The Optogalvanic Spectrum of Neutral Lanthanum between 5610 and 6110 Å
Abstract
:1. Introduction
2. Experiment
3. Optogalvanic Spectra
- (1)
- We selected an unclassified structure in the OG record (preferable having high SNR and well-resolved hf pattern).
- (2)
- The laser light was set to the highest peak of the structure.
- (3)
- The monochromator was tuned in order to find at least one “negative” LIF line.
- (4)
- We identified the upper level of the observed LIF line; this must be the lower level σlow of the laser-excited transition.
- (5)
- Then we tried to simulate the observed hf pattern using Jlow and the hf constants Alow, Blow.
- (6)
- If the simulation is possible, we added the transition wavenumber to σlow and got the energy σup of the new level. From the simulation, we got estimated values of Jup and Aup (Bup was assumed to be zero.
- (7)
- The new level added to our databank. Possible transition wavelengths from the new level to other levels were calculated.
- (8)
- The final confirmation that the level really exists is done by laser-excitation of calculated transitions.
4. New Even-Parity Energy Levels
5. New Odd-Parity Energy Level
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Stone, N.J. Table of Nuclear Magnetic Dipole and Electric Quadrupole Moments. At. Data Nucl. Data Tables 2005, 90, 75–176. Available online: https://www-nds.iaea.org/publications/indc/indc-nds-0658/ (accessed on 17 March 2020). [CrossRef]
- Wavelength Tables; Harrison, G.R. (Ed.) Massachusetts Institute of Technology, The MIT Press: Cambridge, MA, USA; London, England, 1969. [Google Scholar]
- Martin, W.C.; Zalubas, R.; Hagan, L. Atomic Energy Levels—The Rare-Earth Elements. Natl. Bur. Stand. 1978, 60, 27–35. [Google Scholar]
- Furmann, B.; Stefańska, D.; Dembczyński, J. Experimental investigations of the hyperfine structure in neutral La: I. Odd parity levels. J. Phys. B 2009, 42, 175005. [Google Scholar] [CrossRef]
- Furmann, B.; Stefańska, D.; Dembczyński, J. Experimental investigations of the hyperfine structure in neutral La: II. Even parity levels. J. Phys. B 2010, 43, 015001. [Google Scholar] [CrossRef]
- Nighat, Y.; Raith, M.; Manzoor, H.; Windholz, L. Investigation of the hyperfine structure of lanthanum lines by a laser-induced fluorescence technique. J. Phys. B 2010, 43, 125001. [Google Scholar] [CrossRef]
- Güzelçimen, F.; Siddiqui, I.; Başar, B.; Kröger, S.; Windholz, L. New energy levels and hyperfine structure measurements of neutral lanthanum by laser-induced fluorescence spectroscopy. J. Phys. B 2012, 45, 135005. [Google Scholar] [CrossRef]
- Siddiqui, I.; Shamim, K.; Gamper, B.; Dembczyński, J.; Windholz, L. Optogalvanic spectroscopy of the hyperfine structure of weak La I lines: Discovery of new even parity fine structure levels. J. Phys. B 2013, 46, 065002. [Google Scholar] [CrossRef]
- Gamper, B.; Głowacki, P.; Siddiqui, I.; Dembczyński, J.; Windholz, L. New even-parity fine structure levels of the Lanthanum atom discovered by means of optogalvanic spectroscopy. J. Phys. B 2014, 47, 165001. [Google Scholar] [CrossRef]
- Windholz, L.; Gamper, B.; Głowacki, P.; Dembczyński, J. The Puzzle of the La I Lines 6520.644 Å and 6519.869 Å. Spectr. Anal. Rev. 2014, 2, 10–18. [Google Scholar] [CrossRef] [Green Version]
- Başar, G.; Gamper, B.; Güzelçimen, F.; Öztürk, I.K.; Binder, T.; Başar, G.; Kröger, S.; Windholz, L. New even and odd parity fine structure levels of La I discovered by means of laser-induced fluorescence spectroscopy. J. Quant. Spectrosc. Radiat. Transf. 2016, 187, 505–510. [Google Scholar] [CrossRef]
