Chapter 12. [Google Scholar]
- Dubetsky, B.; Berman, P.R. Ground-state Ramsey fringes. Phys. Rev. A 1997, 56, R1091–R1094. [Google Scholar] [CrossRef]
- Berman, P.R.; Malinovsky, V.S. Prinsiples of Laser Spectroscopy and Quantum Optics; Prinston University Press: Prinston, NJ, USA, 2011; Section 18.5. [Google Scholar]
- Giese, E.; Zeller, W.; Kleinert, S.; Meister, M.; Tamma, V.; Roura, A.; Schleich, W.P. The interface of gravity and quantum mechanics illuminated by Wigner phase space Atom Interferometry. In Proceedings of the International School of Physics “Enrico Fermi”; Tino, G.N., Kasevich, M., Eds.; IOS Press: Amsterdam, The Netherlands, 2014; Volume 188, pp. 171–236. [Google Scholar]
- Hogan, J.M. Testing Gravity with Atom Interferometry. Talk in 39th SLAC Summer Institute. 2011. Available online: http://www-conf.slac.stanford.edu/ssi/2011/Hogan_080311.pdf (accessed on 29 March 2016).
- Giltner, D.M.; McGowan, R.W.; Lee, S.A. Theoretical and experimental study of the Bragg scattering of atoms from a standing light wave. Phys. Rev. A 1995, 52, 3966–3972. [Google Scholar] [CrossRef] [PubMed]
- Berman, P.R.; Dubetsky, B.; Cohen, J.L. High-resolution amplitude and phase gratings in atom optics. Phys. Rev. A 1998, 58, 4801–4810. [Google Scholar] [CrossRef]
- Dubetsky, B.; Berman, P.R. λ/4, λ/8, and Higher Order Atom Gratings via Raman Transitions. Laser Phys. 2002, 12, 1161–1170. [Google Scholar]
- Turlapov, A.; Tonyushkin, A.; Sleator, T. Talbot-Lau effect for atomic de Broglie waves manipulated with light. Phys. Rev. A 2005, 71, 043612. [Google Scholar] [CrossRef]
- Lévèque, T.; Gauguet, A.; Michaud, F.; Pereira Dos Santos, F.; Landragin, A. Enhancing the area of a Raman atom interferometer using a versatile double-diffraction technique. Phys. Rev. Lett. 2009, 103, 080405. [Google Scholar] [CrossRef] [PubMed]
- Chiow, S.; Kovachy, T.; Chien, H.; Kasevich, M.A. 102ℏk large area atom interferometers. Phys. Rev. Lett. 2011, 107, 130403. [Google Scholar] [CrossRef] [PubMed]
- Kovachy, T.; Asenbaum, P.; Overstreet1, C.; Donnelly, C.A.; Dickerson, S.M.; Sugarbaker, A.; Hogan, J.M.; Kasevich, M.A. Quantum superposition at the half-metre scale. Nature 2015, 528, 530–533. [Google Scholar]
- Dubetsky, B.; Berman, P.R. λ/8-period optical potentials. Phys. Rev. A 2002, 66, 045402. [Google Scholar] [CrossRef]
- Zorn, A.; (AOSense, Inc., Sunnyvale, CA, USA). unpublished work. 2011.
- Chemical Elements Listed by Density. Available online: http://www.lenntech.com/periodic-chart-elements/density.htm (accessed on 29 March 2016).
Earth’s gravitational field | |
Multiple- beam splitter factor | |
Effective wave vector | m |
Time between launch and first Raman pulse | ms |
Time between Raman pulses | ms |
Launch velocity | |
Error of atom interferometer phase measurement | rad |
Test mass | kg |
Atomic mass | 87 |
Region | Stationary Test Mass | Test Mass Moving With Constant Velocity |
---|---|---|
1 | m | m |
2 | m | m |
3 | m | m |
4 | m | m |
5 | m | m |
6 | m | m |
7 | m | m |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dubetsky, B.; Libby, S.B.; Berman, P. Atom Interferometry in the Presence of an External Test Mass. Atoms 2016, 4, 14. https://doi.org/10.3390/atoms4020014
Dubetsky B, Libby SB, Berman P. Atom Interferometry in the Presence of an External Test Mass. Atoms. 2016; 4(2):14. https://doi.org/10.3390/atoms4020014
Chicago/Turabian StyleDubetsky, Boris, Stephen B. Libby, and Paul Berman. 2016. "Atom Interferometry in the Presence of an External Test Mass" Atoms 4, no. 2: 14. https://doi.org/10.3390/atoms4020014
APA StyleDubetsky, B., Libby, S. B., & Berman, P. (2016). Atom Interferometry in the Presence of an External Test Mass. Atoms, 4(2), 14. https://doi.org/10.3390/atoms4020014