Beyond the Linear Stark Effect: A Retrospective
Abstract
:“Interactions are phenomena that need some dissymmetry for their existence.If there is no this dissymmetry then phenomenon is impossible”– Pierre Curie1
1. Research of Electric Field Action on Spectral Lines Using Canal Rays
2. Plasma of Gas Discharge
3. Influence of Quadrupole Interaction with Ions and Electrons on Line Wings
4. Discussion
Acknowledgments
Conflicts of Interest
Appendix A. On Theoretical Shifts of Hydrogenlike Emitters
References
- Stark, J. Beobachtung der Zerlegung von Spektrallinien durch ein elektrisches Feld. Naturwissenschaften 1913, 48, 1182. [Google Scholar] [CrossRef]
- Lo Surdo, A. Sul fenomeno analogo a quello di Zeeman nel campo elettrico. Rendiconti della Reale Accademia dei Lincei 1913, 22, 664–666. [Google Scholar] [CrossRef]
- Stark, J.; Kirschbaum, Y. Beobachtunngen über dem Effekt des elektrischen Feldes auf Spektralinien. III. Abhängigkeit von der Feldstärke. Ann. Phys. 1914, 43, 991–1016. [Google Scholar] [CrossRef]
- Stark, J. Elektrische-Spektralanalyse Chemischer Atome; S. Hirzel: Leipzig, Germany, 1914. [Google Scholar]
- Bohr, N. On the constitution of atoms and molecules. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1913, 26, PartI 1–24, PartII 476–502, PartIII 857–875. [Google Scholar] [CrossRef]
- Bohr, N. On the Effect of Electric and Magnetic Fields on Spectral Lines. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1914, 27, 506–524. [Google Scholar] [CrossRef]
- Bohr, N. On the Quantum theory of radiation and the structure of the atom. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1915, 30, 394–415. [Google Scholar] [CrossRef]
- Wilson, W. The quantum-theory of radiation and line spectra. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1915, 29, 795–802. [Google Scholar] [CrossRef]
- Sommerfeld, A. Zur Quantentheorie der Spektrallinien. Ann. Phys. 1916, 51, 1–93, Münchener Ber. 1915, 425, 459. [Google Scholar] [CrossRef]
- Schwarzschild, K. Zur Quantenhypothese. In Sitzungsberichter Preußischen Akademie der Wissenschaften; Akademie der Wissenschaften: Berlin, Germany, 1916; pp. 548–568. [Google Scholar]
- Epstein, P.S. Zur Theorie des Starkeffektes. Ann. Phys. 1916, 50, 489–520. [Google Scholar] [CrossRef]
- Kramers, H.A. Intensities of Spectral Lines. Ph.D.Thesis, Leiden University, Leiden, The Netherlands, 1919. [Google Scholar]
- Lunelund, H. Intensitätsverhältnis lang- und kurzwelliger elektischer Komponenten der Serienlinien des Wasserstoffs. Ann. Phys. 1914, 45, 517–528. [Google Scholar] [CrossRef]
- Mark, H.; Wierl, B. Über die relativen Intensitäten der Starkeffektkomponenten von Hβ und Hγ. Z. Phys. 1929, 53, 526–541. [Google Scholar] [CrossRef]
- Mark, H.; Wierl, B. Weiterer Beitrag zum Intensitätsproblem beim Wasserstoff-Starkeffekt. Z. Phys. 1929, 55, 156–163. [Google Scholar] [CrossRef]
- Mark, H.; Wierl, B. Starkeffektintensitäten im Längseffekt. Z. Phys. 1929, 57, 494–500. [Google Scholar] [CrossRef]
- Von Traubenberg, R.; Gebauer, R. Über den Starkeffekt II. Ordnung bei der Balmerserie des Wasserstoffs. Z. Phys. 1929, 54, 307–320. [Google Scholar] [CrossRef]
- Von Traubenberg, R.; Gebauer, R. Über den Starkeffekt II. Ordnung bei der Balmerserie des Wasserstoffs. II. Z. Phys. 1929, 56, 254–258. [Google Scholar] [CrossRef]
- Von Traubenberg, R.; Gebauer, R.; Lewin, G. Über die Erzeugung sehr hoher elektrischer Felder zur Beobachtung des Starkeffektes. Naturwissenschaften 1930, 18, 417–418. [Google Scholar] [CrossRef]
- Kiuti, M. Über den Starkeffekt II. Ordnung bei den Balmerschen Linien. Z. Phys. 1929, 57, 658–666. [Google Scholar] [CrossRef]
- Jäger, H. Experimental Investigations of the Stark Effect at High Field Strengths. Phys. Scr. 1989, T26, 74–83. [Google Scholar] [CrossRef]
- Jäger, H.; Windholz, L. Untersuchungen des Starkeffektes bei Hohen Feldstärken. Contrib. Plasma Phys. 1991, 31, 143–165. [Google Scholar] [CrossRef]
- Ryde, N. Atoms and Molecules in Electric Fields; Almquist & Wiksell International: Stockholm, Sweden, 1976. [Google Scholar]
- Holtsmark, J. Über die Verbreiterung von Spektrallinien. Ann. Phys. 1919, 58, 577–630. [Google Scholar] [CrossRef]
- Pauli, W. Quantentheorie, Handbuch der Physik; Band 23; Geiger, H., Scheil, K., Eds.; Springer: Berlin, Germany, 1926; the last but one sentence of §13. [Google Scholar]
- Lanczos, C. Zur Verschiebung der Wasserstoffterme in hohen elektrischen Feldern. Z. Phys. 1930, 65, 431–455. [Google Scholar] [CrossRef]
