On the Electron Impact Integral Cross-Sections for Butanol and Pentanol Isomers
Abstract
:1. Introduction
2. Theoretical Methodology
3. Results and Discussion
3.1. Elastic Cross-Section
3.2. Total Cross-Section
3.3. Momentum Transfer Cross-Section
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Erdiwansyah; Mamat, R.; Sani, M.; Sudhakar, K.; Kadarohman, A.; Sardjono, R. An overview of higher alcohol and biodiesel as alternative fuels in engines. Energy Rep. 2019, 5, 467–479. [Google Scholar] [CrossRef]
- Lopes, M.C.A.; Silva, D.G.M.; Bettega, M.H.F.; da Costa, R.F.; Lima, M.A.P.; Khakoo, M.A.; Winstead, C.; McKoy, V. Low Energy Electron Scattering from Fuels. J. Phys. Conf. Ser. 2012, 388, 012014. [Google Scholar] [CrossRef]
- Ridenti, M.; Filho, J.; Brunger, M.; Lima, M.P. Electron scattering by biomass molecular fragments: Useful data for plasma applications? Eur. Phys. J. D. 2016, 70, 16. [Google Scholar] [CrossRef]
- Boudaïffa, B.; Cloutier, P.; Hunting, D.; Huels, M.A.; Sanche, L. Resonant formation of DNA strand breaks by low-energy (3 to 20 eV) electrons. Science 2000, 287, 1658–1660. [Google Scholar]
- Sanz, A.G.; Fuss, M.C.; Muñoz, A.; Blanco, F.; Limão-Vieira, P.; Brunger, M.J.; Buckman, S.J.; Garcia, G. Modelling low energy electron and positron tracks for biomedical applications. Int. J. Radiat. Biol. Inf. UK Ltd. 2011, 88, 71–76. [Google Scholar] [CrossRef] [Green Version]
- Joshipura, K.N.; Antony, B.; Vinodkumar, M. Electron scattering and ionization of ozone, O2and O4molecules. J. Phys. B At. Mol. Opt. Phys. 2002, 35, 4211–4221. [Google Scholar] [CrossRef]
- Sarathy, S.M.; Park, S.; Weber, B.; Wang, W.; Veloo, P.S.; Davis, A.C.; Togbe, C.; Westbrook, C.K.; Park, O.; Dayma, G.; et al. A comprehensive experimental and modeling study of iso-pentanol combustion. Combust. Flame 2013, 160, 2712–2728. [Google Scholar] [CrossRef]
- Campbell, L.; Brunger, M. Electron collisions in atmospheres. Int. Rev. Phys. Chem. 2016, 35, 297–351. [Google Scholar] [CrossRef]
- Tanaka, H.; Brunger, M.J.; Campbell, L.; Kato, H.; Hoshino, M.; Rau, A.R.P. Scaled plane-wave Born cross sections for atoms and molecules. Rev. Mod. Phys. 2016, 88, 025004. [Google Scholar] [CrossRef]
- Uddin, N.; Verma, P.; Alam, M.J.; Ahmad, S.; Antony, B. Electron impact total ionization cross section for C4 and C5 isomeric alcohols. Int. J. Mass Spectrom. 2018, 431, 37–42. [Google Scholar] [CrossRef]
- Jain, A. Electron scattering with methane molecules at 20–500 eV. J. Chem. Phys. 1984, 81, 724–728. [Google Scholar] [CrossRef]
- Joshipura, K.N.; Patel, P.M. Total electron scattering cross sections for NO, CO, and eV). J. Phys. B At. Mol. Opt. Phys. 1996, 29, 3925–3932. [Google Scholar] [CrossRef]
- Joshipura, K.N.; Vinodkumar, M. Various total cross-sections for electron impact on. Eur. Phys. J. D. 1999, 5, 229. [Google Scholar]
- Antony, B.; Joshipura, K.; Mason, N. Electron impact ionization studies with aeronomic molecules. Int. J. Mass Spectrom. 2004, 233, 207–214. [Google Scholar] [CrossRef]
- Cox, H.L.; Bonham, R.A. Elastic Electron Scattering Amplitudes for Neutral Atoms Calculated Using the Partial Wave Method at 10, 40, 70, and 100 kV for Z = 1 to Z = 54. J. Chem. Phys. 1967, 47, 2599–2608. [Google Scholar] [CrossRef]
- Hara, S. The Scattering of Slow Electrons by Hydrogen Molecules. J. Phys. Soc. Jpn. 1967, 22, 710–718. [Google Scholar]
- Zhang, X.; Sun, J.; Liu, Y. A new approach to the correlation polarization potential-low-energy electron elastic scattering by the atoms. J. Phys. B At. Mol. Opt. Phys. 1992, 25, 1893–1897. [Google Scholar] [CrossRef]
- Staszewska, G.; Schwenke, D.W.; Thirumalai, D.; Truhlar, D.G. Quasifree-scattering model for the imaginary part of the optical potential for electron scattering. Phys. Rev. A. 1983, 28, 2740–2751. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian˜09 Revision, C.01. Available online: https://gaussian.com/g09citation/ (accessed on 1 August 2020).