- Windholz, L.; Gamper, B.; Binder, T. Variation of the observed widths of La I lines with the energy of the upper excited levels, demonstrated on previously unknown energy levels. Spectr. Anal. Rev. 2016, 4, 23–40. [Google Scholar] [CrossRef] [Green Version]
- Sobolewski, L.M.; Binder, T.; Güney, C.; Gamper, B.; Windholz, L. Laser induced fluorescence and optogalvanic spectroscopy applied to find previously unknown energy levels of La I and studies of their Zeeman structure. J. Quant. Spectrosc. Radiat. Transf. 2017, 200, 108–112. [Google Scholar] [CrossRef]
- Öztürk, I.K.; Basar, G.; Başar, G.; Özdalgic, B.; Bingöl, D.; Güzelçimen, F.; Windholz, L.; Kröger, S. New energy levels of atomic lanthanum with small total angular momentum quantum number discovered by laser spectroscopic methods in the near IR. J. Quant. Spectrosc. Radiat. Transf. 2020, in press. [Google Scholar] [CrossRef]
- Windholz, L. Finding of previously unknown energy levels using Fourier-transform and laser spectroscopy. Phys. Scr. 2016, 91, 114003. [Google Scholar] [CrossRef]
- Windholz, L. Progress in Finding New Energy Levels Using Laser Spectroscopy. Atoms 2018, 6, 54. [Google Scholar] [CrossRef] [Green Version]
- Werbowy, S.; Günay, C.; Windholz, L. Experimental investigations of the Zeeman effect of new fine structure levels of Lanthanum and Praseodymium. Spectrochim. Acta Part B 2016, 116, 16–20. [Google Scholar] [CrossRef]
- Sobolewski, L.M.; Windholz, L.; Kwela, J. Zeeman effect of weak La I lines investigated by the use of optogalvanic spectroscopy. J. Quant. Spectrosc. Radiat. Transf. 2017, 189, 221–227. [Google Scholar] [CrossRef]
- Sobolewski, L.M.; Windholz, L.; Kwela, J. Determination of Lande gJ-factors of La I levels using laser spectroscopic methods: Complementary investigations. J. Quant. Spectrosc. Radiat. Transf. 2017, 201, 30–34. [Google Scholar] [CrossRef]
- Sobolewski, L.M.; Windholz, L.; Kwela, J. Zeeman structure of red lines of lanthanum observed by laser spectroscopic methods. J. Quant. Spectrosc. Radiat. Transf. 2017, 201, 180–183. [Google Scholar] [CrossRef]
- Sobolewski, L.M.; Windholz, L.; Kwela, J. Magnetic splitting of La I lines studied by means of fluorescence depletion spectroscopy. J. Quant. Spectrosc. Radiat. Transf. 2019, 227, 185–189. [Google Scholar] [CrossRef]
- Güzelçimen, F.; Tonka, M.; Uddin, Z.; Bhatti, N.A.; Windholz, L.; Kröger, S.; Başar, G. Revised energy levels of singly ionized lanthanum. J. Quant. Spectrosc. Radiat. Transf. 2018, 211, 188–199. [Google Scholar] [CrossRef]
- Güzelçimen, F.; Başar, G.; Tamanis, M.; Kruzins, A.; Ferber, R.; Windholz, L.; Kröger, S. High resolution Fourier transform spectroscopy of lanthanum in Ar discharge in the near-infrared. Astrophys. J. Suppl. Ser. 2013, 208, 18. [Google Scholar] [CrossRef]
- Güzelçimen, F.; Başar, G.; Kröger, S.; Windholz, L. Revised energy levels of atomic lanthanum. Astrophys. J. Suppl. Ser. 2020, in press. [Google Scholar]
- Garton, W.R.S.; Wilson, M. Autoionization broadened Rydberg Series in the Spectrum of La I. Astrophys. J. 1966, 145, 333. [Google Scholar] [CrossRef]
- Windholz, L.; Guthöhrlein, G.H. Classification of Spectral Lines by Means of their Hyperfine Structure. Application to Ta I and Ta II Levels. Phys. Scr. 2003, 2003, 55–60. [Google Scholar] [CrossRef]
- Program package “Fitter”, developed by Guthöhrlein, G.H. Helmut-Schmidt-Universität, Universität der Bundeswehr: Hamburg, Germany, 1998; unpublished.
