Shannon, Rényi, Tsallis Entropies and Onicescu Information Energy for Low-Lying Singly Excited States of Helium
Abstract
:1. Introduction
2. Theoretical Methods
2.1. Determination of Ground and Singly Excited States of Helium via Hylleraas Wave Functions
2.2. Definitions for Electron Density
2.3. Information-Theoretic Quantities in the Position Space
3. Results and Discussion
3.1. Accuracy of Presented Energy and Information-Theoretic Quantities
3.1.1. Energy E
3.1.2. Shannon Entropy S, Rényi Entropy , Tsallis Entropy and Onicescu Information Energy
3.2. Comparison of Shannon Entropy S of the Ground and Four Singly Excited States
3.3. Comparison of Rényi Entropy , Tsallis Entropy and Onicescu Information Energy of the Ground and Four Singly Excited States
3.4. Singlet–Triplet Reversal of Rényi entropy , Tsallis entropy and Onicescu Information Energy
4. Conclusions
Supplementary Materials
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Chalvet, O.; Daudel, R.; Diner, S.; Malrieu, J.P. (Eds.) Localization and Delocalization in Quantum Chemistry Volume I Atoms and Molecules in the Ground State; Springer: Dordrecht, The Netherlands, 1975; Volume 1. [Google Scholar] [CrossRef]
- Chalvet, O.; Daudel, R.; Diner, S.; Malrieu, J.P. (Eds.) Localization and Delocalization in Quantum Chemistry Volume II Ionized and Excited States; Springer: Dordrecht, The Netherlands, 1976; Volume 2. [Google Scholar] [CrossRef]
- Shannon, C.E. A Mathematical Theory of Communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef] [Green Version]
- Aslangul, C.; Constanciel, R.; Daudel, R.; Kottis, P. Aspects of the Localizability of Electrons in Atoms and Molecules: Loge Theory and Related Methods. Adv. Quantum Chem. 1972, 6, 93–141. [Google Scholar] [CrossRef]
- Sen, K.D. Characteristic features of Shannon information entropy of confined atoms. J. Chem. Phys. 2005, 123, 074110. [Google Scholar] [CrossRef] [PubMed]
- Corzo, H.H.; Laguna, H.G.; Sagar, R.P. Localization-delocalization phenomena in a cyclic box. J. Math. Chem. 2012, 50, 233–248. [Google Scholar] [CrossRef]
- Cedillo, A. Comment on “Localization-delocalization phenomena in a cyclic box” by H. H. Corzo, H. G. Laguna, and R. P. Sagar. J. Math. Chem. 2017, 55, 1889–1892. [Google Scholar] [CrossRef]
- Corzo, H.H.; Castaño, E.; Laguna, H.G.; Sagar, R.P. Measuring localization-delocalization phenomena in a quantum corral. J. Math. Chem. 2013, 51, 179–193. [Google Scholar] [CrossRef]
- Laguna, H.G.; Sagar, R.P. Quantum uncertainties of the confined Harmonic Oscillator in position, momentum and phase-space. Ann. Phys. 2014, 526, 555–566. [Google Scholar] [CrossRef]
- Restrepo Cuartas, J.P.; Sanz-Vicario, J.L. Information and entanglement measures applied to the analysis of complexity in doubly excited states of helium. Phys. Rev. A 2015, 91, 052301. [Google Scholar] [CrossRef]
- Ou, J.H.; Ho, Y.K. Shannon Information Entropy in Position Space for the Ground and Singly Excited States of Helium with Finite Confinements. Atoms 2017, 5, 15. [Google Scholar] [CrossRef]
- Ou, J.H.; Ho, Y.K. Shannon information entropy in position space for doubly excited states of helium with finite confinements. Chem. Phys. Lett. 2017, 689, 116–120. [Google Scholar] [CrossRef]
- Rodriguez-Bautista, M.; Vargas, R.; Aquino, N.; Garza, J. Electron-density delocalization in many-electron atoms confined by penetrable walls: A Hartree-Fock study. Int. J. Quantum Chem. 2018, 118, e25571. [Google Scholar] [CrossRef]
- Majumdar, S.; Mukherjee, N.; Roy, A.K. Information entropy and complexity measure in generalized Kratzer potential. Chem. Phys. Lett. 2019, 716, 257–264. [Google Scholar] [CrossRef]
- Rényi, A. On measures of entropy and information. In Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability; Neyman, J., Ed.; University of California Press: Berkeley, CA, USA, 1961; Volume 1, pp. 547–561. [Google Scholar]