- Lanczos, C. Zur Theorie des Starkeffekts in hohen Feldern. Z. Phys. 1930, 62, 518–544. [Google Scholar] [CrossRef]
- Lanczos, C. Zur Intensitätsschwächung der Spektrallinien in hohen elektrischen Feldern. Z. Phys. 1931, 68, 204–232. [Google Scholar] [CrossRef]
- Finkelburg, W. Über das Emissionsspektrum von komprimiertem Wasserstoff sowie einige Druckerscheinungen in MetaUdampfspektren. Z. Phys. 1931, 70, 375–394. [Google Scholar] [CrossRef]
- Jürgens, G. Temperatur und Elektronendichte in einem wasserstabilisierten Lichtbogen. Z. Phys. 1952, 134, 21–41. [Google Scholar] [CrossRef]
- Kitaeva, V.F.; Sobolev, N.N. About Broadening of Hydrogen Lines in Plasmas of Arc and Shock Tube. Doklady Physics USSR 1961, 137, 1091–1094. (In Russian) [Google Scholar]
- Kitaeva, V.F.; Obukhov-Denisov, V.V.; Sobolev, N.N. Concentration of Charged Particles in Arc Plasmas, Burning in Atmosphere of Argon and Helium. Optika i Spectroskopiya USSR 1962, 12, 178–185. (In Russian) [Google Scholar]
- Wiese, W.L.; Paquette, D.R.; Solarski, J.E. Profiles of Stark-Broadened Balmer Lines in a Hydrogen Plasma. Phys. Rev. 1963, 129, 1225–1232. [Google Scholar] [CrossRef]
- Boldt, G.; Cooper, W.S. Messung des Linienflügelprofiles der Wasserstofflinie Lyman-α. Z. für Naturforschung A 1964, 19, 968–978. [Google Scholar] [CrossRef]
- Wiese, W.L.; Kelleher, D.E. On the Cause of the Redshifts in White-Dwarf Spectra. Astrophys. J. 1971, 166, L59–L63. [Google Scholar] [CrossRef]
- Wiese, W.L.; Kelleher, D.E.; Paquette, D.R. Detailed Study of the Stark-Broadening of Balmer Lines in a High-Density Plasma. Phys. Rev. A 1972, 6, 1132–1153. [Google Scholar] [CrossRef]
- Wiese, W.L.; Kelleher, D.E.; Helbig, V. Variations in Balmer-line Stark profiles with atom-ion reduced mass. Phys. Rev. A 1975, 11, 1854–1863. [Google Scholar] [CrossRef]
- Fussmann, G. Measurement of Stark Broadened Lyman-Lines. J. Quant. Spectrosc. Radiat. Transf. 1975, 15, 791–809. [Google Scholar] [CrossRef]
- Bengston, R.D.; Chester, G.R. Stark broadening of Balmer lines in the density range (2÷8)·1014 cm−3. Phys. Rev. A 1976, 13, 1762–1771. [Google Scholar] [CrossRef]
- Preston, R.C. Spectroscopic studies of the Stark-broadened wings of Lyman-α. J. Phys. B 1977, 10, 523–540. [Google Scholar] [CrossRef]
- Preston, R.C. Spectroscopic Studies of a Plasma Temperature and Radiation Standard Based on a Wall-Stabilized Arc. J. Quant. Spectrosc. Radiat. Transf. 1977, 18, 337–360. [Google Scholar] [CrossRef]
- Okasaka, R.; Nagashima, M.; Fukuda, K. Line Broadening Measurement in High Density Plasma I. Hα and Hβ. J. Phys. Soc. Jpn. 1977, 42, 1339–1347. [Google Scholar] [CrossRef]
- Grützmacher, K.; Wende, B. Discrepancies between the Stark broadening theories of hydrogen and measurements of Lyman-α Stark profiles in a dense equilibrium plasma. Phys. Rev. A 1977, 16, 243–246. [Google Scholar] [CrossRef]
- Grützmacher, K.; Wende, B. Stark broadening of the hydrogen resonance line Lyβ in a dense equilibrium plasma. Phys. Rev. A 1978, 18, 2140–2148. [Google Scholar] [CrossRef]
- Ehrich, H.; Kelleher, D.E. Hydrogen fine-structure effects at low electron densities. Phys. Rev. A 1978, 17, 1686–1689. [Google Scholar] [CrossRef]
- Chotin, J.L.; Lemairet, J.L.; Marque, J.P.; Rostas, F. Measurement of the ion-mass effect on the central structure of Hβ in a plasma produced by a combustion-driven shock tube. J. Phys. B 1978, 11, 371–383. [Google Scholar] [CrossRef]
- Ehrich, H.; Kelleher, D.E. Experimental investigation of plasma-broadened hydrogen Balmer lines at low electron densities. Phys. Rev. A 1980, 21, 319–334. [Google Scholar] [CrossRef]
- Pittman, T.L.; Voigt, P.; Kelleher, D.E. Plasma Shifts of Hydrogenic-Ion Lines. Phys. Rev. Lett. 1980, 45, 723–726. [Google Scholar] [CrossRef]
- Helbig, V.; Nick, K.-P. Investigation of the Stark broadening of Balmer beta. J. Phys. B 1981, 14, 3573–3583. [Google Scholar] [CrossRef]
- Fleurier, C.; Le Gall, P. Shift of the He II Pα line in high density plasmas. J. Phys. B 1984, 17, 4311–4322. [Google Scholar] [CrossRef]
- Pittman, T.L.; Fleurier, C. Plasma shifts of the He II Hα and Pα lines. Phys. Rev. A 1986, 33, 1291–1295. [Google Scholar] [CrossRef]
- Carlhoff, C.; Krametz, E.; Schäfer, J.H.; Uhlenbusch, J. Hβ profiles at high electron densities from optical discharges. J. Phys. B 1986, 19, 2629–2637. [Google Scholar] [CrossRef]
- D’Etat, B.; Grumberg, J.; Leboucher, E.; Nguyen, H.; Poquerusse, A. Fluorine Lyman series emitted from laser-produced plasmas–line broadening and merging effects. J. Phys. B 1987, 20, 1733–1747. [Google Scholar] [CrossRef]
