An Investigation on the He−(1s2s2 2S) Resonance in Debye Plasmas
Abstract
:1. Introduction
2. Method and Calculations
3. Results and Discussion
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Margenau, H.; Lewis, M. Structure of Spectral Lines from Plasmas. Rev. Mod. Phys. 1959, 31, 569–615. [Google Scholar] [CrossRef]
- Whitten, B.L.; Lane, N.F.; Weisheit, J.C. Plasma-screening effects on electron-impact excitation of hydrogenic ions in dense plasmas. Phys. Rev. A 1984, 29, 945–952. [Google Scholar] [CrossRef]
- Nguyen, H.; Koenig, M.; Benredjem, D.; Caby, M.; Coulaud, G. Atomic structure and polarization line shift in dense and hot plasmas. Phys. Rev. A 1986, 33, 1279–1290. [Google Scholar] [CrossRef]
- Scheibner, K.; Weisheit, J.C.; Lane, N.F. Plasma screening effects on proton-impact excitation of positive ions. Phys. Rev. A 1987, 35, 1252–1268. [Google Scholar] [CrossRef]
- Weisheit, J.C. Atomic excitation in dense plasmas. Adv. At. Mol. Phys. 1989, 25, 101–131. [Google Scholar]
- Salzmann, D. Atomic Physics in Hot Plasmas; Oxford University Press: Oxford, UK, 1998. [Google Scholar]
- Murillo, M.S.; Weisheit, J.C. Dense plasmas, screened interactions, and atomic ionization. Phys. Rep. 1998, 302, 1–65. [Google Scholar] [CrossRef]
- Ichimaru, S. Strongly coupled plasmas: High-density classical plasmas and degenerate electron liquids. Rev. Mod. Phys. 1982, 54, 1017–1059. [Google Scholar] [CrossRef]
- Janev, R.K.; Zhang, S.B.; Wang, J.G. A review of quantum collision dynamics in Debye plasmas. Matter Radiat. Extremes 2016, 1, 237–248. [Google Scholar]
- Saha, J.K.; Mukherjee, T.K.; Mukherjee, P.K.; Fricke, B. Effect of strongly coupled plasma on the doubly excited states of heliumlike ions. Eur. Phys. J. D 2012, 66, 1–9. [Google Scholar] [CrossRef]
- Schulz, G.J. Resonance in the Elastic Scattering of Electrons in Helium. Phys. Rev. Lett. 1963, 10, 104–105. [Google Scholar] [CrossRef]
- Cvejanovic, S.; Comer, J.; Read, F.H. High resolution measurements of the 23S cusp and the 22S resonance in elastic electron-helium scattering. J. Phys. B 1974, 7, 468–477. [Google Scholar] [CrossRef]
- Brunt, J.N.H.; King, G.C.; Read, F.H. Resonance structure in elastic electron scattering from helium, neon and argon. J. Phys. B 1977, 10, 1289–1301. [Google Scholar] [CrossRef]
- Kennerly, R.E.; Van Brunt, R.; Gallaher, A.C. High-resolution measurement of the helium 1s2s2 2S resonance profile. Phys. Rev. A 1981, 23, 2430–2442. [Google Scholar] [CrossRef]
- Gopalan, A.; Bommels, J.; Gotte, S.; Landwehr, A.; Franz, K.; Ruf, M.-W.; Hotop, H.; Bartschat, K. A novel electron scattering apparatus combining a laser photoelectron source and a triply differentially pumped supersonic beam target: Characterization and results for the He−(1s2s2) resonance. Eur. Phys. J. D 2003, 22, 17–29. [Google Scholar] [CrossRef]
- Buckman, S.J.; Clark, C.W. Atomic negative-ion resonances. Rev. Mod. Phys. 1994, 66, 539–655. [Google Scholar] [CrossRef]
- Schulz, G.J. Resonances in Electron Impact on Atoms. Rev. Mod. Phys. 1973, 45, 378–422. [Google Scholar] [CrossRef]
- Golden, D.E. Electron and Photon Interactions with Atoms; Kleinpoppen, H., McDowell, M.R.C., Eds.; Plenum: New York, NY, USA, 1976; p. 639. [Google Scholar]
- Andrick, D. The Differential Cross Section of Low Energy Electron-Atom Collisions. Adv. At. Mol. Phys. 1973, 9, 207–242. [Google Scholar]