- Renyi, A. Probability Theory; North-Holland Publishing Company: Amsterdam, The Netherlands, 1970. [Google Scholar]
- Beadle, E.; Schroeder, J.; Moran, B.; Suvorova, S. An overview of Renyi Entropy and some potential applications. In Proceedings of the 2008 42nd Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, USA, 26–29 October 2008; pp. 1698–1704. [Google Scholar] [CrossRef]
- Tsallis, C. Possible generalization of Boltzmann-Gibbs statistics. J. Stat. Phys. 1988, 52, 479–487. [Google Scholar] [CrossRef]
- Tsallis, C. Introduction to Nonextensive Statistical Mechanics; Springer: New York, NY, USA, 2009. [Google Scholar]
- Tsallis, C. The Nonadditive Entropy Sq and Its Applications in Physics and Elsewhere: Some Remarks. Entropy 2011, 13, 1765–1804. [Google Scholar] [CrossRef]
- Tsallis, C. On the foundations of statistical mechanics. Eur. Phys. J. Spec. Top. 2017, 226, 1433–1443. [Google Scholar] [CrossRef]
- Onicescu, O. Energie Informationnelle. Comptes Rendus Hebd. Seances L’Academie Sci. Ser. A 1966, 263, 841–842. [Google Scholar]
- Iosifescu, M. Octav Onicescu. In Statisticians of the Centuries; Heyde, C.C., Seneta, E., Crépel, P., Fienberg, S.E., Gani, J., Eds.; Springer: New York, NY, USA, 2001; pp. 415–419. [Google Scholar] [CrossRef]
- Angulo, J.C.; Romera, E.; Dehesa, J.S. Inverse atomic densities and inequalities among density functionals. J. Math. Phys. 2000, 41, 7906–7917. [Google Scholar] [CrossRef] [Green Version]
- Romera, E.; Angulo, J.C.; Dehesa, J.S. The Hausdorff entropic moment problem. J. Math. Phys. 2001, 42, 2309. [Google Scholar] [CrossRef] [Green Version]
- Romera, E.; Angulo, J.C.; Dehesa, J.S. Erratum: The Hausdorff entropic moment problem [J. Math. Phys. 42, 2309 (2001)]. J. Math. Phys. 2003, 44, 2354. [Google Scholar] [CrossRef]
- Hô, M.; Sagar, R.P.; Pérez-Jordá, J.M.; Smith, V.H.; Esquivel, R.O. A numerical study of molecular information entropies. Chem. Phys. Lett. 1994, 219, 15–20. [Google Scholar] [CrossRef]
- Hô, M.; Smith, V.H.; Weaver, D.F.; Gatti, C.; Sagar, R.P.; Esquivel, R.O. Molecular similarity based on information entropies and distances. J. Chem. Phys. 1998, 108, 5469–5475. [Google Scholar] [CrossRef]
- Fazal, S.P.; Sen, K.D.; Gutierrez, G.; Fuentealba, P. Shannon entropy of 1-normalized electron density. Indian J. Chem. Sect. A 2000, 39, 48–49. [Google Scholar]
- Massen, S.E. Application of information entropy to nuclei. Phys. Rev. C 2003, 67, 014314. [Google Scholar] [CrossRef] [Green Version]
- Guevara, N.L.; Sagar, R.P.; Esquivel, R.O. Shannon-information entropy sum as a correlation measure in atomic systems. Phys. Rev. A 2003, 67, 012507. [Google Scholar] [CrossRef]
- Sen, K.D.; De Proft, F.; Borgoo, A.; Geerlings, P. N-derivative of Shannon entropy of shape function for atoms. Chem. Phys. Lett. 2005, 410, 70–76. [Google Scholar] [CrossRef]
- Guevara, N.L.; Sagar, R.P.; Esquivel, R.O. Local correlation measures in atomic systems. J. Chem. Phys. 2005, 122, 084101. [Google Scholar] [CrossRef]
- Moustakidis, C.; Chatzisavvas, K.; Panos, C. Theoretical Quantum-information Properties of Nuclei and Trapped Bose Gases. Int. J. Mod. Phys. E 2005, 14, 1087–1104. [Google Scholar] [CrossRef]
- Chatzisavvas, K.C.; Moustakidis, C.C.; Panos, C.P. Information entropy, information distances, and complexity in atoms. J. Chem. Phys. 2005, 123, 174111. [Google Scholar] [CrossRef]
- Gregori-Puigjané, E.; Mestres, J. SHED: Shannon Entropy Descriptors from Topological Feature Distributions. J. Chem. Inf. Model. 2006, 46, 1615–1622. [Google Scholar] [CrossRef]
- Mohajeri, A.; Dasmeh, P. Evaluating the Nature of Chemical Bonds Based on Probabilistic Models. Int. J. Mod. Phys. C 2007, 18, 1795. [Google Scholar] [CrossRef]
