Low-Energy Electron Elastic Collisions with Actinide Atoms Am, Cm, Bk, Es, No and Lr: Negative-Ion Formation
Abstract
:1. Introduction
2. Method of Calculation
2.1. Elastic Scattering Total Cross Section (TCS)
2.2. The Potential
3. Results
3.1. Ground State Total Cross Sections (TCSs)
3.2. Polarization-Induced Total Cross Sections (TCSs)
3.3. Fullerene Molecular Behavior
3.4. Understanding Table 1
- (1)
- The measured and calculated EAs of Th [5] are quite close to the Regge-pole-calculated, second, excited-state, anionic BE and not to the ground-state, anionic BE, as was found in the cases of the Au, Pt and At atoms, as well as the C60 fullerene molecule. Indeed, these EAs could be considered at best as the BEs of excited states of the formed negative ions, but definitely not with the ground state.
- (2)
- The existing EAs of the Lr atom calculated using the sophisticated theoretical methods [43,44,45] tend to be reasonably close to the Regge-pole BE of the first excited anionic state. The second set of the EAs of [43,45] are closer to the Regge pole BE of the second excited anionic state. These EAs could be used to guide future experimental research and the theoretical exploration of the EA of Lr.
System/ Z | BEs GRS | BEs MS-1 | BEs MS-2 | EAs EXPT | BEs EXT-1 | BEs EXT-2 | R-T GRS | BEs/EAs Theory | EAs [43] | EAs [44] | R |
---|---|---|---|---|---|---|---|---|---|---|---|
Au 79 | 2.26 | 0.832 | - | 2.309 [13] 2.301 [14] 2.306 [15] | 0.326 | - | 2.24 | 2.262 [47] | - | - | 1.36 |
C60 | 2.66 | 1.86 | 1.23 | 2.684 [18] 2.666 [19] | 0.203 | 0.378 | 2.67 | 2.66 [12] | - | - | 0.24 |
At 85 | 2.41 | 0.918 | - | 2.416 [3] | 0.412 | - | - | 2.38 [4] 2.42 [48] 2.51 [49] 2.80 [50] | - | - | - |
Pt 78 | 2.16 | 1.197 | - | 2.128 [13] 2.125 [16] 2.123 [17] | 0.136 | - | - | 2.163 [47] | - | - | - |
C28 | 3.10 | 1.80 | 0.305 | 2.80 [40] 3.00 [41] | - | - | 2.97 | 3.39 [51] | - | - | 0.66 |
C24 | 3.79 | 2.29 | 0.428 | 3.75 [40] 2.90 [41] | - | - | 3.71 | 3.55 [52] | - | - | 1.06 |
Th 90 | 3.09 | 1.36 | 0.905 | 0.608 [5] | 0.149 | 0.549 | 3.10 | 0.599 [5] | 0.368 | 1.17 | - |
Pu 94 | 3.25 | 1.57 | 1.22 | N/A | 0.225 | 0.527 | - | - | 0.085 | −0.503 −0.276 | 0.72 |
Am 95 | 3.25 | 1.58 | 0.968 | N/A | 0.243 | 0.619 | 3.27 | - | 0.076 |
0.103
| 0.78 |
Cm 96 | 3.32 | 1.57 | 1.10 | N/A | 0.258 | 0.519 | 3.31 | - | 0.321 |
0.283
0.449 | 0.83 |
Bk 97 | 3.55 | 1.73 | 0.997 | N/A | 0.267 | 0.505 | 3.53 | - | 0.031 | −0.503 −0.276 | 0.86 |
Es 99 | 3.42 | 1.66 | 0.948 | N/A | 0.272 | 0.642 | 3.44 | - | 0.002 |
0.103
0.142 | 0.87 |
No 102 | 3.83 | 1.92 | 1.03 | N/A | 0.292 | 0.705 | 3.85 | - | - | −2.302 −2.325 | 0.94 |
Lr 103 | 3.88 | 1.92 | 1.10 | N/A | 0.321 | 0.649 | 3.90 | 0.310 [45] 0.160 [45] 0.476 [46] |
0.465
0.295 | −0.212 −0.313 | 1.05 |
4. Summary and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kasdan, K.; Lineberger, W.C. Alkali-metal negative ions. II. Laser photoelectron spectrometry. Phys. Rev. A 1974, 10, 1658. [Google Scholar] [CrossRef]
- Cheng, S.-B.; Castleman, A.W. Direct experimental observation of weakly-bound character of the attached electron in europium anion. Sci. Rep. 2015, 5, 12414. [Google Scholar] [CrossRef] [Green Version]
- Leimbach, D.; Karls, J.; Guo, Y.; Ahmed, R.; Ballof, J.; Bengtsson, L.; Pamies, F.B.; Borschevsky, A.; Chrysalidis, K.; Eliav, E.; et al. The electron affinity of astatine. Nat. Commun. 2020, 11, 3824. [Google Scholar] [CrossRef]
- Si, R.; Froese Fischer, C. Electron affinities of At and its homologous elements Cl, Br, I. Phys. Rev. A 2018, 98, 052504. [Google Scholar] [CrossRef] [Green Version]
- Tang, R.; Si, R.; Fei, Z.; Fu, X.; Lu, Y.; Brage, T.; Liu, H.; Chen, C.; Ning, C. Candidate for Laser Cooling of a Negative Ion: High-Resolution Photoelectron Imaging of Th−. Phys. Rev. Lett. 2019, 123, 203002. [Google Scholar] [CrossRef]