- Freitas, L.C.G.; Berrington, K.A.; Burke, P.G.; Hibbert, A.; Kingston, A.E.; Sinfailam, A.L. An eleven-state electron-helium scattering calculation. J. Phys. B 1984, 17, L303. [Google Scholar] [CrossRef]
- Ho, Y.K.; Yan, Z.C. Calculation of the He− 1s2s2 2S resonance using fully correlated Hylleraas functions. Phys. Rev. A 1999, 59, R2559. [Google Scholar] [CrossRef]
- Fon, W.C.; Berrington, K.A.; Burke, P.G.; Kingston, A.E. A 19-state R-matrix investigation of resonances in e− − He scattering. I. The resonance widths and positions. J. Phys. B 1989, 22, 3939–3949. [Google Scholar]
- Temkin, A.; Bhatia, A.K.; Bardsley, J.N. Resonance Quasi-Projection Operators: Calculation of the 2S Autoionization State of He−. Phys. Rev. A 1972, 5, 1663–1671. [Google Scholar] [CrossRef]
- Davis, B.F.; Chung, K.T. Saddle-point complex-rotation method for the (1s2s2s)2S resonance in He−, Li I, Be II, and B III. Phys. Rev. A 1984, 29, 1878–1882. [Google Scholar] [CrossRef]
- Hazi, A.U. A purely L2 method for calculating resonance widths. J. Phys. B 1978, 11, L259. [Google Scholar] [CrossRef]
- Junker, B.R. Complex-coordinate method.II. Resonance calculations with correlated target-state wave functions. Phys. Rev. A 1978, 18, 2437–2442. [Google Scholar] [CrossRef]
- Junker, B.R.; Huang, C.L. Complex-coordinate method. Structure of the wave function. Phys. Rev. A 1978, 18, 313–323. [Google Scholar] [CrossRef]
- Khrabrov, A.V.; Kaganovich, I.D. Electron scattering in helium for Monte Carlo simulations. Phys. Plasmas 2012, 19, 093511. [Google Scholar] [CrossRef]
- Shigemura, K.; Kitajima, M.; Kurokawa, M.; Toyoshima, K.; Odagiri, T.; Suga, A.; Kato, H.; Hoshino, M.; Tanaka, H.; Ito, K. Total cross sections for electron scattering from He and Ne at very low energies. Phys. Rev. A 2014, 89, 022709. [Google Scholar] [CrossRef]
- Konovalov, D.A.; Fursa, D.V.; Bray, I. J-matrix calculation of electron-helium S-wave scattering. II. Single ionization and single excitation. Phys. Rev. A 2012, 86, 052704. [Google Scholar] [CrossRef]
- Zammit, M.C.; Fursa, D.V.; Bray, I.; Janev, R.K. Electron-helium scattering in Debye plasmas. Phys. Rev. A 2011, 84, 052705. [Google Scholar] [CrossRef]
- Zammit, M.C.; Fursa, D.V.; Bray, I. Electron scattering in a helium Debye plasma. Chem. Phys. 2012, 398, 214–220. [Google Scholar] [CrossRef]
- Hart, G.A.; Goodfriend, P.L. Hellmann Pseudopotential Parameters for Atoms with One Valence Electron. J. Chem. Phys. 1970, 53, 448–449. [Google Scholar] [CrossRef]
- Caveliere, P.; Ferrante, G. Model-Potential Theory of Positron-Alkali-Atom Bound States. I: Ground State Energy and Atomic Properties. Nuovo Cemento 1973, 14, 127–146. [Google Scholar] [CrossRef]
- Hibbert, A. Model Potentials in Atomic Structure. Adv. Atom. Mol. Phys. 1982, 18, 309–340. [Google Scholar]
- Laughlin, C.; Victor, G.A. Model-Potential Methods. Adv. At. Mol. Phys. 1988, 25, 163–194. [Google Scholar]
- Varshni, Y.P. Comparison of 1/N expansion and shifted 1/N expansion for eigenenergies of an atomic potential. Phys. Rev. A 1988, 38, 1595–1598. [Google Scholar] [CrossRef]
- Varshni, Y.P. Spectrum of helium at high pressures. Eur. Phys. J. D 2003, 22, 229–233. [Google Scholar] [CrossRef]
- Ghoshal, A.; Ho, Y.K. Doubly excited resonance states of helium in exponential cosine-screened Coulomb potentials. Phys. Rev. A 2009, 79, 062514. [Google Scholar] [CrossRef]