- Romera, E.; Nagy, Á. Rényi information of atoms. Phys. Lett. A 2008, 372, 4918–4922. [Google Scholar] [CrossRef]
- Mohajeri, A.; Alipour, M. Information Energy As an Electron Correlation Measure in Atomic and Molecular Systems. Int. J. Quantum Inf. 2009, 07, 801–809. [Google Scholar] [CrossRef]
- Dehesa, J.S.; López-Rosa, S.; Martínez-Finkelshtein, A.; Yáñez, R.J. Information theory of D-dimensional hydrogenic systems: Application to circular and Rydberg states. Int. J. Quantum Chem. 2009, 110, 1529–1548. [Google Scholar] [CrossRef]
- Nagy, Á.; Romera, E. Relative Rényi entropy for atoms. Int. J. Quantum Chem. 2009, 109, 2490–2494. [Google Scholar] [CrossRef]
- Nagy, Á.; Romera, E. Maximum Rényi entropy principle and the generalized Thomas-Fermi model. Phys. Lett. A 2009, 373, 844–846. [Google Scholar] [CrossRef]
- Antolín, J.; Angulo, J.C. Complexity analysis of ionization processes and isoelectronic series. Int. J. Quantum Chem. 2009, 109, 586–593. [Google Scholar] [CrossRef]
- Antolín, J.; López-Rosa, S.; Angulo, J. Renyi complexities and information planes: Atomic structure in conjugated spaces. Chem. Phys. Lett. 2009, 474, 233–237. [Google Scholar] [CrossRef]
- Delgado-Soler, L.; Toral, R.; Tomás, M.S.; Rubio-Martinez, J. RED: A set of molecular descriptors based on Rényi entropy. J. Chem. Inf. Model. 2009, 49, 2457–2468. [Google Scholar] [CrossRef] [PubMed]
- López-Rosa, S.; Toranzo, I.V.; Sánchez-Moreno, P.; Dehesa, J.S. Entropy and complexity analysis of hydrogenic Rydberg atoms. J. Math. Phys. 2013, 54, 052109. [Google Scholar] [CrossRef] [Green Version]
- Nagy, Á. Shannon entropy density as a descriptor of Coulomb systems. Chem. Phys. Lett. 2013, 556, 355–358. [Google Scholar] [CrossRef] [Green Version]
- Molina-Espíritu, M.; Esquivel, R.O.; Kohout, M.; Angulo, J.C.; Dobado, J.A.; Dehesa, J.S.; LópezRosa, S.; Soriano-Correa, C. Insight into the informational-structure behavior of the Diels-Alder reaction of cyclopentadiene and maleic anhydride. J. Mol. Model. 2014, 20, 2631. [Google Scholar] [CrossRef] [PubMed]
- Welearegay, M.A.; Balawender, R.; Holas, A. Information and complexity measures in molecular reactivity studies. Phys. Chem. Chem. Phys. 2014, 16, 14928–14946. [Google Scholar] [CrossRef] [PubMed]
- Nagy, Á.; Romera, E. Relative Rényi entropy and fidelity susceptibility. Europhys. Lett. 2015, 109, 60002. [Google Scholar] [CrossRef]
- Esquivel, R.O.; Molina-Espíritu, M.; López-Rosa, S.; Soriano-Correa, C.; Barrientos-Salcedo, C.; Kohout, M.; Dehesa, J.S. Predominant Information Quality Scheme for the Essential Amino Acids: An Information-Theoretical Analysis. ChemPhysChem 2015, 16, 2571–2581. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.H.; Ho, Y.K. Shannon information entropy in position space for two-electron atomic systems. Chem. Phys. Lett. 2015, 633, 261–264. [Google Scholar] [CrossRef] [Green Version]
- Lin, C.H.; Ho, Y.K. Quantum Entanglement and Shannon Information Entropy for the Doubly Excited Resonance State in Positronium Negative Ion. Atoms 2015, 3, 422–432. [Google Scholar] [CrossRef] [Green Version]
- Peng, H.T.; Ho, Y.K. Statistical Correlations of the N-particle Moshinsky Model. Entropy 2015, 17, 1882–1895. [Google Scholar] [CrossRef] [Green Version]
- Rong, C.; Lu, T.; Ayers, P.W.; Chattaraj, P.K.; Liu, S. Scaling properties of information-theoretic quantities in density functional reactivity theory. Phys. Chem. Chem. Phys. 2015, 17, 4977–4988. [Google Scholar] [CrossRef]
- Rong, C.; Lu, T.; Ayers, P.W.; Chattaraj, P.K.; Liu, S. Correction: Scaling properties of information-theoretic quantities in density functional reactivity theory. Phys. Chem. Chem. Phys. 2015, 17, 11110–11111. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.B.; Rong, C.Y.; Wu, Z.M.; Lu, T. Rényi entropy, Tsallis entropy and Onicescu information energy in density functional reactivity theory. Acta Phys.-Chim. Sin. 2015, 31, 2057–2063. [Google Scholar] [CrossRef]