- Marangos, J.; Burgess, D.D.; Baldwin, K.G.H. He II Balmer series line shifts in a dense z-pinch plasma. J. Phys. B 1988, 21, 3357–3367. [Google Scholar] [CrossRef]
- Halenka, J. Asymmetry of the Peaks of the Hβ Spectral Line. J. Quant. Spectrosc. Radiat. Transf. 1988, 39, 347–351. [Google Scholar] [CrossRef]
- Halenka, J.; Vujičić, B.; Djurović, S. Shift of the Peaks of the Hβ Spectral Line. J. Quant. Spectrosc. Radiat. Transf. 1989, 42, 571–573. [Google Scholar] [CrossRef]
- Uhlenbusch, J.; Viöl, W. Hβ- Line Profile Measurements in Optical Discharges. Contrib. Plasma Phys. 1991, 29, 459–467. [Google Scholar] [CrossRef]
- Mijatović, Z.; Pavlov, M. Djurović, Shifts of the Hβ line in dense hydrogen plasmas. Phys. Rev. A 1991, 43, 6095–6096. [Google Scholar] [CrossRef] [PubMed]
- Buscher, S.; Glenzer, S.; Wrubel, Th.; Kunze, H.-J. Investigation of the HeII Pα and HeII Pβ transitions at high densities. J. Phys. B 1996, 29, 4107–4125. [Google Scholar] [CrossRef]
- Döhrn, A.; Nowack, P.; Könies, A.; Günter, S.; Helbig, V. Stark broadening and shift of the first two Paschen lines of hydrogen. Phys. Rev. A 1996, 53, 6389–6395. [Google Scholar] [CrossRef]
- Seidel, J.; Steiger, A.; Grüzmacher, K. Fine-structure asymmetry of Doppler-free Stark-broadened two-photon polarization line profiles of hydrogen Lyman-α. In AIP Conference Proceedings; AIP: New York, NY, USA, 1995; Volume 328, pp. 32–33. [Google Scholar] [CrossRef]
- Djurović, S.; Nikolić, D.; Savić, I.; Sörge, S.; Demura, A.V. Asymmetry of Hβ Stark profiles in T-tube hydrogen plasma. Phys. Rev. E 2005, 71, 036407. [Google Scholar] [CrossRef]
- Torres, J.; Palomares, J.M.; Sola, A.; van der Mullen, J.J.A.M.; Gamero, A. A Stark broadening method to determine simultaneously the electron temperature and density in high-pressure microwave plasmas. J. Phys. D 2007, 40, 5929–5936. [Google Scholar] [CrossRef]
- Torres, J.; Palomares, J.M.; Gigosos, M.A.; Gamero, A.; Sola, A.; van der Mullen, J.J.A.M. An experimental study on the asymmetry and the dip form of the Hβ line profiles in microwave produced plasmas at atmospheric pressure. Spectrochim. Acta Part B 2008, 63, 939–947. [Google Scholar] [CrossRef]
- Palomares, J.M.; Torres, J.; Gigosos, M.A.; van der Mullen, J.J.A.M.; Gamero, A.; Sola, A. Experimental characterization of the Hβ -line profiles in microwave-produced plasmas at atmospheric pressure. J. Phys. Conf. Ser. 2010, 204, 012013. [Google Scholar] [CrossRef]
- Djurović, S.; Ćirišan, M.; Demura, A.V.; Demchenko, G.V.; Nikolić, D.; Gigosos, M.A.; González, M.Á. Measurements of Hβ Stark central asymmetry and its analysis through standard theory and computer simulations. Phys. Rev. E 2009, 79, 046402. [Google Scholar] [CrossRef]
- Swafford, L.D.; Surmick, D.M.; Witte, M.J.; Woods, A.C.; Gautam, G.; Parigger, C.G. Hydrogen Balmer Series Measurements in Laser-Induced Air Plasma. J. Phys. Conf. Ser. 2014, 548, 012049. [Google Scholar] [CrossRef] [Green Version]
- Parigger, C.G.; Swafford, L.A.; Woods, A.C.; Surmick, D.M.; Witte, M.J. Asymmetric hydrogen beta electron density diagnostics of laser-induced plasma. Spectrochim. Acta Part B 2014, 99, 28–33. [Google Scholar] [CrossRef]
- Griem, H.R. Starkeffekt-Verbreiterung der Balmer-Linien bei großen Elektronendiehten. Z. Phys. 1954, 137, 280–294. [Google Scholar] [CrossRef]
- Bethe, H.; Salpeter, E. Quantum Mechanics of One and Two Electron Atoms; Springer: Berlin/Göttingen/Heidelberg, Germany, 1957. [Google Scholar]
- Gustafson, T. Über die Intensitäten der Stark-Effektkomponenten des Wasserstoffs in hohen elektrischen Feldern. Z. Phys. 1937, 106, 709–729. [Google Scholar] [CrossRef]
- Ryde, N. Über die Intensitätsverhältnisse der Stark-Effekt-Komponenten der Wasserstofflinien. Z. Phys. 1939, 111, 683–707. [Google Scholar] [CrossRef]
- Sobel’man, I.I. Introduction to the Theory of Atomic Spectra; Pergamon Press: Oxford, UK; New York, NY, USA; Toronto, ON, Canada, 1972. [Google Scholar]
- Griem, H.R. Spectral Line Broadening by Plasmas; Academic Press: New York, NY, USA, 1974. [Google Scholar]
- Griem, H.R. Principles of Plasma Spectroscopy; Cambridge University Press: Cambridge, UK, 1997. [Google Scholar]
- Sobel’man, I.I.; Vainshtein, L.A. Broadening of Spectral Lines due to Quadrupole Stark Effect. Doklady Phys. USSR 1953, 90, 757–760. (In Russian) [Google Scholar]
- Margenau, H.; Meyerott, R. Quantum Theory of Line Broadening by an Ionic Plasma. Astrophys. J. 1955, 121, 194–203. [Google Scholar] [CrossRef]
- Milliyanchuk, V.S. Ph.D. Thesis, L’vov State University, L’vov, USSR, 1956.
