Elastic Photon Scattering on Hydrogenic Atoms near Resonances
Abstract
:1. Introduction
2. Materials and Methods
2.1. Statement of the Problem
2.2. General Theory of Transition Matrix Amplitude
2.3. Exact Calculations
2.4. Relativistic Resonant Electric-Dipole Approximation
2.5. Nonrelativistic Resonant Electric Dipole Approximation
3. Results and Discussion
3.1. Ion Rest Frame
3.2. Laboratory Reference Frame
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Demtröder, W. Laser Spectroscopy: Basic Concepts and Instrumentation; Springer: Heidelberg, Germany, 2003. [Google Scholar]
- Indelicato, P. QED tests with highly charged ions. J. Phys. B At. Mol. Opt. Phys. 2019, 52, 232001. [Google Scholar] [CrossRef] [Green Version]
- Franz, W. Rayleighsche Streuung harter Strahlung an schweren Atomen. Z. Phys. 1936, 98, 314. [Google Scholar] [CrossRef]
- Brown, G.E.; Peierls, R.E.; Woodward, J.B. The coherent scattering of γ-rays by K electrons in heavy atoms—I. Method. Proc. R. Soc. Lond. A 1954, 227, 51. [Google Scholar]
- Johnson, W.R.; Feiock, F.D. Rayleigh Scattering and the Electromagnetic Susceptibility of Atoms. Phys. Rev. 1968, 168, 22. [Google Scholar] [CrossRef]
- Kane, P.P.; Kissel, L.; Pratt, R.H.; Roy, S.C. Elastic scattering of γ-rays and X-rays by atoms. Phys. Rep. 1986, 140, 75. [Google Scholar] [CrossRef]
- Pratt, R.H.; Bergstrom, P.M., Jr.; Kissel, L. New relativistic S-matrix results for scattering —Beyond the usual anomalous factors/beyond impulse approximation. In Resonant Anomalous X-ray Scattering: Theory and Applications; Materlik, G., Sparks, C.J., Fischer, K., Eds.; Elsevier: Amsterdam, The Netherlands, 1994; pp. 9–33. [Google Scholar]
- Kissel, L.; Zhou, B.; Roy, S.C.; Sen Gupta, S.K.; Pratt, R.H. The validity of form-factor, modified-form-factor and anomalous-scattering-factor approximations in elastic scattering calculations. Acta Cryst. 1995, A51, 271. [Google Scholar] [CrossRef] [Green Version]
- Carney, J.P.J.; Pratt, R.H.; Manakov, N.L.; Meremianin, A.V. Dependence of photon-atom scattering on energy resolution and target angular momentum. Phys. Rev. A 2000, 61, 042704. [Google Scholar] [CrossRef]
- Surzhykov, A.; Yerokhin, V.A.; Stöhlker, T.; Fritzsche, S. Rayleigh X-ray scattering from many-electron atoms and ions. J. Phys. B At. Mol. Opt. Phys. 2015, 48, 189501. [Google Scholar] [CrossRef] [Green Version]
- Volotka, A.V.; Yerokhin, V.A.; Surzhykov, A.; Stöhlker, T.; Fritzsche, S. Many-electron effects on X-ray Rayleigh scattering by highly charged He-like ions. Phys. Rev. A 2016, 93, 023418. [Google Scholar] [CrossRef] [Green Version]
- Jung, M.; Dunford, R.W.; Gemmell, D.S.; Kanter, E.P.; Krässig, B.; LeBrun, T.W.; Southworth, S.H.; Young, L.; Carney, J.P.J.; LaJohn, L.; et al. Manifestations of Nonlocal Exchange, Correlation, and Dynamic Effects in X-ray Scattering. Phys. Rev. Lett. 1998, 81, 8. [Google Scholar] [CrossRef] [Green Version]
- Young, L.; Dunford, R.W.; Kanter, E.P.; Krässig, B.; Southworth, S.H.; Bonham, R.A.; Lykos, P.; Morong, C.; Timm, A.; Carney, J.P.J.; et al. Corrections to the usual X-ray scattering factors in rare gases: Experiment and theory. Phys. Rev. A 2001, 63, 052718. [Google Scholar] [CrossRef]
- Blumenhagen, K.-H.; Fritzsche, S.; Gassner, T.; Gumberidze, A.; Märtin, R.; Schell, N.; Seipt, D.; Spillmann, U.; Surzhykov, A.; Trotsenko, S.; et al. Polarization transfer in Rayleigh scattering of hard X-rays. New J.Phys. 2016, 18, 103034. [Google Scholar] [CrossRef]