- Esquivel, R.O.; López-Rosa, S.; Molina-Espíritu, M.; Angulo, J.C.; Dehesa, J.S. Information-theoretic space from simple atomic and molecular systems to biological and pharmacological molecules. Theor. Chem. Acc. 2016, 135, 253. [Google Scholar] [CrossRef]
- Liu, S.B. Information-Theoretic Approach in Density Functional Reactivity Theory. Acta Phys.-Chim. Sin. 2016, 32, 98–118. [Google Scholar] [CrossRef]
- Zhou, X.Y.; Rong, C.; Lu, T.; Zhou, P.; Liu, S. Information Functional Theory: Electronic Properties as Functionals of Information for Atoms and Molecules. J. Phys. Chem. A 2016, 120, 3634–3642. [Google Scholar] [CrossRef] [PubMed]
- Alipour, M.; Safari, Z. From information theory to quantitative description of steric effects. Phys. Chem. Chem. Phys. 2016, 18, 17917–17929. [Google Scholar] [CrossRef] [PubMed]
- Toranzo, I.V.; Dehesa, J.S. Rényi, Shannon and Tsallis entropies of Rydberg hydrogenic systems. Europhys. Lett. 2016, 113, 48003. [Google Scholar] [CrossRef]
- Toranzo, I.V.; Puertas-Centeno, D.; Dehesa, J.S. Entropic properties of D-dimensional Rydberg systems. Physica A 2016, 462, 1197–1206. [Google Scholar] [CrossRef]
- Dehesa, J.S.; Toranzo, I.V.; Puertas-Centeno, D. Entropic measures of Rydberg-like harmonic states. Int. J. Quantum Chem. 2017, 117, 48–56. [Google Scholar] [CrossRef]
- Huang, Y.; Rong, C.; Zhang, R.; Liu, S. Evaluating frontier orbital energy and HOMO/LUMO gap with descriptors from density functional reactivity theory. J. Mol. Model. 2017, 23, 3. [Google Scholar] [CrossRef]
- Farid, M.; Abdel-Hady, A.; Nasser, I. Comparative study of the scaling behavior of the Rényi entropy for He-like atoms. J. Phys. Conf. Ser. 2017, 869, 012011. [Google Scholar] [CrossRef]
- Nasser, I.; Zeama, M.; Abdel-Hady, A. The Rényi entropy, a comparative study for He-like atoms using the exponential-cosine screened Coulomb potential. Results Phys. 2017, 7, 3892–3900. [Google Scholar] [CrossRef]
- Zan, L.R.; Jiao, L.G.; Ma, J.; Ho, Y.K. Information-theoretic measures of hydrogen-like ions in weakly coupled Debye plasmas. Phys. Plasmas 2017, 24, 122101. [Google Scholar] [CrossRef]
- Cao, X.; Rong, C.; Zhong, A.; Lu, T.; Liu, S. Molecular acidity: An accurate description with information-theoretic approach in density functional reactivity theory. J. Comput. Chem. 2018, 39, 117–129. [Google Scholar] [CrossRef] [PubMed]
- Jiao, L.G.; Zan, L.R.; Zhang, Y.Z.; Ho, Y.K. Benchmark values of Shannon entropy for spherically confined hydrogen atom. Int. J. Quantum Chem. 2017, 117, e25375. [Google Scholar] [CrossRef]
- Laguna, H.G.; Sagar, R.P. Information theoretical measures from cumulative and survival densities in quantum systems. Int. J. Quantum Chem. 2017, 117, e25387. [Google Scholar] [CrossRef]
- Alipour, M.; Badooei, Z. Toward Electron Correlation and Electronic Properties from the Perspective of Information Functional Theory. J. Phys. Chem. A 2018, 122, 6424–6437. [Google Scholar] [CrossRef]
- Alipour, M. Which information theoretic quantity should we choose for steric analysis of water nanoclusters (H2O)n (n = 6,32,64)? Acta Phys.-Chim. Sin. 2018, 34, 407–413. [Google Scholar] [CrossRef]
- Mukherjee, N.; Roy, A.K. Information-entropic measures in free and confined hydrogen atom. Int. J. Quantum Chem. 2018, 118, e25596. [Google Scholar] [CrossRef]
- Mukherjee, N.; Roy, A.K. Information-entropic measures for non-zero l states of confined hydrogen-like ions. Eur. Phys. J. D 2018, 72, 118. [Google Scholar] [CrossRef]
- Mukherjee, N.; Roy, A.K. Information-Entropic Measures in Confined Isotropic Harmonic Oscillator. Adv. Theory Simul. 2018, 1, 1800090. [Google Scholar] [CrossRef]