- Müller, K.G. Influence of Field Inhomogeneity on Ionic Line Broadening. J. Quant. Spectrosc. Radiat. Transf. 1965, 5, 403–423. [Google Scholar] [CrossRef]
- Chandrasekhar, S.; von Neumann, J. The Statistics of the Gravitational Field Arising from a Random Distribution of Stars I. The Speed of Fluctuations. Astrophys. J. 1942, 95, 489–531. [Google Scholar] [CrossRef]
- Gilles, D. Calcul de la Répartition Statistique du Microchamp électrique dans les Plasmas; Internal CEA Report; CEA: Paris, France, 1997. [Google Scholar]
- Chandrasekhar, S.; von Neumann, J. The Statistics of the Gravitational Field Arising from a Random Distribution of Stars II. The Speed of Fluctuations; Dynamical Friction; Spatial Correlations. Astrophys. J. 1943, 97, 1–27. [Google Scholar] [CrossRef]
- Kudrin, L.P.; Sholin, G.V. To asymmetry of spectral lines of hydrogen in plasma. Doklady Phys. USSR 1962, 147, 342–345. (In Russian) [Google Scholar]
- Sholin, G.V. On nature of asymmetry of hydrogen spectral line profile in dense plasma. Opt. Spectrosc. (USSR) 1969, 26, 275–282. [Google Scholar]
- Nguyen-Hoe; Drawin, H.W.; Herman, L. Asymetrie du Profil de la Raie Ly-α de l’Atome Hydrogene. J. Quant. Spectrosc. Radiat. Transf. 1964, 4, 847–856. [Google Scholar] [CrossRef]
- Griem, H.R. Theory of Wing Broadening of the Hydrogen Lyman-α Line by Electrons and Ions in a Plasma. Phys. Rev. 1965, 140, A1140–A1154. [Google Scholar] [CrossRef]
- Margenau, H.; Lewis, M. Structure of Spectral Lines from Plasmas. Rev. Mod. Phys. 1959, 31, 569–615. [Google Scholar] [CrossRef]
- Oks, E.A.; Sholin, G.V. Boundary determination for electron quasi-stationarity using the asymmetry of the wings of hydrogen spectral line profiles. Opt. Spectrosc. (USSR) 1972, 33, 217–218. [Google Scholar]
- Bacon, M.E. Calculation of the Lyman-α Asymmetry in a Dense, Partially-Ionized Hydrogen Plasma. J. Quant. Spectrosc. Radiat. Transf. 1973, 13, 1161–1170. [Google Scholar] [CrossRef]
- Bacon, M.E. The Asymmetry of Ly-α and Ly-β. J. Quant. Spectrosc. Radiat. Transf. 1977, 17, 501–512. [Google Scholar] [CrossRef]
- Hooper, C.F. Low-Frequency Component Electric Microfield Distributions in Plasmas. Phys. Rev. 1968, 165, 215–222. [Google Scholar] [CrossRef] [Green Version]
- Demura, A.V.; Sholin, G.V. Theory of Asymmetry of Stark Profiles of Hydrogen Lines in Dense Plasma. J. Quant. Spectrosc. Radiat. Transf. 1975, 15, 881–899. [Google Scholar] [CrossRef]
- Demura, A.V. Certain Problems in the Theory of Hydrogen Spectral Lines Broadening in Plasma. Ph.D. Thesis, I.V. Kurchatov Institute of Atomic Energy, Moscow, USSR, 1976; pp. 1–176. (In Russian). [Google Scholar]
- Mozer, B.; Baranger, M. Electric Field Distributions in an Ionized Gas. II. Phys. Rev. 1960, 118, 626–631. [Google Scholar] [CrossRef]
- Joyce, R.F.; Woltz, L.A.; Hooper, C.F. Asymmetry of Stark broadened Lyman lines from laser-produced plasma. Phys. Rev. A 1987, 35, 2228–2233. [Google Scholar] [CrossRef]