- Furmann, B.; Stefańska, D.; Dembczyński, J. Hyperfine structure analysis odd configurations levels in neutral lanthanum: I. Experimental. Phys. Scr. 2007, 76, 264. [Google Scholar] [CrossRef]
- Childs, W.J.; Nielsen, U. Hyperfine structure of the (5d+6s)3 configuration of 139La I: New measurements and ab initio multiconfigurational Dirac-Fock calculations. Phys. Rev. A 1988, 37, 6. [Google Scholar] [CrossRef]
- Childs, W.J.; Goodman, L.S. Hyperfine and Zeeman Studies of Low-Lying Atomic Levels of La139 and the Nuclear Electric-Quadrupole Moment. Phys. Rev. A 1971, 3, 25. [Google Scholar] [CrossRef]
- Başar, G.; Başar, G.; Kröger, S. High resolution measurements of the hyperfine structure of atomic Lanthanum for energetically low lying levels of odd parity. Opt. Commun. 2009, 282, 562–567. [Google Scholar] [CrossRef]
- Kajoch, A.; Krzykowski, A.; Stefańska, D.; Furmann, B.; Jarosz, A. Studies of hyperfine structure of La I by laser spectroscopy on atomic beam. Acta Phys. Pol. A 1996, 89, 517. [Google Scholar] [CrossRef]
- Başar, G.; Başar, G.; Er, A.; Kröger, S. Experimental hyperfine structure investigation of atomic La. Phys. Scr. 2007, 75, 572–576. [Google Scholar] [CrossRef]
- Dembczyński, J.; Poznan Univ. of Technology, Poznan, Poland. Private communication, 2019.
Fig. Trace | wl (Å) | Upper/Lower Level (cm−1) | J | P | A (MHz) | B (MHz) | Ref. | Remark |
---|---|---|---|---|---|---|---|---|
3a, 3c | 6108.4821 * | 24,046.093 7679.944 | 5/2 5/2 | o e | 325.8 (17) 802.172 | −44 (15) −34.186 | [28] [29] | wl from FT, SNR 325 |
3a | 6108.345 | 41,350.809 24,984.291 | 5/2 5/2 | e o | 278 (2) 284.5 (17) | - 22 (20) | tw [28] | |
3a | 6108.319 | 41,207.990 24,841.405 | 13/2 11/2 | e o | 91.6 (5) 422 (5) | 170 (50) 200 (20) | [10] [8] | |
4a | 6107.2686 * | 19,379.395 3009.993 | 5/2 5/2 | o e | −58.1 (6) 300.563 (1) | - 10.873 (25) | [28] [30] | wl from FT, SNR 190 |
4a, 4b | 6106.936 | 40,878.175 24,507.870 | 7/2 5/2 | e o | 140.3 (30) 188 (2) | - −15(5) | [5] [6] | cont. of scan with higher ampl. |
4b | 6106.788 | 39,673.946 23,303.253 | 9/2 7/2 | e o | 98.5 (20) −28.1(5) | - 49 (20) | [5] [28] | |
4d, 4e | 5800.055 ** | 35,393.393 18,156.957 | 5/2 5/2 | e o | 164 (2) 633.3 (12) | - −18(10) | [6] [28] | |
4e | 5799.666 | 35,275.211 18,037.617 | 5/2 3/2 | o e | 103 (9) 226.5 (60) | - - | [4] [28] | cont. of scan with same ampl. |
4e | 5799.604 | 39,523.537 22,285.762 | 7/2 9/2 | e o | 176.7 (30) 181.9 (4) | - 56 (7) | [5] [31] | |
4f | 5797.419 | 40,949.088 23,704.813 | 5/2 3/2 | e o | 185.3 (15) 105.1 (20) | - −21 (15) | [5] [28] | |
4f | 5797.133 ** | 35,042.424 17,797.298 | 5/2 3/2 | e o | 620 (2) 1335.0 (10) | - - | [6] tw a | |
4f | 5797.067 | 42,229.620 24,984.291 | 5/2 5/2 | e o | 280 (5) 284.5 (17) | - 22 (20) | [9] [28] | |