- Sfeir, M.Y.; Wang, F.; Huang, L.; Chuang, C.-C.; Hone, J.; O’Brien, S.P.; Heinz, T.F.; Brus, L.E. Probing electronic transitions in individual carbon nanotubes by Rayleigh scattering. Science 2004, 306, 1540. [Google Scholar] [CrossRef] [Green Version]
- Kampel, N.S.; Griesmaier, A.; Hornbak Steenstrup, M.P.; Kaminski, F.; Polzik, E.S.; Müller, J.H. Effect of Light Assisted Collisions on Matter Wave Coherence in Superradiant Bose-Einstein Condensates. Phys. Rev. Lett. 2012, 108, 090401. [Google Scholar] [CrossRef] [Green Version]
- Kulik, L.V.; Ovchinnikov, K.; Zhuravlev, A.S.; Bisti, V.E.; Kukushkin, I.V.; Schmult, S.; Dietsche, W. Resonant Rayleigh scattering as a probe of spin polarization in a two-dimensional electron system. Phys. Rev. B 2012, 85, 113403. [Google Scholar] [CrossRef]
- Wu, W.; Yue, J.; Li, D.; Lin, X.; Zhu, F.; Yin, X.; Zhu, J.; Dai, X.; Liu, P.; Wei, Y.; et al. Interface dipole enhancement effect and enhanced Rayleigh scattering. Nano Res. 2015, 8, 303. [Google Scholar] [CrossRef]
- Maeda, K.; Terada, Y.; Kasen, D.; Röpke, F.K.; Bamba, A.; Diehl, R.; Nomoto, K.; Kromer, M.; Seitenzahl, I.R.; Yamaguchi, H.; et al. Prospect of Studying Hard X- and Gamma-Rays from Type Ia Supernovae. Astrophys. J. 2012, 760, 54. [Google Scholar] [CrossRef] [Green Version]
- The, L.-S.; Burrows, A. Expectations for the Hard X-ray Continuum and Gamma-Ray Line Fluxes from the Type Ia Supernova SN 2014J in M82. Astrophys. J. 2014, 786, 141. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.-D.; Wu, D.; Shen, X.; Chen, J.; Sun, Y.-M.; Liu, P.-X.; Liang, X.-J. Size-dependent radiosensitization of PEG-coated gold nanoparticles for cancer radiation therapy. Biomaterials 2012, 33, 6408. [Google Scholar] [CrossRef] [Green Version]
- Krasny, M.W. The Gamma Factory proposal for CERN. arXiv 2015, arXiv:1511.07794. [Google Scholar]
- Płaczek, W.; Abramov, A.; Alden, S.E.; Alemany Fernandez, R.; Antsiferov, P.S.; Apyan, A.; Bartosik, H.; Bessonov, E.G.; Biancacci, N.; Bieroń, J.; et al. Gamma Factory at CERN— Novel Research Tools Made of Light. Acta Phys. Pol. B 2019, 50, 1191. [Google Scholar] [CrossRef]
- Budker, D.; Crespo López-Urrutia, J.R.; Derevianko, A.; Flambaum, V.V.; Krasny, M.W.; Petrenko, A.; Pustelny, S.; Surzhykov, A.; Yerokhin, V.A.; Zolotorev, M. Atomic physics studies at the Gamma Factory at CERN. arXiv 2020, arXiv:2003.03855. [Google Scholar]
- Kröger, F.M.; Weber, G.; Shevelko, V.P.; Hirlander, S.; Alemany-Fernandez, R.; Cornelis, K.; Goddard, B.; Velotti, F.M.; Krasny, M.W.; Stöhlker, T. Charge State Tailoring of Highly Relativistic Heavy ion Beams—Comparison of Theory and Experiment; Helmholtz Institute Jena Annual Report; Helmholtz-Institut: Jena, Germany, 2018; p. 62. [Google Scholar]
- Blum, K. Density Matrix Theory and Applications; Springer: Heidelberg, Germany, 2012. [Google Scholar]
- Akhiezer, A.I.; Berestetskii, V.B. Quantum Electrodynamics; Wiley: New York, USA, 1965. [Google Scholar]
- Wu, Z.W.; Volotka, A.V.; Surzhykov, A.; Dong, C.Z.; Fritzsche, S. Level sequence and splitting identification of closely spaced energy levels by angle-resolved analysis of fluorescence light. Phys. Rev. A 2016, 93, 063413. [Google Scholar] [CrossRef] [Green Version]
- Wu, Z.W.; Volotka, A.V.; Surzhykov, A.; Fritzsche, S. Angle-resolved X-ray spectroscopic scheme to determine overlapping hyperfine splittings in highly charged heliumlike ions. Phys. Rev. A 2017, 96, 012503. [Google Scholar] [CrossRef] [Green Version]