- Debye, P.; Hückel, E.; Zur Theorie der Elektrolyte, I. Gefrierpunktserniedrigung und verwandte Erscheinungen. Phys. Z. 1923, 24, 185–206. [Google Scholar]
- Smith, E.W.; Hooper, C.F. Relaxation Theory of Spectral Line Broadening in Plasmas. Phys. Rev. 1967, 157, 126–137. [Google Scholar] [CrossRef]
- Iglesias, C.A.; Hooper, C.F.; DeWitt, H.E. Some approximate microfield distributions for multiply ionized plasmas: A critique. Phys. Rev. A 1983, 28, 361–369. [Google Scholar] [CrossRef]
- Nguyen, H.; Koenig, M.; Benredjem, D.; Caby, M.; Coulaud, G. Atomic structure and polarization line shift in dense and hot plasmas. Phys. Rev. A 1986, 33, 1279–1290. [Google Scholar] [CrossRef]
- Nguyen, H.; D’Etat, B.; Grumberg, J.; Caby, M.; Leboucher, E.; Coulaud, G. Stark effect of hydrogen ions. Phys. Rev. A 1982, 25, 891–906. [Google Scholar] [CrossRef]
- O’Brien, J.T.; Hooper, C.F. Low-Frequency Electric Microfield Distribution in a Plasma Containing Multiply Charged Ions. Phys. Rev. A 1972, 5, 867–884. [Google Scholar] [CrossRef]
- Demura, A.V. Theory of Joint Distribution Functions of Microfield and Its Spatial and Time Derivatives in Plasma with Complex Ionization Composition; Preprint IAE-4632/6; I.V. Kurchatov Institute of Atomic Energy: Moscow, Russia, 1988; pp. 1–17. (In Russian) [Google Scholar]
- Demura, A.V. First Moments of Unified Distribution Function of Electric Ion Microfield and It’s Spatial and Time Derivatives in a Plasma with Weak Nonideality, Abstracts of Contributed Papers ICSLS-9th; Nicolas Copernicus University Press: Toruń, Poland, 1988; p. A39. [Google Scholar]
- Halenka, J. Asymmetry of hydrogen lines in plasmas utilizing a statistical description of ion-quadrupole interaction in Mozer-Baranger limit. Z. Phys. D 1990, 16, 1–8. [Google Scholar] [CrossRef]
- Gavrilenko, V.P.; Ispolatov, Y.O. Broadening of Spectral Lines of Helium-like Multiply Charged Ions in Dense Hot Plasmas. Optika i Spektroskopiya 1990, 68, 1000–1005. (In Russian) [Google Scholar]
- Vainshtein, L.A. Program “Atom” in Vainshtein, L.A., Shevelko, V.P. Atomic Physics for Hot Plasmas; IOP: Bristol, UK, 1993. [Google Scholar]
- Ecker, G.; Müller, K.G. Plasmapolarisation und Trägerwechselwirkung. Z. Phys. 1958, 153, 317–330. [Google Scholar] [CrossRef]
- Gavrilenko, V.P.; Gaisinsky, I.M.; Ispolatov, Y.O.; Oks, E.A. Specific Features of Stark Broadening of Helium-Like Multi-Charged Ion Spectral Lines. J. Phys. Colloq. 1988, 49, C1-83–C1-86. [Google Scholar] [CrossRef]
- Boyd, T.J.M.; Sanderson, J.J. The Physics of Plasmas; Cambridge University Press: New York, NY, USA, 2003. [Google Scholar]
- Demura, A.V.; Pleshakov, V.V.; Sholin, G.V. Atlas of Detailed Stark Profiles of Hydrogen Spectral Lines in Dense Plasma; Preprint IAE-5349/6; I.V. Kurchatov Institute of Atomic Energy: Moscow, Russia, 1991; pp. 1–97. (In Russian) [Google Scholar]
- Sholin, G.V.; Demura, A.V.; Lisitsa, V.S. Theory of Stark broadening of hydrogen lines in plasma. JETP 1973, 37, 1057–1065. Available online: http://www.jetp.ac.ru/cgi-bin/dn/e_037_06_1057.pdf (accessed on 1 Feburary 2018).
