Stochastic Electrodynamics: The Closest Classical Approximation to Quantum Theory
Abstract
:1. Introduction
1.1. Two Regimes: Classical and Quantum
1.2. Boundary Based Upon Planck’s Constant
1.3. Stochastic Electrodynamics Reopens the Boundary Question
2. Foundations of Stochastic Electrodynamics
2.1. Theoretical Assumptions
2.2. Inference from Measurements on the Casimir Effect
2.3. Change in the Classical Outlook Compared with Current Classical Physics
3. Successes of Stochastic Electrodynamics
3.1. Charged Harmonic Oscillator in Zero-Point Radiation
3.2. Harmonic Oscillators Used to Describe Natural Phenomena
3.3. Absence of Atomic Collapse
3.4. Importance of Relativity
3.5. Planck Spectrum of Blackbody Radiation
4. Phenomena Suggestively Connected to Stochastic Electrodynamics
4.1. Particle Diffraction
4.2. Excited States and Spectral Lines
4.3. Photon Behavior
4.4. Superfluid Behavior
5. Connections Between Classical and Quantum Theories
Funding
Acknowledgments
Conflicts of Interest
References
- Eisberg, R.; Resnick, R. Quantum Physics of Atoms, Molecules, Solids, Nuclei, and Particles, 2nd ed.; Wiley: New York, NY, USA, 1985. [Google Scholar]
- Aspelmeyer, M.; Calarco, T.; Eisert, J.; Schmidt-Kaler, F. (Eds.) Handbook of Quantum Information; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Marshall, T.W. Random electrodynamics. Proc. R. Soc. 1963, A276, 475–491. [Google Scholar]
- Marshall, T.W. Stochastic Electrodynamics. Proc. Camb. Philos. Soc. 1965, 61, 537–546. [Google Scholar] [CrossRef]
- Boyer, T.H. Derivation of the Blackbody Radiation Spectrum without Quantum Assumptions. Phys. Rev. 1969, 182, 1374–1383. [Google Scholar] [CrossRef]
- Boyer, T.H. Random electrodynamics: The theory of classical electrodynamics with classical electormagnetic zero-point radiation. Phys. Rev. D 1975, 11, 790–808. [Google Scholar] [CrossRef]
- de la Pena, L.; Cetto, A.M. The Quantum Dice—An Introduction to Stochastic Electrodynamics; Kluwer Academic: Dordrecht, The Netherlands, 1996. [Google Scholar]
- de la Pena, L.; Cetto, A.M.; Hernandez, A. The Emerging Quantum: The Physics Behind Quantum Mechanics; Springer: New York, NY, USA, 2015. [Google Scholar]
- Lamoreaux, S.K. Resource letter CF-1: Casimir Force. Am. J. Phys. 1999, 67, 850–861. [Google Scholar] [CrossRef]
- Lorentz, H.A. The Theory of Electrons; Dover: New York, NY, USA, 1952. [Google Scholar]
- Planck, M. The Theory of Heat Radiation; Dover: New York, NY, USA, 1959. [Google Scholar]
- Huang, W.; Batelaan, H. Dynamics Underlying the Gaussian Distribution of the Classical Harmonic Oscillator in Zero-Point Radiation. J. Comput. Methods Phys. 2013, 2013, 308538. [Google Scholar] [CrossRef]
- Boyer, T.H. General connection between random electrodynamics and quantum electrodynamics for free electromagnetic fields and for dipole oscillator systems. Phys. Rev. D 1975, 11, 809–830. [Google Scholar] [CrossRef]
- Cole, D.C.; Zou, Y. Quantum Mechanical Ground State of Hydrogen Obtained from Classical Electrodynamics. Phys. Lett. A 2003, 317, 14–20. [Google Scholar] [CrossRef]
- Nieuwenhuizen, T.M.; Liska, M.T.P. Simulation of the hydrogen ground state in stochastic electrodynamics-2: Inclusion of relativistic corrections. Phys. Scr. 2015, 165, 014006. [Google Scholar] [CrossRef]
- Nieuwenhuizen, T.M.; Liska, M.T.P. Simulation of the hydrogen ground state in stochastic electrodynamics. Found. Phys. 2015, 45, 1190–1202. [Google Scholar] [CrossRef]
- Claverie, P.; Soto, F. Nonrecurrence of the stochastic process for the hydrogen atom problem in stochastic electrodynamics. J. Math. Phys. 1982, 23, 753–759. [Google Scholar] [CrossRef]
- Boyer, T.H. Unfamiliar trajectories for a relativistic particle in a Kepler or Coulomb potential. Am. J. Phys. 2004, 75, 992–997. [Google Scholar] [CrossRef]
- Boyer, T.H. Blackbody radiation in classical physics: A historical perspective. Am. J. Phys. 2018, 86, 495–509. [Google Scholar] [CrossRef] [Green Version]
- Boyer, T.H. Equilibrium for classical zero-point radiation: Detailed balance under scattering by a classical charged harmonic oscillator. J. Phys. Commun. 2018, 2, 105014. [Google Scholar] [CrossRef]
- Boyer, T.H. The blackbody radiation spectrum follows from zero-point radiation and the structure of relativistic spacetime in classical physics. Found. Phys. 2012, 42, 595–614. [Google Scholar] [CrossRef]
- Huang, W.C.; Batelaan, H. Discrete Excitation Spectrum of a Classical Harmonic Oscillator in Zero-Point Radiation. Found. Phys. 2015, 45, 333–353. [Google Scholar] [CrossRef] [Green Version]
- Cole, D.C.; Zou, Y. Analysis of Orbital Decay Time for the Classical Hydrogen Atom Interacting with Circularly Polarized Electromagnetic Radiation. Phys. Rev. E 2004, 69, 016601. [Google Scholar] [CrossRef] [PubMed]
- Cole, D.C.; Zou, Y. Subharmonic resonance behavior for the classical hydrogen atomic system. J. Sci. Comput. 2009, 39, 1–27. [Google Scholar] [CrossRef]
- Cole, D.C. Subharmonic resonance and critical eccentricity for the classical hyrogen atomic system. Eur. Phys. J. D 2018, 72, 200. [Google Scholar] [CrossRef]
- Boyer, T.H. Interference between source-free radiation and radiation from sources: Particle-like behavior for classical radiation. Am. J. Phys. 2017, 85, 670–675. [Google Scholar] [CrossRef] [Green Version]
- Boyer, T.H. Brownian motion due to random classical radiation: Superfluid behavior in the presence of classical zero-point radiation. (Submitted for publication).
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boyer, T.H. Stochastic Electrodynamics: The Closest Classical Approximation to Quantum Theory. Atoms 2019, 7, 29. https://doi.org/10.3390/atoms7010029
Boyer TH. Stochastic Electrodynamics: The Closest Classical Approximation to Quantum Theory. Atoms. 2019; 7(1):29. https://doi.org/10.3390/atoms7010029
Chicago/Turabian StyleBoyer, Timothy H. 2019. "Stochastic Electrodynamics: The Closest Classical Approximation to Quantum Theory" Atoms 7, no. 1: 29. https://doi.org/10.3390/atoms7010029
APA StyleBoyer, T. H. (2019). Stochastic Electrodynamics: The Closest Classical Approximation to Quantum Theory. Atoms, 7(1), 29. https://doi.org/10.3390/atoms7010029