- Nasser, I.; Zeama, M.; Abdel-Hady, A. The nonadditive entropy for the ground state of helium-like ions using Hellmann potential. Mol. Phys. 2019, 2019, 1612105. [Google Scholar] [CrossRef]
- Zeama, M.; Nasser, I. Tsallis entropy calculation for non-Coulombic helium. Physica A 2019, 528, 121468. [Google Scholar] [CrossRef]
- López-Rosa, S.; Martín, A.L.; Antolín, J.; Angulo, J.C. Electron-pair entropic and complexity measures in atomic systems. Int. J. Quantum Chem. 2019, 119, e25861. [Google Scholar] [CrossRef]
- Ou, J.H.; Ho, Y.K. Benchmark calculations of Rényi, Tsallis entropies, and Onicescu information energy for ground state helium using correlated Hylleraas wave functions. Int. J. Quantum Chem. 2019, 119, e25928. [Google Scholar] [CrossRef]
- Sánchez-Moreno, P.; Omiste, J.J.; Dehesa, J.S. Entropic functionals of Laguerre polynomials and complexity properties of the half-line Coulomb potential. Int. J. Quantum Chem. 2011, 111, 2283–2294. [Google Scholar] [CrossRef] [Green Version]
- Sun, G.H.; Dong, S.H.; Saad, N. Quantum information entropies for an asymmetric trigonometric Rosen-Morse potential. Ann. Phys. 2013, 525, 934–943. [Google Scholar] [CrossRef]
- Dong, S.; Sun, G.H.; Dong, S.H.; Draayer, J. Quantum information entropies for a squared tangent potential well. Phys. Lett. A 2014, 378, 124–130. [Google Scholar] [CrossRef]
- Yahya, W.A.; Oyewumi, K.J.; Sen, K.D. Position and momentum information-theoretic measures of the pseudoharmonic potential. Int. J. Quantum Chem. 2015, 115, 1543–1552. [Google Scholar] [CrossRef] [Green Version]
- Mukherjee, N.; Roy, A.; Roy, A.K. Information entropy as a measure of tunneling and quantum confinement in a symmetric double-well potential. Ann. Phys. 2015, 527, 825–845. [Google Scholar] [CrossRef] [Green Version]
- Mukherjee, N.; Roy, A.K. Quantum confinement in an asymmetric double-well potential through energy analysis and information entropic measure. Ann. Phys. 2016, 528, 412–433. [Google Scholar] [CrossRef]
- Ghosal, A.; Mukherjee, N.; Roy, A.K. Information entropic measures of a quantum harmonic oscillator in symmetric and asymmetric confinement within an impenetrable box. Ann. Phys. 2016, 528, 796–818. [Google Scholar] [CrossRef]
- Isonguyo, C.N.; Oyewumi, K.J.; Oyun, O.S. Quantum information-theoretic measures for the static screened Coulomb potential. Int. J. Quantum Chem. 2018, 118, e25620. [Google Scholar] [CrossRef]
- Onate, C.A.; Ikot, A.N.; Onyeaju, M.C.; Ebomwonyi, O.; Idiodi, J.O.A. Effect of dissociation energy on Shannon and Rényi entropies. Karbala Int. J. Mod. Sci. 2018, 4, 134–142. [Google Scholar] [CrossRef]
- Olendski, O. Quantum Information Measures of the One-Dimensional Robin Quantum Well. Ann. Phys. 2018, 530, 1700324. [Google Scholar] [CrossRef]
- Olendski, O. Rényi and Tsallis entropies: three analytic examples. Eur. J. Phys. 2019, 40, 025402. [Google Scholar] [CrossRef]
- Ilić, V.M.; Stanković, M.S. A unified characterization of generalized information and certainty measures. Physica A 2014, 415, 229–239. [Google Scholar] [CrossRef] [Green Version]
- Hylleraas, E.A. Über den Grundzustand des Heliumatoms. Z. Phys. 1928, 48, 469–494. [Google Scholar] [CrossRef]
- Hylleraas, E.A. Neue Berechnung der Energie des Heliums im Grundzustande, sowie des tiefsten Terms von Ortho-Helium. Z. Phys. 1929, 54, 347–366. [Google Scholar] [CrossRef]
- Hylleraas, E.A. Über den Grundterm der Zweielektronenprobleme von H−, He, Li+, Be++ usw. Z. Phys. 1930, 65, 209–225. [Google Scholar] [CrossRef]
- Löwdin, P.O. Correlation Problem in Many-Electron Quantum Mechanics I. Review of Different Approaches and Discussion of Some Current Ideas. In Advances in Chemical Physics; Prigogine, I., Ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1958; Volume 2, Chapter 7; pp. 207–322. [Google Scholar] [CrossRef]
