Phase-Sensitive Vector Terahertz Electrometry from Precision Spectroscopy of Molecular Ions
Abstract
:1. Introduction
2. Material and Methods
2.1. Theoretical Model of the HD+ Energy Levels
2.2. Two-Photon Spectroscopy for Sensing Electromagnetic Fields
2.3. Coordinate Frames and External Fields
2.4. Lightshifts in HD+ Spectroscopy
3. Results
3.1. Determination of the Magnetic Field Vector
3.2. Determination of the Polarization Ellipse of the THz Wave
4. Discussion and Conclusions
Funding
Conflicts of Interest
References
- Ludlow, A.D.; Boyd, M.M.; Ye, J.; Peik, E.; Schmidt, P.O. Optical atomic clocks. Rev. Mod. Phys. 2015, 87, 637–701. [Google Scholar] [CrossRef]
- Cronin, A.D.; Schmiedmayer, J.; Pritchard, D.E. Optics and interferometry with atoms and molecules. Rev. Mod. Phys. 2009, 81, 1051–1129. [Google Scholar] [CrossRef]
- Degen, C.L.; Reinhard, F.; Cappellaro, P. Quantum sensing. Rev. Mod. Phys. 2017, 89, 035002. [Google Scholar] [CrossRef] [Green Version]
- Mohr, P.J.; Newell, D.B.; Taylor, B.N. CODATA recommended values of the fundamental physical constants: 2014. Rev. Mod. Phys. 2016, 88, 035009. [Google Scholar] [CrossRef] [Green Version]
- Sedlacek, J.A.; Schwettmann, A.; Kübler, H.; Löw, R.; Pfau, T.; Shaffer, J.P. Microwave electrometry with Rydberg atoms in a vapour cell using bright atomic resonances. Nat. Phys. 2012, 8, 819–824. [Google Scholar] [CrossRef]
- Holloway, C.L.; Gordon, J.A.; Schwarzkopf, A.; Anderson, D.A.; Miller, S.A.; Thaicharoen, N.; Raithel, G. Broadband Rydberg atom-based electric-field probe for SI traceable, self-calibrated measurements. IEEE Trans. Antenna Propag. 2014, 62, 6169–6182. [Google Scholar] [CrossRef] [Green Version]
- Camparo, J.C. Atomic stabilization of electromagnetic field strength using Rabi resonances. Phys. Rev. Lett. 1998, 80, 222–225. [Google Scholar] [CrossRef]
- Gallagher, T.F. Rydberg Atoms; Cambridge University Press: Cambridge, UK, 1994. [Google Scholar]
- Mohapatra, A.K.; Jackson, T.R.; Adams, C.S. Coherent optical detection of highly excited Rydberg states using electromagnetically induced transparency. Phys. Rev. Lett. 2007, 98, 113003. [Google Scholar] [CrossRef] [Green Version]
- Miller, S.A.; Anderson, D.A.; Raithel, G. Radio-frequency modulated Rydberg states in a vapor cell. New J. Phys. 2016, 18, 053017. [Google Scholar] [CrossRef] [Green Version]
- Gordon, J.A.; Holloway, C.L.; Schwarzkopf, A.; Anderson, D.A.; Miller, S.A.; Thaicharoen, N.; Raithel, G. Millimeter wave detection via Autler-Townes splitting in rubidium Rydberg atoms. Appl. Phys. Lett. 2014, 105, 024104. [Google Scholar] [CrossRef] [Green Version]
- Kanda, M.; Driver, L. An isotropic electric-field probe with tapered resistive dipoles for broad-band use, 100 kHz to 18 GHz. IEEE Trans. Microw. Theory Tech. 1987, 35, 124–130. [Google Scholar] [CrossRef] [Green Version]
- Hill, D.A.; Kanda, M.; Larsen, E.B.; Koepke, G.H.; Orr, R.D. Generating Standard Reference Electromagnetic Fields in the NIST Anechoic Chamber, 0.2 to 40 GHz; NIST Tech. Note 1335; National Institute of Standards and Technology: Boulder, CO, USA, 1990.