- Kilcrease, D.P.; Mancini, R.C.; Hooper, C.F. Ion broadening of dense-plasma spectral lines including field-gradient atomic physics and the ion quadrupole interaction. Phys. Rev. E 1993, 48, 3901–3913. [Google Scholar] [CrossRef]
- Günter, S.; Könies, A. Quantum Mechanical Electronic Width and Shift of Spectral Lines Over the Full Line Profile—Electronic Asymmetry. J. Quant. Spectrosc. Radiat. Transf. 1994, 52, 819–824. [Google Scholar] [CrossRef]
- Günter, S.; Könies, A. Asymmetry and Shifts of the Lα- and the Lyβ-Line of Hydrogen. J. Quant. Spectrosc. Radiat. Transf. 1994, 52, 825–830. [Google Scholar] [CrossRef]
- Kraeft, W.-D.; Kremp, D.; Ebeling, W.; Röpke, G. Qunantum Statistics of Charged Particles Systems; Plenum Press: New York, NY, USA, 1986. [Google Scholar]
- Demura, A.V.; Stehle, C. Effects of microfield nonuniformity in dense plasmas. In AIP Conference Proceedings; AIP: New York, NY, USA, 1995; Volume 328, pp. 177–208. [Google Scholar] [CrossRef]
- Demura, A.V.; Gilles, D.; Stehle, C. Comparative Study of Microfield Nonuniformity in Plasmas. J. Quant. Spectrosc. Radiat. Transf. 1995, 54, 123–136. [Google Scholar] [CrossRef]
- Iglesias, C.A.; DeWitt, H.E.; Lebowitz, J.L.; MacGowan, D.; Hubbard, W.B. Low-frequency electric microfield distributions in plasmas. Phys. Rev. A 1985, 31, 1698–1702. [Google Scholar] [CrossRef]
- Rogers, F.J. Integral-equation method for partially ionized plasmas. Phys. Rev. A 1984, 29, 868–879. [Google Scholar] [CrossRef]
- Günter, S.; Könies, A. Shifts and asymmetry parameters of hydrogen Balmer lines in dense plasmas. Phys. Rev. E 1997, 55, 907–911. [Google Scholar] [CrossRef]
- Brissaud, A.; Goldbach, C.; Leorat, L.; Mazure, A. Application of the model microfield method to Stark profiles of overlapping and isolated neutral lines. J. Phys. B 1976, 9, 1147–1162. [Google Scholar] [CrossRef]
- Seidel, J. Hydrogen Stark Broadening by Model Electronic Microfields. Z. Naturforschung A 1977, 32, 1195–1206. [Google Scholar] [CrossRef]
- Stobbe, M.; Könies, A.; Günter, S.; Halenka, J. Shift and Width of HeII Lines. J. Quant. Spectrosc. Radiat. Transf. 1998, 60, 531–542. [Google Scholar] [CrossRef]
- Kilcrease, D.P.; Murillo, M.S.; Collins, L.A. Theoretical and Molecular Dynamics Studies of Dense Plasma Microfield Nonuniformity. J. Quant. Spectrosc. Radiat. Transf. 1997, 58, 677–686. [Google Scholar] [CrossRef]
- Murillo, M.S.; Kilcrease, D.P.; Collins, L.A. Dense plasma microfield nonuniformity. Phys. Rev. E 1997, 55, 6289–6292. [Google Scholar] [CrossRef]
- Kilcrease, D.P.; Murillo, M.S. The ion electric microfield gradient joint probability distribution function for dense plasmas. J. Quant. Spectrosc. Radiat. Transf. 2000, 65, 343–352. [Google Scholar] [CrossRef]
- Chandrasekhar, S. Stochastic Problems in Physics and Astronomy. Rev. Mod. Phys. 1943, 15, 1–89. [Google Scholar] [CrossRef]
- Sörge, S.; Günter, S. Simulation of shifted and asymmetric hydrogen line profiles. Eur. Phys. J. D 2000, 12, 369–375. [Google Scholar] [CrossRef]
- Stehle, C.; Gilles, D.; Demura, A.V. Asymmetry of Stark profiles. The microfield point of view. Eur. Phys. J. D 2000, 12, 355–367. [Google Scholar] [CrossRef]
- Stehle, C. Hutcheon, Extensive tabulations of Stark broadened hydrogen line profiles. Astron. Astrophys. Suppl. Ser. 1999, 140, 93–97. [Google Scholar] [CrossRef]
- Demura, A.V.; Helbig, V.; Nikolić, D. Asymmetry and Shifts Interdependence in Stark Profiles. In AIP Conference Proceedings; AIP: Melville, New York, NY, USA, 2002; Volume 645, pp. 318–324. [Google Scholar] [CrossRef]
- Olchawa, W. Computer simulations of hydrogen spectral line shapes in dense plasmas. J. Quant. Spectrosc. Radiat. Transf. 2002, 74, 417–429. [Google Scholar] [CrossRef]
- Gigosos, M.A.; González, M.Á. Study on the asymmetry of the Balmer lines. In AIP Conference Proceedings; AIP: New York, NY, USA, 2006; Volume 876, pp. 294–300. [Google Scholar] [CrossRef]
- Halenka, J.; Olchawa, W. Inhomogeneity tensors of ion microfield in Debye plasma at neutral emitter. Eur. Phys. J. D 2007, 42, 425–433. [Google Scholar] [CrossRef]
- Mayer, J.E.; Mayer, M.G. Statistical Mechanics; Wiley: New York, NY, USA, 1940. [Google Scholar]
- Halenka, J. Octupole inhomogeneity tensor of ion microfield in Debye plasma at ionized emitter. Eur. Phys. J. D 2009, 53, 337–342. [Google Scholar] [CrossRef]
- Demura, A.V.; Demchenko, G.V.; Nikolić, D. Multiparametric dependence of hydrogen Stark profiles asymmetry. Eur. Phys. J. D 2008, 46, 111–127. [Google Scholar] [CrossRef]
- Sorge, S. Private communication, 2001.
- Boebel, T. Master’s Thesis, Kiel University, Kiel, Germany, 1995.
- Omar, B.; Sorge, S. Private communication, 2008.