- Kar, S.; Ho, Y.K. S-wave resonances in the positron-hydrogen system with screened Coulomb potentials. J. Phys. B 2005, 38, 3299–3310. [Google Scholar] [CrossRef]
- Fang, T.K.; Ho, Y.K. Determination of resonance energies and widths of Mg 3pnl 1De and 1Fo doubly excited states by the stabilization method with the B-spline-based configuration interaction approach. J. Phys. B 1999, 32, 3863–3872. [Google Scholar] [CrossRef]
- Tan, S.S.; Ho, Y.K. Determination of Resonance Energy and Width by Calculation of the Density of Reesonance States Using the Stabilisation Method. Chin. J. Phys. 1997, 35, 701–707. [Google Scholar]
- Drake, G.W.F. Atomic, Molecular, & Optical Physics Handbook; AIP Press: New York, NY, USA, 1996; Chapter 11. [Google Scholar]
- Umair, M.; Jones, S. Resonances with natural and unnatural parities in positron-sodium scattering. Phys. Rev. A 2015, 92, 012706. [Google Scholar] [CrossRef]
- Umair, M.; Jonsell, S. Resonances in positron-potassium e+ − K system with natural and unnatural parities. J. Phys. B 2016, 49, 015004. [Google Scholar] [CrossRef]
- Chakraborty, S.; Ho, Y.K. Determination of resonance parameters for the e+ − H system in Debye plasma environments using the complex-coordinate-rotation method. Phys. Rev. A 2008, 77, 014502. [Google Scholar] [CrossRef]
- Ning, Y.; Yan, Z.C.; Ho, Y.K. An investigation of resonances in e+ − H scattering embedded in Debye plasma. Phys. Plasmas 2015, 22, 013302. [Google Scholar] [CrossRef]
- Ning, Y.; Yan, Z.C.; Ho, Y.K. Natural and Unnatural Parity Resonance States in the Positron-Hydrogen System with Screened Coulomb Interactions. Atoms 2016, 4, 3. [Google Scholar] [CrossRef]
Results of Present Investigation | Results of Other Investigations | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
(a) | (b) | (c) | (d) | (e) | ||||||
2.16852 | 2.16854 | 2.16855 | 2.16855 | 2.19194 | 2.19171 | 2.19127 | 2.19208 | 2.19204 | ||
Γ | 0.001097 | 0.001129 | 0.001130 | 0.001131 | 0.00041 | 0.00043 | 0.00044 | 0.00041 | 0.00040 |
μ | Γ | ||||
---|---|---|---|---|---|
0 | 0.00 | 2.16855 | 0.001131 | 2.19194 | 0.0004052 |
7.82[18] | 0.01 | 2.15858 | 0.001131 | 2.18186 | 0.0004055 |
3.13[19] | 0.02 | 2.14882 | 0.001128 | 2.17200 | 0.0004043 |
7.04[19] | 0.03 | 2.13931 | 0.001120 | 2.16238 | 0.0004015 |
1.25[20] | 0.04 | 2.13006 | 0.001107 | 2.15303 | 0.0003967 |
1.96[20] | 0.05 | 2.12110 | 0.001088 | 2.14398 | 0.0003901 |
2.82[20] | 0.06 | 2.11244 | 0.001064 | 2.13522 | 0.0003814 |
3.83[20] | 0.07 | 2.10409 | 0.001034 | 2.12678 | 0.0003707 |
5.01[20] | 0.08 | 2.09607 | 0.000999 | 2.11868 | 0.0003581 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghoshal, A.; Ho, Y.K. An Investigation on the He−(1s2s2 2S) Resonance in Debye Plasmas. Atoms 2017, 5, 2. https://doi.org/10.3390/atoms5010002
Ghoshal A, Ho YK. An Investigation on the He−(1s2s2 2S) Resonance in Debye Plasmas. Atoms. 2017; 5(1):2. https://doi.org/10.3390/atoms5010002
Chicago/Turabian StyleGhoshal, Arijit, and Yew Kam Ho. 2017. "An Investigation on the He−(1s2s2 2S) Resonance in Debye Plasmas" Atoms 5, no. 1: 2. https://doi.org/10.3390/atoms5010002
APA StyleGhoshal, A., & Ho, Y. K. (2017). An Investigation on the He−(1s2s2 2S) Resonance in Debye Plasmas. Atoms, 5(1), 2. https://doi.org/10.3390/atoms5010002