- Anderson, D.A.; Miller, S.A.; Gordon, J.A.; Holloway, C.L.; Raithel, G. Optical measurements of strong microwave fields with Rydberg atoms in a vapor cell. Phys. Rev. Appl. 2016, 5, 034003. [Google Scholar] [CrossRef] [Green Version]
- Holloway, C.L.; Simons, M.T.; Gordon, J.A.; Dienstfrey, A.; Anderson, D.A.; Raithel, G. Electric field metrology for SI traceability: Systematic measurement uncertainties in electromagnetically induced transparency in atomic vapour. J. Appl. Phys. 2017, 121, 233106. [Google Scholar] [CrossRef] [Green Version]
- Fan, H.; Kumar, S.; Sheng, J.; Shaffer, J.P.; Holloway, C.L.; Gordon, J.A. Effect of vapor-cell geometry on Rydberg-atom-based measurements of radio-frequency electric fields. Phys. Rev. Appl. 2015, 4, 044015. [Google Scholar] [CrossRef]
- Kumar, S.; Fan, H.; Sheng, J.; Shaffer, J.P. Atom-based sensing of weak radio frequency electric fields using homodyne readout. Sci. Rep. 2017, 7, 42981. [Google Scholar] [CrossRef]
- Kumar, S.; Fan, H.; Kübler, H.; Jozani, A.; Shaffer, J.P. Rydberg-atom based radio-frequency electrometry using frequency modulation spectroscopy in room temperature vapour cells. Opt. Express 2017, 25, 8625–8637. [Google Scholar] [CrossRef] [Green Version]
- Fan, H.; Kumar, S.; Sedlacek, J.; Kübler, H.; Karimkashi, S.; Shaffer, J.P. Atom based RF electric field sensing. J. Phys. B At. Mol. Opt. Phys. 2015, 48, 202001. [Google Scholar] [CrossRef]
- Sedlacek, J.A.; Schwettmann, A.; Kübler, H.; Shaffer, J.P. Atom-based vector microwave electrometry using rubidium Rydberg atoms in a vapor cell. Phys. Rev. Lett. 2013, 111, 063001. [Google Scholar] [CrossRef] [Green Version]
- Simons, M.T.; Haddab, A.H.; Gordon, J.A.; Holloway, C.L. A Rydberg atom-based mixer: Measuring the phase of a radio frequency wave. Appl. Phys. Lett. 2019, 114, 114101. [Google Scholar] [CrossRef]
- Gordon, J.A.; Simons, M.T.; Haddab, A.H.; Holloway, C.L. Weak electric-field detection with sub-1 Hz resolution at radio frequencies using a Rydberg atom-based mixer. AIP Adv. 2019, 9, 045030. [Google Scholar] [CrossRef] [Green Version]
- Wing, W.H.; Ruff, G.A.; Lamb, W.E.; Spezeski, J.J. Observation of the infrared spectrum of the hydrogen molecular ion HD+. Phys. Rev. Lett. 1976, 36, 1488–1491. [Google Scholar] [CrossRef]
- Leach, C.A.; Moss, R.E. Spectroscopy and quantum mechanics of the hydrogen molecular cation: A test of molecular quantum mechanics. Annu. Rev. Phys. Chem. 1995, 46, 55–82. [Google Scholar] [CrossRef] [PubMed]
- Critchley, A.D.J.; Hughes, A.N.; McNab, I.R. Direct measurement of a pure rotation transition in H2+. Phys. Rev. Lett. 2001, 86, 1725–1728. [Google Scholar] [CrossRef] [PubMed]
- Osterwalder, A.; Wüest, A.; Merkt, F.; Jungen, C. High-resolution millimeter wave spectroscopy and multichannel quantum defect theory of the hyperfine structure in high Rydberg states of molecular hydrogen. J. Chem. Phys. 2004, 121, 11810–11838. [Google Scholar] [CrossRef]
- Koelemeij, J.C.J.; Roth, B.; Wicht, A.; Ernsting, I.; Schiller, S. Vibrational spectroscopy of HD+ with 2-ppb accuracy. Phys. Rev. Lett. 2007, 98, 173002. [Google Scholar] [CrossRef]
- Bressel, U.; Borodin, A.; Shen, J.; Hansen, M.; Ernsting, I.; Schiller, S. Manipulation of individual hyperfine states in cold trapped molecular ions and application to HD+ frequency metrology. Phys. Rev. Lett. 2012, 108, 183003. [Google Scholar] [CrossRef] [Green Version]