- Becke, A.D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 1988, 38, 3098–3100. [Google Scholar] [CrossRef]
- Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785–789. [Google Scholar] [CrossRef] [Green Version]
- Faizan, M.; Afroz, Z.; Alam, M.J.; Rodrigues, V.; Ahmad, S.; Ahmad, A. Structural, vibrational and electronic absorption characteristics of the monohydrate organic salt of 2-amino-5-bromo-6-methyl-4-pyrimidinol and 2,3-pyrazinedicarboxylic acid: A combined experimental and computational study. J. Mol. Struct. 2019, 1177, 229–241. [Google Scholar] [CrossRef]
- Computational Chemistry Comparison and Benchmark DataBase Release 21 (August 2020) Standard Reference Database 101 National Institute of Standards and Technology. Available online: http://cccbdb.nist.gov/ (accessed on 1 August 2020).
- Gussoni, M.; Rui, M.; Zerbi, G. Electronic and relaxation contribution to linear molecular polarizability. An analysis of the experimental values. J. Mol. Struct. 1998, 447, 163–215. [Google Scholar] [CrossRef]
- Haynes, W.M. CRC Handbook of Chemistry and Physics, 95th ed.; Haynes, W.M., Ed.; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- Khakoo, M.A.; Muse, J.; Silva, H.; Lopes, M.C.A.; Winstead, C.; McKoy, V.; De Oliveira, E.M.; Da Costa, R.F.; Varella, M.; Bettega, M.; et al. Elastic scattering of slow electrons byn-propanol andn-butanol. Phys. Rev. A 2008, 78, 062714. [Google Scholar] [CrossRef] [Green Version]
- Gomes, M.; da Silva, D.G.M.; Fernandes, A.C.P.; Ghosh, S.; Pires, W.A.D.; Jones, D.B.; Blanco, F.; García, G.; Brunger, M.J.; Lopes, M.C.A. Electron scattering from 1-butanol at intermediate impact energies: Total cross sections. J. Chem. Phys. 2019, 150, 194307. [Google Scholar] [CrossRef] [PubMed]
- Bettega, M.; Winstead, C.; McKoy, V. Low-energy electron scattering fromC4H9OH isomers. Phys. Rev. A 2010, 82, 062709. [Google Scholar] [CrossRef]
- De Oliveira, E.M.; do N Varella, M.T.; Bettega, M.H.F.; Lima, M.A.P. Elastic scattering of slow electrons by n-pentanol alcohol. Eur. Phys. J. D 2014, 68, 65. [Google Scholar] [CrossRef]
- Bharadvaja, A.; Kaur, S.; Baluja, K.L. Study of electron collision from bioalcohols from 10 to 5000 eV. Eur. Phys. J. D 2019, 73, 251. [Google Scholar] [CrossRef]
- Ghosh, S.; Nixon, K.; Pires, W.; Amorim, R.; Neves, R.; Duque, H.; da Silva, D.; Jones, D.; Blanco, F.; Garcia, G.; et al. Electron impact ionization of 1-butanol: II. Total ionization cross sections and appearance energies. Int. J. Mass Spectrom. 2018, 430, 44–51. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Uddin, N.; Modak, P.; Antony, B. On the Electron Impact Integral Cross-Sections for Butanol and Pentanol Isomers. Atoms 2021, 9, 43. https://doi.org/10.3390/atoms9030043
Uddin N, Modak P, Antony B. On the Electron Impact Integral Cross-Sections for Butanol and Pentanol Isomers. Atoms. 2021; 9(3):43. https://doi.org/10.3390/atoms9030043
Chicago/Turabian StyleUddin, Nafees, Paresh Modak, and Bobby Antony. 2021. "On the Electron Impact Integral Cross-Sections for Butanol and Pentanol Isomers" Atoms 9, no. 3: 43. https://doi.org/10.3390/atoms9030043
APA StyleUddin, N., Modak, P., & Antony, B. (2021). On the Electron Impact Integral Cross-Sections for Butanol and Pentanol Isomers. Atoms, 9(3), 43. https://doi.org/10.3390/atoms9030043