4g | 5649.877 | 42,457.185 24,762.601 | 3/2 3/2 | e o | 70 (30) 418.0 (10) | - 10 (6) | tw [28] | |
4g | 5649.722 ** | 39,079.063 21,383.990 | 11/2 9/2 | e o | 172 (3) 94.9 (10) | - −20 (15) | [7] [28] | |
4g | 5649.635 | 42,605.720 24,910.373 | 1/2 3/2 | e o | 150 (20) −301.3 (5) | - 14(5) | tw [28] | |
4h | 5600.4651 ** | 123,467.9733 105,617.2700 | 1 2 | e o | 0 0 | 0 0 | Ar I b | |
4i | 5600.310 | 42,100.194 24,248.989 | 9/2 9/2 | e o | 60.3 (20) 405 (2) | - 8 (4) | [4] [6] | cont. of scan with same ampl. |
4i | 5600.08 c | - - | - - | - - | - - | - - |
New Even-Parity Level | Line | Combining Odd-Parity Level | |||||||
---|---|---|---|---|---|---|---|---|---|
Energy (cm−1) | J | A (MHz) | wl (Å) | Energy (cm−1) | J | A (MHz) | B (MHz) | Ref. | Comment |
40,136.158 | 5/2 | 243.8 (10) | 5649.168 | 22,439.346 | 3/2 | 149.5 (32) | −45 (35) | [28] | blend |
5768.11 | 22,804.246 | 5/2 | 45.4 (65) | 0 (20) | [28] | blend nf+ 5177 nf 5050 | |||
5910.26 | 23,221.093 | 7/2 | −76.4 (3) | 59 (4) | [28] | ||||
5939.093 | 23,303.253 | 7/2 | −28.1 (05) | 49 (20) | [28] | nf 5211 | |||
6147.90 | 23,874.944 | 5/2 | 241.7 (23) | 0 (15) | [28] | ||||
6213.30 | 24,046.093 | 5/2 | 325.8 (17) | −44 (15) | [28] | ||||
6229.734 | 24,088.538 | 7/2 | −134.1 (40) | 72 (30) | [28] | blend | |||
40,273.667 | 5/2 | 17.0(10) | 3910.5272 | 14,708.912 | 3/2 | 586.2 (4) | 41(3) | [31] | wl from FT, SNR 6 |
4447.8684 | 17,797.298 | 3/2 | 1335.0 (10) | - | tw a | wl from FT, SNR 5 | |||
5605.61 | 22,439.346 | 3/2 | 149.5 (32) | −45 (35) | [28] | nf+ 5145 | |||
5862.594 | 23,221.093 | 7/2 | −76.4 (3) | 59 (4) | [31] | nf 5234 nf 5067 | |||
5890.978 | 23,303.253 | 7/2 | −28.1 (5) | 49 (20) | [28] | nf 5046 nf 4493 nf+ 5211 | |||
6096.35 | 23,874.944 | 5/2 | 241.7 (23) | 0(15) | [28] | nf- 4187 | |||
6176.805 | 24,088.538 | 7/2 | −134.1 (40) | 72 (30) | [28] | blend | |||
40,800.791 | 5/2 | 201 (3) | 4175.2310 | 16,856.792 | 5/2 | 262.5 (5) | 60 (10) | [28] | wl from FT, SNR 3 |
5686.802 | 23,221.093 | 7/2 | −76.4 (3) | 59 (4) | [31] | ||||
5966.823 | 24,046.093 | 5/2 | 325.8 (17) | −44 (15) | [28] | nf+ 4157 nf+ 6108 | |||
5981.975 | 24,088.538 | 7/2 | −134.1 (40) | 72 (30) | [28] | blend nf+ 4339 | |||
6099.18 | 24,409.675 | 7/2 | 188.4 (17) | 17 (15) | [28] | blend nf 4280 | |||
6320.76 | 24,984.291 | 5/2 | 284.5 (17) | 22 (20) | [28] | nf 4549 | |||
41,052.945 | 5/2 | 131.8 (15) | 5762.71 | 23,704.813 | 3/2 | 105.1 (20) | −21 (15) | [28] | |
5819.80 | 23,874.944 | 5/2 | 241.7 (23) | 0 (15) | [28] | ||||
5878.353 | 24,046.093 | 5/2 | 325.8 (17) | −44 (15) | [28] | nf+ 6108 | |||
5893.06 | 24,088.538 | 7/2 | −134.1 (40) | 72 (30) | [28] | nf+ 4339 | |||
5922.838 | 24,173.826 | 3/2 | −228.9 (22) | 30 (11) | [28] | nf+ 4648 | |||