- Haase, C.; Beyer, M.; Jungen, C.; Merkt, F. The fundamental rotational interval of para-H2+ by MQDT-assisted Rydberg spectroscopy of H2. J. Chem. Phys. 2015, 142, 064310. [Google Scholar] [CrossRef] [Green Version]
- Biesheuvel, J.; Karr, J.-P.; Hilico, L.; Eikema, K.S.E.; Ubachs, W.; Koelemeij, J.C.J. Probing QED and fundamental constants through laser spectroscopy of vibrational transitions in HD+. Nat. Commun. 2016, 7, 10385. [Google Scholar] [CrossRef] [Green Version]
- Roth, B.; Koelemeij, J.; Schiller, S.; Hilico, L.; Karr, J.-P.; Korobov, V.; Bakalov, D. Precision spectroscopy of molecular hydrogen ions: Towards frequency metrology of particle masses. In Precision Physics of Simple Atoms and Molecules; Karshenboim, S.G., Ed.; Springer: Berlin, Germany, 2008; Volume 745, pp. 205–232. [Google Scholar]
- Wolf, F.; Wan, Y.; Heip, J.C.; Gebert, F.; Shi, C.; Schmidt, P.O. Non-destructive state detection for quantum logic spectroscopy of molecular ions. Nature 2016, 530, 457–460. [Google Scholar] [CrossRef] [Green Version]
- Chou, C.-W.; Kurz, C.; Hume, D.B.; Plessow, P.N.; Leibrandt, D.R.; Leibfried, D. Preparation and coherent manipulation of pure quantum states of a single molecular ion. Nature 2017, 545, 203–207. [Google Scholar] [CrossRef] [Green Version]
- Tran, V.Q.; Karr, J.-P.; Douillet, A.; Koelemeij, J.C.J.; Hilico, L. Two-photon spectroscopy of trapped HD+ ions in the Lamb-Dicke regime. Phys. Rev. A 2013, 88, 033421. [Google Scholar] [CrossRef] [Green Version]
- Constantin, F.L. THz/infrared double resonance two-photon spectroscopy of HD+ for determination of fundamental constants. Atoms 2017, 5, 38. [Google Scholar] [CrossRef] [Green Version]
- Alighanbari, S.; Hansen, M.; Korobov, V.; Schiller, S. Rotational spectroscopy of cold and trapped molecular ions in the Lamb–Dicke regime. Nat. Phys. 2018, 14, 555–559. [Google Scholar] [CrossRef] [Green Version]
- Alighanbari, S.; Giri, G.S.; Constantin, F.L.; Korobov, V.; Schiller, S. Precise test of quantum electrodynamics and determination of fundamental constants with HD+ ions. Nature 2020, 581, 152–158. [Google Scholar] [CrossRef]
- Patra, S.; Germann, M.; Karr, J.-P.; Haidar, M.; Hilico, L.; Korobov, V.I.; Cozijn, F.M.J.; Eikema, K.S.E.; Ubachs, W.; Koelemeij, J.C.J. Proton-electron mass ratio from laser spectroscopy of HD+ at the part-per-trillion level. Science 2020, 369, 1238–1241. [Google Scholar] [CrossRef]
- Korobov, V.I.; Hilico, L.; Karr, J.-P. Fundamental transitions and ionization energies of the hydrogen molecular ions with few ppt uncertainty. Phys. Rev. Lett. 2017, 118, 233001. [Google Scholar] [CrossRef] [Green Version]
- Bakalov, D.; Schiller, S. Static Stark effect in the molecular ion HD+. Hyperfine Interact. 2012, 210, 25–31. [Google Scholar] [CrossRef]
- Bakalov, D.; Korobov, V.I.; Schiller, S. High-precision calculation of the hyperfine structure of the HD+ ion. Phys. Rev. Lett. 2006, 97, 243001. [Google Scholar] [CrossRef] [Green Version]
- Bakalov, D.; Korobov, V.I.; Schiller, S. Magnetic field effects in the transitions of the HD+ molecular ion and precision spectroscopy. J. Phys. B At. Mol. Opt. Phys. 2011, 44, 025003. [Google Scholar] [CrossRef]