- Yoshizumi, H. Correlation Problem in Many-Electron Quantum Mechanics. II. Bibliographical Survey of the Historical Development with Comments. In Advances in Chemical Physics; Prigogine, I., Ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1958; Volume 2, Chapter 8; pp. 323–366. [Google Scholar] [CrossRef]
- Parr, R.G.; Yang, W. Density-Functional Theory of Atoms and Molecules; Oxford University Press: Oxford, UK, 1994. [Google Scholar]
- Parr, R.G.; Bartolotti, L.J. Some remarks on the density functional theory of few-electron systems. J. Phys. Chem. 1983, 87, 2810–2815. [Google Scholar] [CrossRef]
- De Proft, F.; Geerlings, P. Contribution of the shape factor σ(r) to atomic and molecular electronegativities. J. Phys. Chem. A 1997, 101, 5344–5346. [Google Scholar] [CrossRef]
- Ayers, P.W.; De Proft, F.; Geerlings, P. Comparison of the utility of the shape function and electron density for predicting periodic properties: Atomic ionization potentials. Phys. Rev. A 2007, 75, 012508. [Google Scholar] [CrossRef]
- Ayers, P.W. Density per particle as a descriptor of Coulombic systems. Proc. Natl. Acad. Sci. USA 2000, 97, 1959–1964. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Proft, F.; Ayers, P.W.; Sen, K.D.; Geerlings, P. On the importance of the “density per particle” (shape function) in the density functional theory. J. Chem. Phys. 2004, 120, 9969–9973. [Google Scholar] [CrossRef] [PubMed]
- Calais, J.L.; Löwdin, P.O. A simple method of treating atomic integrals containing functions of r12. J. Mol. Spectrosc. 1962, 8, 203–211. [Google Scholar] [CrossRef]
- Drake, G. High Precision Calculations for Helium. In Springer Handbook of Atomic, Molecular, and Optical Physics; Drake, G., Ed.; Springer: New York, NY, USA, 2006; Chapter 11; pp. 199–219. [Google Scholar] [CrossRef]
- Lin, C.H.; Ho, Y.K. Quantification of Entanglement Entropy in Helium by the Schmidt-Slater Decomposition Method. Few-Body Syst. 2014, 55, 1141–1149. [Google Scholar] [CrossRef]
- Katriel, J.; Montgomery, H.E.; Sen, K.D. Hund’s rule in the (1s2s)1,3S states of the two-electron Debye atom. Phys. Plasmas 2018, 25, 092111. [Google Scholar] [CrossRef]
- Katriel, J.; Montgomery, H.E. Atomic vs. quantum dot open shell spectra. J. Chem. Phys. 2017, 146, 064104. [Google Scholar] [CrossRef]
- Sarsa, A.; Buendía, E.; Gálvez, F.; Katriel, J. Singlet vs. triplet interelectronic repulsion in confined atoms. Chem. Phys. Lett. 2018, 702, 106–110. [Google Scholar] [CrossRef]
- Angulo, J.C.; Dehesa, J.S. Tight rigorous bounds to atomic information entropies. J. Chem. Phys. 1992, 97, 6485–6495. [Google Scholar] [CrossRef]
- Angulo, J.C.; Dehesa, J.S. Erratum: Tight rigorous bounds to atomic information entropies [J. Chem. Phys. 97, 6485 (1992)]. J. Chem. Phys. 1993, 98, 9223. [Google Scholar] [CrossRef]
- Tao, J.; Li, G.; Li, J. Bounds to information entropies for atomic systems. J. Chem. Phys. 1997, 107, 1227–1231. [Google Scholar] [CrossRef]
- Tao, J.; Li, G.; Li, J. Rigorous bounds to information entropies for atomic systems. Phys. Scr. 1997, 56, 284–288. [Google Scholar] [CrossRef]
- Sánchez-Moreno, P.; Zozor, S.; Dehesa, J.S. Upper bounds on Shannon and Rényi entropies for central potentials. J. Math. Phys. 2011, 52, 022105. [Google Scholar] [CrossRef]
- Sánchez-Moreno, P.; Zozor, S.; Dehesa, J.S. Rigorous bounds for Rényi entropies of spherically symmetric potentials. AIP Conf. Proc. 2011, 1305, 192–199. [Google Scholar] [CrossRef]
- Hornyák, I.; Nagy, Á. Inequalities for phase-space Rényi entropies. Int. J. Quantum Chem. 2012, 112, 1285–1290. [Google Scholar] [CrossRef]
- Nahum, A.; Ruhman, J.; Huse, D.A. Dynamics of entanglement and transport in one-dimensional systems with quenched randomness. Phys. Rev. B 2018, 98, 035118. [Google Scholar] [CrossRef] [Green Version]