6042.42 | 24,507.870 | 5/2 | 188 (2) | 15 (5) | [6] | nf+ 5874 nf+ 5714 nf 4650 nf+ 4079 | |||
6221.576 | 24,984.291 | 5/2 | 284.5 (17) | 22 (20) | [28] | nf 4549 nf 4177 nf 4652 | |||
41,059.207 | 5/2 | 41(2) | 5876.19 | 24,046.093 | 5/2 | 325.8 (17) | −44 (15) | [28] | nf- 4157 |
6040.14 | 24,507.870 | 5/2 | 188 (2) | 15 (5) | [6] | nf 4650 nf 4262 nf+ 4079 | |||
6088.46 | 24,639.258 | 3/2 | −200.0 (10) | 3 (2) | [32] | nf+ 4550 nf+ 5829 nf+ 5894 | |||
6190.684 | 24,910.373 | 3/2 | −301.3 (5) | 14 (5) | [28] | ||||
6219.152 | 24,984.291 | 5/2 | 284.5 (17) | 22 (20) | [28] | ||||
6791.47 | 26,338.932 | 5/2 | 103.2 (22) | −29 (20) | [28] | nf+ 5304 nf+ 5357 nf+ 5466 nf 5827 | |||
41,350.809 | 5/2 | 278(2) | 5720.591 | 23,874.944 | 5/2 | 241.7(23) | 0(15) | [28] | nf 4187 |
5901.16 | 24,409.675 | 7/2 | 188.4(17) | 17(15) | [28] | blend nf 4280 | |||
5935.561 | 24,507.870 | 5/2 | 188(2) | 15(5) | [6] | nf 4079 | |||
6026.71 | 24,762.601 | 3/2 | 418.0(10) | 10(6) | [28] | ||||
6080.88 | 24,910.373 | 3/2 | −301.3(5) | 14(5) | [28] | ||||
6108.345 | 24,984.291 | 5/2 | 284.5(17) | 22(20) | [28] | blend | |||
6145.54 | 25,083.354 | 7/2 | 70.8(5) | 25(15) | [33] | blend | |||
6196.94 | 25,218.264 | 5/2 | 101(5) | - | [8] | ||||
6259.80 | 25,380.277 | 7/2 | 389.0(10) | - | tw b | ||||
6491.51 | 25,950.319 | 3/2 | 478.5(19) | 18(16) | [28] | nf+ 5962 nf+ 5415 nf+ 5340 nf+ 4015 | |||
41,510.464 | 3/2 | 257 (3) | 5614.64 | 23,704.813 | 3/2 | 105.1 (20) | −21 (15) | [28] | |
5668.80 | 23,874.944 | 5/2 | 241.7 (23) | 0 (15) | [28] | ||||
5724.35 | 24,046.093 | 5/2 | 325.8 (17) | −44 (15) | [28] | nf 4157 | |||
5879.828 | 24,507.870 | 5/2 | 188 (2) | 15 (5) | [6] | nf 4079 nf 4650 | |||
5925.61 | 24,639.258 | 3/2 | −200.0 (10) | 3 (2) | [32] | ||||
5969.26 | 24,762.601 | 3/2 | 418.0(10) | 10 (6) | [28] | nf 4037 | |||
6022.397 | 24,910.373 | 3/2 | −301.3 (5) | 14 (5) | [28] | ||||
6049.337 | 24,984.291 | 5/2 | 284.5 (17) | 22 (20) | [28] | nf 4177 nf 4479 nf 4549 nf 4652 | |||
6136.207 | 25,218.264 | 5/2 | 101 (5) | - | [8] | ||||
41,545.894 | 11/2 | 460.3 (20) | 3951.0242 | 16,243.163 | 9/2 | 614.2 (5) | 161 (4) | [30] | wl from FT, SNR 28 |
5984.760 | 24,841.405 | 5.5 | 422 (5) | 200 (20) | [8] | nf+ 6699 f 3951 | |||
6074.91 | 25,089.311 | 9/2 | 0.0 (10) | 140 (20) | tw c | nf 6608 | |||
6338.558 | 25,773.802 | 6.5 | 373.5 (5) | 165 (20) | tw e | ||||
6379.29 | 25,874.498 | 5.5 | 44.0 (5) | 168 (10) | tw d | nf 6266 | |||
41,578.214 | 9/2 | 38 (6) | 5973.20 | 24,841.405 | 5.5 | 422 (5) | 200 (20) | [8] | nf+ 6699 |
6060.818 | 25,083.354 | 7/2 | 70.8 (5) | 25 (15) | [33] | nf+ 4160 | |||
6063.00 | 25,089.311 | 9/2 | 0 (1) | 140 (20) | tw c | nf+ 6608 | |||
6171.92 | 25,380.277 | 7/2 | 389.0 (10) | - | tw b | ||||
6366.05 | 25,874.498 | 5.5 | 44.0 (5) | 168 (10) | tw d | ||||