- Gomez, T.; Nagayama, T.; Kilcrease, D.P.; Montgomery, M.H.; Winget, D.E. Effect of higher-order multipole moments on the Stark line shape. Phys. Rev. A 2016, 94, 022501. [Google Scholar] [CrossRef]
- Stambulchik, E.; Demura, A.V. Dynamic Stark broadening of Lyman-α. J. Phys. B 2016, 49, 035701. [Google Scholar] [CrossRef]
- Baranger, M. Simplified Quantum-Mechanical Theory of Pressure Broadening. Phys. Rev. 1958, 111, 481–493. [Google Scholar] [CrossRef]
- Baranger, M. Problem of Overlapping Lines in the Theory of Pressure Broadening. Phys. Rev. 1958, 111, 494–504. [Google Scholar] [CrossRef]
- Baranger, M. General Impact Theory of Pressure Broadening. Phys. Rev. 1959, 112, 855–865. [Google Scholar] [CrossRef]
- Demura, A.V.; Lisitsa, V.S. Similarity Law for Spectral Line Shape and Cross Section of Inelastic Transition. J. Quant. Spectrosc. Radiat. Transf. 1974, 14, 273–286. [Google Scholar] [CrossRef]
- Sobel’man, I.I.; Vainstein, L.A.; Yukov, E.A. Excitation of Atoms and Broadening of Spectral Lines; Springer: New York, NY, USA, 1995. [Google Scholar]
- Breene, R.G. The Shift and Shape of Spectral Lines; Pergamon Press: New York, NY, USA, 1961. [Google Scholar]
- Kogan, V.I. Broadening of Spectral Lines in Hot Plasma. In Plasma Physics and the Problem of Controlled Thermonuclear Reactions; Leontovich, M.A., Ed.; Academy of Science USSR Press: Moscow, Russia, 1958; Volume IV, pp. 259–304. (In Russian) [Google Scholar]
- Kogan, V.I. Broadening of Spectral Lines in Hot Plasma. In Plasma Physics and the Problem of Controlled Thermonuclear Reactions; Leontovich, M.A., Ed.; Pergamon Press: London, UK, 1960; Volume IV, p. 305. [Google Scholar]
- Berg, H.F.; Ali, A.W.; Lincke, R.; Griem, H.R. Measurement of Stark Profiles of Neutral and Ionized Helium and Hydrogen Lines from Shock-Heated Plasmas in Electromagnetic T Tubes. Phys. Rev. 1962, 125, 199–206. [Google Scholar] [CrossRef]
- Griem, H.R. Plasma Spectroscopy; McGraw-Hill: New York, NY, USA, 1964. [Google Scholar]
- Volonte, S. Improved quantum mechanical treatment of plasma polarization shift of ion lines. J. Phys. B Atom. Mol. Phys. 1975, 8, 1170–1176. [Google Scholar] [CrossRef]
- Volonte, S. Polarisation shift effect in high-density plasmas. J. Phys. D Appl. Phys. 1978, 11, 1615–1638. [Google Scholar] [CrossRef]
- Yamamoto, K.; Narumi, H. Quantum Scattering Theory of the Complex Level Shift. Prog. Theor. Phys. 1980, 64, 436–447. [Google Scholar] [CrossRef]
- Skupsky, S. X-ray line shift as a high-density diagnostic for laser-imploded plasmas. Phys. Rev. A 1980, 21, 1316–1326. [Google Scholar] [CrossRef]
- Griem, H.R. Shifts of ionized-helium lines from electron collisions in dense plasmas. Phys. Rev. A 1983, 27, 2566–2576. [Google Scholar] [CrossRef]
- Griem, H.R. Shifts of hydrogen lines from electron collisions in dense plasmas. Phys. Rev. A 1983, 28, 1596–1601. [Google Scholar] [CrossRef]
- Iglesias, C.A. Shifts of spectral lines in a plasma. Phys. Rev. A 1984, 29, 1366–1370. [Google Scholar] [CrossRef]
- Boercker, D.B.; Iglesias, C.A. Static and dynamic shifts of spectral lines. Phys. Rev. A 1984, 30, 2771–2774. [Google Scholar] [CrossRef]
- Dufty, J.W. Charge-Density Fluctuations in Spectral Line Broadening. Phys. Rev. 1969, 187, 305–313. [Google Scholar] [CrossRef]
- Dufty, J.W.; Beorcker, D.A. Correlations in the Quantum Theory of Plasma Line Broadening. J. Quant. Spectrosc. Radiat. Transf. 1976, 16, 1065–1077. [Google Scholar] [CrossRef]
- Hussey, T.W.; Dufty, J.W.; Hooper, C.F. Dynamic screening effects in plasma line broadening. Phys. Rev. A 1977, 16, 1248–1253. [Google Scholar] [CrossRef]
- Iglesias, C.A. Correlations in the Plasma Broadening of Ion Spectral Lines. J. Quant. Spectrosc. Radiat. Transf. 1983, 30, 55–60. [Google Scholar] [CrossRef]
- Iglesias, C.A.; Boercker, D.B.; Lee, R.W. Comment on “Shifts of hydrogen lines from electron collisions in dense plasmas”. Phys. Rev. A 1985, 32, 1906–1907. [Google Scholar] [CrossRef]
- Griem, H.R. Reply to “Comment on ‘Shifts of hydrogen lines from electron collisions in dense plasmas”’. Phys. Rev. A 1985, 32, 1908. [Google Scholar] [CrossRef]
- Cooper, J.; Kelleher, D.E.; Lee, R.W. On the “plasma polarization shift”. In Radiative Properties of Hot Dense Matter; Lee, R.W., Ed.; World Scientific: Singapore, 1985; pp. 350–384. [Google Scholar]