- Barghathi, H.; Herdman, C.; Maestro, A.D. Rényi Generalization of the Accessible Entanglement Entropy. Phys. Rev. Lett. 2018, 121, 150501. [Google Scholar] [CrossRef]
- Herdman, C.M.; Roy, P.N.; Melko, R.G.; Maestro, A.D. Entanglement area law in superfluid 4He. Nat. Phys. 2017, 13, 556–558. [Google Scholar] [CrossRef]
- Kaufman, A.M.; Tai, M.E.; Lukin, A.; Rispoli, M.; Schittko, R.; Preiss, P.M.; Greiner, M. Quantum thermalization through entanglement in an isolated many-body system. Science 2016, 353, 794–800. [Google Scholar] [CrossRef] [Green Version]
- Islam, R.; Ma, R.; Preiss, P.M.; Tai, M.E.; Lukin, A.; Rispoli, M.; Greiner, M. Measuring entanglement entropy in a quantum many-body system. Nature 2015, 528, 77–83. [Google Scholar] [CrossRef]
- McMinis, J.; Tubman, N.M. Renyi entropy of the interacting Fermi liquid. Phys. Rev. B 2013, 87, 081108(R). [Google Scholar] [CrossRef]
- Lévay, P.; Nagy, S.; Pipek, J. Elementary formula for entanglement entropies of fermionic systems. Phys. Rev. A 2005, 72, 022302. [Google Scholar] [CrossRef] [Green Version]
- Rouse, I.; Willitsch, S. Superstatistical Energy Distributions of an Ion in an Ultracold Buffer Gas. Phys. Rev. Lett. 2017, 118, 143401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dechant, A.; Kessler, D.A.; Barkai, E. Deviations from Boltzmann-Gibbs Statistics in Confined Optical Lattices. Phys. Rev. Lett. 2015, 115, 173006. [Google Scholar] [CrossRef] [PubMed]
- Douglas, P.; Bergamini, S.; Renzoni, F. Tunable Tsallis Distributions in Dissipative Optical Lattices. Phys. Rev. Lett. 2006, 96, 110601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lutz, E. Anomalous diffusion and Tsallis statistics in an optical lattice. Phys. Rev. A 2003, 67, 051402(R). [Google Scholar] [CrossRef]
- Romera, E.; Dehesa, J.S. The Fisher-Shannon information plane, an electron correlation tool. J. Chem. Phys. 2004, 120, 8906–8912. [Google Scholar] [CrossRef] [PubMed]
- Sagar, R.P.; Guevara, N.L. Mutual information and correlation measures in atomic systems. J. Chem. Phys. 2005, 123, 044108. [Google Scholar] [CrossRef] [PubMed]
- Grassi, A. A relationship between atomic correlation energy and Tsallis entropy. Int. J. Quantum Chem. 2008, 108, 774–778. [Google Scholar] [CrossRef]
- Delle Site, L. On the scaling properties of the correlation term of the electron kinetic functional and its relation to the Shannon measure. Europhys. Lett. 2009, 86, 40004. [Google Scholar] [CrossRef]
- Delle Site, L. Erratum: On the scaling properties of the correlation term of the electron kinetic functional and its relation to the Shannon measure. Europhys. Lett. 2009, 88, 19901. [Google Scholar] [CrossRef]
- Grassi, A. A relationship between atomic correlation energy of neutral atoms and generalized entropy. Int. J. Quantum Chem. 2011, 111, 2390–2397. [Google Scholar] [CrossRef]
- Delle Site, L. Shannon entropy and many-electron correlations: Theoretical concepts, numerical results, and Collins conjecture. Int. J. Quantum Chem. 2014, 115, 1396–1404. [Google Scholar] [CrossRef]
- Flores-Gallegos, N. Informational energy as a measure of electron correlation. Chem. Phys. Lett. 2016, 666, 62–67. [Google Scholar] [CrossRef]
- Alipour, M.; Badooei, Z. Information theoretic approach provides a reliable description for kinetic component of correlation energy density functional. Int. J. Quantum Chem. 2018, 118, e25791. [Google Scholar] [CrossRef]
- Collins, D.M. Entropy Maximizations on Electron Density. Z. Naturforsch. A 1993, 48, 68–74. [Google Scholar] [CrossRef]
- López-Rosa, S.; Esquivel, R.O.; Plastino, A.R.; Dehesa, J.S. Quantum entanglement of helium-like systems with varying-Z: compact state-of-the-art CI wave functions. J. Phys. B 2015, 48, 175002. [Google Scholar] [CrossRef]