- Akamatsu, D.; Nakajime, Y.; Inaba, H.; Hosaka, K.; Yasuda, M.; Onae, A.; Hong, F.-L. Narrow linewidth laser system realized by linewidth transfer using a fiber based frequency comb for the magneto-optical trapping of strontium. Opt. Express 2012, 20, 16010–16016. [Google Scholar] [CrossRef]
- Constantin, F.L. Double-resonance two-photon spectroscopy of hydrogen molecular ions for improved determination of fundamental constants. IEEE Trans. Instrum. Meas. 2019, 68, 2151–2159. [Google Scholar] [CrossRef]
- Bakalov, D.; Schiller, S. The electric quadrupole moment of molecular hydrogen ions and their potential for a molecular ion clock. Appl. Phys. B 2014, 114, 213–230. [Google Scholar] [CrossRef] [Green Version]
- Amitay, Z.; Zajfman, D.; Forck, P. Rotational and vibrational lifetime of isotopically asymmetrized homonuclear diatomic molecular ions. Phys. Rev. A 1994, 50, 2304–2308. [Google Scholar] [CrossRef] [PubMed]
- Pfeifer, L. Orthogonalization of nonorthogonal vector components. In Proceedings of the IEEE Position Location and Navigation Symposium ‘Navigation into the 21st Century’, Orlando, FL, USA, 29 November–2 December 1988; pp. 553–559. [Google Scholar]
- Le Kien, F.; Schneeweiss, P.; Rauschenbeutel, A. Dynamical polarizability of atoms in arbitrary light fields: General theory and application to cesium. Eur. Phys. J. D 2013, 67, 92. [Google Scholar] [CrossRef] [Green Version]
- Moss, R.E. Calculations for vibration-rotation levels of HD+, in particular for high N. Mol. Phys. 1993, 78, 371–405. [Google Scholar] [CrossRef]
- Lefebvre, M.; Keeler, R.K.; Sobie, R.; White, J. Propagation of errors for matrix inversion. Nucl. Instrum. Methods Phys. Res. A 2000, 451, 520–528. [Google Scholar] [CrossRef] [Green Version]
- Pyykkö, P. Year-2017 nuclear quadrupole moments. Mol. Phys. 2018, 116, 1328–1338. [Google Scholar] [CrossRef] [Green Version]
- Köpsell, J.; Thiele, T.; Deiglmayr, J.; Wallraff, A.; Merkt, F. Measuring the polarization of electromagnetic fields using Rabi-rate measurements with spatial resolution: Experiment and theory. Phys. Rev. A 2017, 95, 053860. [Google Scholar] [CrossRef] [Green Version]
- Thiele, T.; Lin, Y.; Brown, M.O.; Regal, C.A. Self-calibrating vector atomic magnetometry through microwave polarization reconstruction. Phys. Rev. Lett. 2018, 121, 153202. [Google Scholar] [CrossRef] [Green Version]
- Constantin, F.L. Sensing electromagnetic fields with the ac-Stark effect in two-photon spectroscopy of cold trapped HD+. In Proceedings of the SPIE 11347, Quantum Technologies 2020, Strasbourg, France, 6–10 April 2020; Diamanti, E., Ducci, S., Treps, N., Whitlock, S., Eds.; SPIE: Bellingham, WA, USA, 2020. [Google Scholar] [CrossRef]
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Constantin, F.L. Phase-Sensitive Vector Terahertz Electrometry from Precision Spectroscopy of Molecular Ions. Atoms 2020, 8, 70. https://doi.org/10.3390/atoms8040070
Constantin FL. Phase-Sensitive Vector Terahertz Electrometry from Precision Spectroscopy of Molecular Ions. Atoms. 2020; 8(4):70. https://doi.org/10.3390/atoms8040070
Chicago/Turabian StyleConstantin, Florin Lucian. 2020. "Phase-Sensitive Vector Terahertz Electrometry from Precision Spectroscopy of Molecular Ions" Atoms 8, no. 4: 70. https://doi.org/10.3390/atoms8040070
APA StyleConstantin, F. L. (2020). Phase-Sensitive Vector Terahertz Electrometry from Precision Spectroscopy of Molecular Ions. Atoms, 8(4), 70. https://doi.org/10.3390/atoms8040070