- Shabaev, V.M. Two-time Green’s function method in quantum electrodynamics of high-Z few-electron atoms. Phys. Rep. 2002, 356, 119. [Google Scholar] [CrossRef] [Green Version]
- Andreev, O.Y.; Labzowsky, L.N.; Plunien, G.; Solovyev, D.A. QED theory of the spectral line profile and its applications to atoms and ions. Phys. Rep. 2008, 455, 135. [Google Scholar] [CrossRef]
- Rose, M.E. Elementary Theory of Angular Momentum; Wiley: New York, USA, 1957. [Google Scholar]
- Varshalovich, D.; Moskalev, A.; Khersonskii, V. Quantum Theory of Angular Momentum; World Scientific Publishing: Singapore, 1988. [Google Scholar]
- De Boor, C. A Practical Guide to Splines; Bloch, A., Epstein, C.L., Goriely, A., Greengard, L., Eds.; Springer: New York, NY, USA, 1978. [Google Scholar]
- Sapirstein, J. The use of basis splines in theoretical atomic physics. J. Phys. B At. Mol. Opt. Phys. 1996, 29, 5213. [Google Scholar] [CrossRef]
- Bachau, H.; Cormier, E.; Decleva, P.; Hansen, J.E.; Martin, F. Applications of B-splines in atomic and molecular physics. Rep. Prog. Phys. 2001, 64, 1815. [Google Scholar] [CrossRef]
- Froese, F.C. B-Splines in Variational Atomic Structure Calculations; Arimondo, E., Berman, P.R., Lin, C.C., Eds.; Academic Press: New York, NY, USA, 2008; pp. 235–291. [Google Scholar]
- Safari, L.; Amaro, P.; Fritzche, S.; Santos, J.P.; Fratini, F. Relativistic total cross-section and angular distribution for Rayleigh scattering by atomic hydrogen. Phys. Rev. A 2012, 85, 043406. [Google Scholar] [CrossRef] [Green Version]
- Chen, M.H.; Scofield, J.H. Relativistic effects on angular distribution and polarization of dielectronic satellite lines of hydrogenlike ions. Phys. Rev. A 1995, 52, 2057. [Google Scholar] [CrossRef]
- Surzhykov, A.; Fritzsche, S.; Gumberidze, A.; Stöhlker, T. Lyman-α1 Decay in Hydrogenlike Ions: Interference between the E1 and M2 Transition Amplitudes. Phys. Rev. Lett. 2002, 88, 153001. [Google Scholar] [CrossRef]
- Surzhykov, A.; Fritzsche, S.; Stöhlker, T. Polarization of the Lyman–α1 Line Following the Radiative Recombination of Bare, High-Z Ions. Hyperfine Interact. 2003, 146, 35. [Google Scholar] [CrossRef]
- Bessonov, E.G. Light sources based on relativistic ion beams. Nucl. Instrum. Meth. B 2013, 309, 92. [Google Scholar] [CrossRef] [Green Version]
- Surzhykov, A.; Yerokhin, V.A.; Jahrsetz, T.; Amaro, P.; Stöhlker, T.; Fritzsche, S. Polarization correlations in the elastic Rayleigh scattering of photons by hydrogenlike ions. Phys. Rev. A 2013, 88, 062515. [Google Scholar] [CrossRef]
- Manakov, N.L.; Meremianin, A.V.; Maquet, A.; Carney, J.P.J. Photon-polarization effects and their angular dependence in relativistic two-photon bound-bound transitions. J. Phys. B At. Mol. Opt. Phys. 2000, 33, 4425. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Samoilenko, D.; Volotka, A.V.; Fritzsche, S. Elastic Photon Scattering on Hydrogenic Atoms near Resonances. Atoms 2020, 8, 12. https://doi.org/10.3390/atoms8020012
Samoilenko D, Volotka AV, Fritzsche S. Elastic Photon Scattering on Hydrogenic Atoms near Resonances. Atoms. 2020; 8(2):12. https://doi.org/10.3390/atoms8020012
Chicago/Turabian StyleSamoilenko, Dmitrii, Andrey V. Volotka, and Stephan Fritzsche. 2020. "Elastic Photon Scattering on Hydrogenic Atoms near Resonances" Atoms 8, no. 2: 12. https://doi.org/10.3390/atoms8020012
APA StyleSamoilenko, D., Volotka, A. V., & Fritzsche, S. (2020). Elastic Photon Scattering on Hydrogenic Atoms near Resonances. Atoms, 8(2), 12. https://doi.org/10.3390/atoms8020012