- Esquivel, R.O.; López-Rosa, S.; Dehesa, J.S. Correlation energy as a measure of non-locality: Quantum entanglement of helium-like systems. Europhys. Lett. 2015, 111, 40009. [Google Scholar] [CrossRef]
Spin Multiplicity Of The State | Relation between and | Restriction on m and n | Starts from |
---|---|---|---|
singlet | |||
singlet | |||
triplet | |||
triplet |
State | State | ||||
---|---|---|---|---|---|
1s1s | 2.00 | 2.00 | |||
1s2s | 1.19 | 2.80 | 1s2s | 2.09 | 0.55 |
1s3s | 0.74 | 1.94 | 1s3s | 0.78 | 1.90 |
State | E | S |
---|---|---|
−2.903724371 | 2.70510285 | |
Drake [105] | −2.9037243770341195 | |
Lin and Ho [52] | −2.9037243768 | 2.7051028 |
Ou and Ho [11] | −2.903724371 | 2.70510285 |
Restrepo Cuartas and Sanz-Vicario [10] | −2.903605 | 2.705 |
−2.145974042 | 5.49196878 | |
Drake [105] | −2.145974046054419(6) | |
Lin and Ho [106] | −2.145974042 | |
Ou and Ho [11] | −2.145974012 | 5.49196837 |
Katriel et al. [107] | −2.1459740 | |
Restrepo Cuartas and Sanz-Vicario [10] | −2.145967 | 5.492 |
−2.175229377 | 5.23597814 | |
Drake [105] | −2.17522937823679130 | |
Lin and Ho [106] | −2.17522937822 | |
Katriel et al. [107] | −2.1752294 | |
Restrepo Cuartas and Sanz-Vicario [10] | −2.175229 | 5.236 |
−2.061271958 | 6.76932178 | |
Drake [105] | −2.061271989740911(5) | |
Lin and Ho [106] | −2.06127196 | |
Restrepo Cuartas and Sanz-Vicario [10] | −2.061270 | 6.769 |
−2.068 689 066 | 6.605 067 28 | |
Drake [105] | −2.068 689 067 472 457 19 | |
Lin and Ho [106] | −2.068 689 06 | |
Restrepo Cuartas and Sanz-Vicario [10] | −2.068 689 | 6.605 |
1s2s | 1s3s | |||
---|---|---|---|---|
0.5 | 7.82736064 | 7.37538422 | 1.00515457 × 101 | 9.75036390 |
1 | 5.49196878 | 5.23597814 | 6.76932178 | 6.60506728 |
2 | 2.46576126 | 2.46773641 | 2.51349859 | 2.51571175 |
3 | 1.70778650 | 1.70278837 | 1.74051392 | 1.74026803 |
4 | 1.33674386 | 1.32941893 | 1.36502603 | 1.36403409 |
9 | 6.37201665 × 10−1 | 6.28474643 × 10−1 | 6.60262552 × 10−1 | 6.58729039 × 10−1 |
1s2s | 1s3s | |||
---|---|---|---|---|
0.5 | 9.81658692 × 101 | 7.79050690 × 101 | 3.02575822 × 102 | 2.59995972 × 102 |
1 | 5.49196878 | 5.23597814 | 6.76932178 | 6.60506728 |
2 | 9.15055847 × 10−1 | 9.15223459 × 10−1 | 9.19015588 × 10−1 | 9.19194622 × 10−1 |
3 | 4.83571213 × 10−1 | 4.83406163 × 10−1 | 4.84612118 × 10−1 | 4.84604549 × 10−1 |
4 | 3.27290267 × 10−1 | 3.27156002 × 10−1 | 3.27781851 × 10−1 | 3.27765306 × 10−1 |
9 | 1.24236085 × 10−1 | 1.24180846 × 10−1 | 1.24364781 × 10−1 | 1.24356940 × 10−1 |
1s2s | 1s3s | |||
---|---|---|---|---|
0.5 | −1.00165869 × 102 | −7.99050690 × 101 | −3.04575822 × 102 | −2.61995972 × 102 |
2 | 8.49441529 × 10−2 | 8.47765409 × 10−2 | 8.09844111 × 10−2 | 8.08053779 × 10−2 |
3 | 1.64287869 × 10−2 | 1.65938368 × 10−2 | 1.53878810 × 10−2 | 1.53954502 × 10−2 |
4 | 6.04306538 × 10−3 | 6.17733033 × 10−3 | 5.55148184 × 10−3 | 5.56802665 × 10−3 |
9 | 7.63914364 × 10−4 | 8.19153809 × 10−4 | 6.35218223 × 10−4 | 6.43059145 × 10−4 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ou, J.-H.; Ho, Y.K. Shannon, Rényi, Tsallis Entropies and Onicescu Information Energy for Low-Lying Singly Excited States of Helium. Atoms 2019, 7, 70. https://doi.org/10.3390/atoms7030070
Ou J-H, Ho YK. Shannon, Rényi, Tsallis Entropies and Onicescu Information Energy for Low-Lying Singly Excited States of Helium. Atoms. 2019; 7(3):70. https://doi.org/10.3390/atoms7030070
Chicago/Turabian StyleOu, Jen-Hao, and Yew Kam Ho. 2019. "Shannon, Rényi, Tsallis Entropies and Onicescu Information Energy for Low-Lying Singly Excited States of Helium" Atoms 7, no. 3: 70. https://doi.org/10.3390/atoms7030070
APA StyleOu, J. -H., & Ho, Y. K. (2019). Shannon, Rényi, Tsallis Entropies and Onicescu Information Energy for Low-Lying Singly Excited States of Helium. Atoms, 7(3), 70. https://doi.org/10.3390/atoms7030070