6416.282 | 25,997.176 | 9/2 | 414.3 (20) | 40 (20) | [28] | blend with Ar I nf 4570 | |||
41,582.536 | 5/2 | 56 (3) | 5592.01 | 23,704.813 | 3/2 | 105.1 (20) | −21 (15) | [28] | nf 6068 nf 6165 |
5645.727 | 23,874.944 | 5/2 | 241.7 (23) | 0 (15) | [28] | nf 4187 | |||
5714.660 | 24,088.538 | 7/2 | 134.1 (40) | 72 (30) | [28] | nf+ 4339 | |||
5742.657 | 24173.826 | 3/2 | 228.9 (22) | 30 (11) | [28] | nf 4648 | |||
5855.01 | 24,507.870 | 5/2 | 188 (2) | 15 (5) | [6] | nf 4262 nf+ 4650 | |||
5900.412 | 24,639.258 | 3/2 | 200.0 (10) | 3 (2) | [32] | ||||
5943.679 | 24,762.601 | 3/2 | 418.0 (10) | 10 (6) | [28] | ||||
5996.36 | 24,910.373 | 3/2 | −301.3 (5) | 14 (5) | [28] | ||||
6109.184 | 25,218.264 | 5/2 | 101 (5) | - | [8] | ||||
42,457.183 | 3/2 | 84.0 (15) | 5569.70 | 24,507.870 | 5/2 | 188 (2) | 15 (5) | [6] | nf 4079 |
5649.878 | 24,762.601 | 3/2 | 418.0 (10) | 10 (6) | [28] | ||||
5879.605 | 25,453.947 | 1/2 | −386.5 (20) | 0 | tw f | blend nf+ 3927 nf- 4387 | |||
5936.510 | 25,616.935 | 1/2 | −297.3 (15) | 0 | [28] | ||||
5945.711 | 25,642.997 | 3/2 | 273.3 (2) | 4 (4) | [32] | ||||
42,605.720 | 1/2 | 148 (3) | 5564.380 | 24,639.258 | 3/2 | −200.0 (10) | 3 (2) | [32] | |
5602.846 | 24,762.601 | 3/2 | 418.0 (10) | 10 (6) | [28] | nf+ 4037 | |||
5649.635 | 24,910.373 | 3/2 | −301.3 (5) | 14 (5) | [28] | nf 4494 nf 4564 nf 6356 | |||
5828.684 | 25,453.947 | 1/2 | −386.5 (20) | 0 | tw f | ||||
5884.607 | 25,616.935 | 1/2 | −297.3 (15) | 0 | [28] | ||||
5893.65 | 25,642.997 | 3/2 | 273.3 (2) | 4 (4) | [32] | ||||
6002.39 | 25,950.319 | 3/2 | 478.5 (19) | 18 (16) | [28] |
New Odd-Parity Level | Line | Combining Even-Parity Level | |||||||
---|---|---|---|---|---|---|---|---|---|
Energy (cm−1) | J | A (MHz) | wl (Å) | Energy (cm−1) | J | A (MHz) | B (MHz) | Ref. | Comment |
35,233.558 | 7/2 | 503.6 (20) | 3949.3068 | 9919.824 | 9/2 | 559.812 * | 202.638 * | [29] | wl from FT, SNR 10 |
5909.32 | 18,315.821 | 9/2 | 111.6(26) | - | [28] | ||||
6074.781 | 18,776.615 | 5/2 | 9.9 (20) | - | [28] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Windholz, L.; Binder, T. The Optogalvanic Spectrum of Neutral Lanthanum between 5610 and 6110 Å. Atoms 2020, 8, 23. https://doi.org/10.3390/atoms8020023
Windholz L, Binder T. The Optogalvanic Spectrum of Neutral Lanthanum between 5610 and 6110 Å. Atoms. 2020; 8(2):23. https://doi.org/10.3390/atoms8020023
Chicago/Turabian StyleWindholz, Laurentius, and Tobias Binder. 2020. "The Optogalvanic Spectrum of Neutral Lanthanum between 5610 and 6110 Å" Atoms 8, no. 2: 23. https://doi.org/10.3390/atoms8020023
APA StyleWindholz, L., & Binder, T. (2020). The Optogalvanic Spectrum of Neutral Lanthanum between 5610 and 6110 Å. Atoms, 8(2), 23. https://doi.org/10.3390/atoms8020023