- Hitzschke, L.; Röpke, G. Relationship between kinetic theory and Green’s-function approach with respect to electron shift and the broadening of spectral line. Phys. Rev. A 1988, 37, 4991–4994. [Google Scholar] [CrossRef]
- Griem, H.R. Shifts of hydrogen and ionized-helium lines from Δn = 0 interactions with electrons in dense plasmas. Phys. Rev. A 1988, 38, 2943–2952. [Google Scholar] [CrossRef]
- Blaha, M.; Davis, J. Electron collision shift of the Lyman-a line of ionized helium. Phys. Rev. A 1990, 41, 6928–6934. [Google Scholar] [CrossRef] [PubMed]
- Griem, H.R.; Iglesias, C.A.; Boercker, D.B. Comparison of second order impact shifts. Phys. Rev. A 1991, 44, 5318–5319. [Google Scholar] [CrossRef] [PubMed]
- Albritton, J.R.; Liberman, D.A. On the Distribution of Bound Levels of Ions in Dense Plasmas and Plasma Polarization Shift. J. Quant. Spectrosc. Radiat. Transf. 1994, 51, 9–18. [Google Scholar] [CrossRef]
- Massacrier, G. Self-consistent Schemes for the Calculation of Ionic Structures and Populations in Dense Plasmas. J. Quant. Spectrosc. Radiat. Transf. 1994, 51, 221–228. [Google Scholar] [CrossRef]
- Wilson, B.G.; Liberman, D.A. Insights on the Plasma Polarization Shift: A Comparison of Local Density Approximation. J. Quant. Spectrosc. Radiat. Transf. 1995, 54, 427–435. [Google Scholar] [CrossRef]
- Iglesias, C.A. Comment on “Distribution of Bound Levels of Ions in Dense Plasmas: The Plasma Polarization Shift”. J. Quant. Spectrosc. Radiat. Transf. 1995, 54, 181–183. [Google Scholar] [CrossRef]
- Saltzmann, D. Atomic Physics in Hot Plasmas; Oxford University Press: New York, NY, USA, 1998. [Google Scholar]
- Hooper, C.F.; Junkel, G.C.; Gunderson, M.A.; Haynes, D.A.; Mancini, R.C.; Bradley, D.; Delettrez, J.; Jaanimagi, P. Plasma Induced Line Shifts: New Light to an Old Controversy, In Strongly Coupled Coulomb Systems; Kalman, G., Rommel, J.M., Blagoev, K., Eds.; Plenum Press: New York, NY, USA, 1998; pp. 385–389. [Google Scholar]
- Alexiou, S. On the pure dipole shift for hydrogen lines in a plasma. J. Quant. Spectrosc. Radiat. Transf. 2003, 81, 13–17. [Google Scholar] [CrossRef]
- Alexiou, S. Problems with the use of line shifts in plasmas. J. Quant. Spectrosc. Radiat. Transf. 2003, 81, 461–471. [Google Scholar] [CrossRef]
- Halenka, J. Comment on “Highly nonlinear, sign-varying shift of hydrogen spectral lines in dense plasmas”. Phys. Rev. A 2004, 69, 028401. [Google Scholar] [CrossRef] [PubMed]
- Alexiou, S.; Griem, H.R.; Halenka, J.; Olchawa, W. A critical analysis of the advanced generalized theory: Applicability and applications. J. Quant. Spectrosc. Radiat. Transf. 2006, 99, 238–251. [Google Scholar] [CrossRef]
- Gunderson, M.A.; Haynes, D.A.; Kilcrease, D.P. Using semiclassical models for electron broadening and line shift calculations of Δn = 0 and Δn ≠ 0 dipole transitions. J. Quant. Spectrosc. Radiat. Transf. 2006, 99, 255–264. [Google Scholar] [CrossRef]
- Demura, A.V. Physical Models of Plasma Microfield. Int. J. Spectrosc. 2010, 2010, 671073. [Google Scholar] [CrossRef]
- Gigosos, M.A. Stark broadening models for plasma diagnostics. J. Phys. D 2014, 47, 343001. [Google Scholar] [CrossRef]
- Belkhiri, M.; Fontes, C.J.; Poirie, M. Influence of the plasma environment on atomic structure using an ion-sphere model. Phys. Rev. A 2015, 92, 032501. [Google Scholar] [CrossRef]
- Stollberg, C.; Stambulchik, E.; Duan, B.; Gigosos, M.A.; Herrero, D.G.; Iglesias, C.A.; Mossé, C. Revisiting the Stark Width and Shift of He II Pα. Atoms 2018, 6, 23. [Google Scholar] [CrossRef]
1. | Translation of “Les effets, ce sont les phénomènes qui nécessitent toujours, pour se produire, une certaine dissymétrie. Si cette dissymétrie n’existe pas, le phénomène est impossible”, 8–10th lines from section VII—Curie P., Sur la symétrie dans les phénomènes physiques, symétrie d’un champ électrique et d’un champ magnétique, J. Phys. Theor. Appl. 3, 393 (1894). |
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Demura, A.V. Beyond the Linear Stark Effect: A Retrospective. Atoms 2018, 6, 33. https://doi.org/10.3390/atoms6020033
Demura AV. Beyond the Linear Stark Effect: A Retrospective. Atoms. 2018; 6(2):33. https://doi.org/10.3390/atoms6020033
Chicago/Turabian StyleDemura, Alexander V. 2018. "Beyond the Linear Stark Effect: A Retrospective" Atoms 6, no. 2: 33. https://doi.org/10.3390/atoms6020033
APA StyleDemura, A. V. (2018). Beyond the Linear Stark Effect: A Retrospective. Atoms, 6(2), 33. https://doi.org/10.3390/atoms6020033