- Tang, R.; Chen, X.; Fu, X.; Wang, H.; Ning, C. Electron affinity of the hafnium atom. Phys. Rev. A 2018, 98, 020501. [Google Scholar] [CrossRef]
- Felfli, Z.; Msezane, A.Z. Negative Ion Formation in Low-Energy Electron Collisions with the Actinide Atoms Th, Pa, U, Np and Pu. Appl. Phys. Res. 2019, 11, 52. [Google Scholar] [CrossRef] [Green Version]
- Felfli, Z.; Msezane, A.Z. Low-Energy Electron Elastic Total Cross Sections for Ho, Er, Tm, Yb, Lu, and Hf Atoms. Atoms 2020, 8, 17. [Google Scholar] [CrossRef]
- Felfli, Z.; Msezane, A.Z.J. Conundrum in Measured Electron Affinities of Complex Heavy Atoms. J. At. Mol. Condens. Nano Phys. 2018, 5, 73. [Google Scholar] [CrossRef] [Green Version]
- Ciborowski, S.M.; Liu, G.; Blankenhorn, M.; Harris, R.M.; Marshall, M.A.; Zhu, Z.; Bowen, K.H.; Peterson, K.A. The electron affinity of the uranium atom. J. Chem. Phys. 2021, 154, 224307. [Google Scholar] [CrossRef]
- Msezane, A.Z.; Felfli, Z. New insights in low-energy electron-fullerene interactions. Chem. Phys. 2018, 503, 50. [Google Scholar] [CrossRef]
- Felfli, Z.; Msezane, A.Z. Simple method for determining fullerene negative ion formation. Eur. Phys. J. D 2018, 72, 78. [Google Scholar] [CrossRef]
- Hotop, H.; Lineberger, W.C. Dye-laser photodetachment studies of Au−, Pt−, PtN−, and Ag−. J. Chem. Phys. 2003, 58, 2379. [Google Scholar] [CrossRef]
- Andersen, T.; Haugen, H.K.; Hotop, H. Binding Energies in Atomic Negative Ions: III. J. Phys. Chem. Ref. Data 1999, 28, 1511. [Google Scholar] [CrossRef]
- Zheng, W.; Li, X.; Eustis, S.; Grubisic, A.; Thomas, O.; De Clercq, H.; Bowen, K. Anion photoelectron spectroscopy of Au−(H2O) 1, 2, Au2-(D2O) 1–4, and AuOH−. Chem. Phys. Lett. 2007, 444, 232–236. [Google Scholar] [CrossRef]
- Bilodeau, R.C.; Scheer, M.; Haugen, H.K.; Brooks, R.L. Near-threshold laser spectroscopy of iridium and platinum negative ions: Electron affinities and the threshold law. Phys. Rev. A 1999, 61, 012505. [Google Scholar] [CrossRef]
- Gibson, D.; Davies, B.J.; Larson, D.J. The electron affinity of platinum. J. Chem. Phys. 1993, 98, 5104. [Google Scholar] [CrossRef]
- Huang, D.-L.; Dau, P.D.; Liu, H.T.; Wang, L.-S. High-resolution photoelectron imaging of cold C60- anions and accurate determination of the electron affinity of C60. J. Chem. Phys. 2014, 140, 224315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brink, C.; Andersen, L.H.; Hvelplund, P.; Mathur, D.; Voldstad, J.D. Laser photodetachment of C60− and C70− ions cooled in a storage ring. Chem. Phys. Lett. 1995, 233, 52–56. [Google Scholar] [CrossRef]
- Frautschi, S.C. Regge Poles and S-Matrix Theory; Benjamin: New York, NY, USA, 1963; Chapter X. [Google Scholar]
- D’Alfaro, V.; Regge, T.E. Potential Scattering; North-Holland: Amsterdam, The Netherlands, 1965. [Google Scholar]
- Omnes, R.; Froissart, M. Mandelstam Theory and Regge Poles: An Introduction for Experimentalists; Benjamin: New York, NY, USA, 1963; Chapter 2. [Google Scholar]
- Hiscox, A.; Brown, B.M.; Marletta, M. On the low energy behavior of Regge poles. J. Math. Phys. 2010, 51, 102104. [Google Scholar] [CrossRef]
- Felfli, Z.; Msezane, A.Z.; Sokolovski, D. Resonances in low-energy electron elastic cross sections for lanthanide atoms. Phys. Rev. A 2009, 79, 012714. [Google Scholar] [CrossRef] [Green Version]
- Thylwe, K.W. On relativistic shifts of negative-ion resonances. Eur. Phys. J. D 2012, 66, 7. [Google Scholar] [CrossRef]
- Mulholland, H.P. An asymptotic expansion for Σ(2n + 1)exp (Àσ(n + 1/2)2). Proc. Camb. Phil. Soc. 1928, 24, 280–289. [Google Scholar] [CrossRef]
- Macek, J.H.; Krstic, P.S.; Ovchinnikov, S.Y. Regge Oscillations in Integral Cross Sections for Proton Impact on Atomic Hydrogen. Phys. Rev. Lett. 2004, 93, 183203. [Google Scholar] [CrossRef]
- Sokolovski, D.; Felfli, Z.; Ovchinnikov, S.Y.; Macek, J.H.; Msezane, A.Z. Regge oscillations in electron-atom elastic cross sections. Phys. Rev. A 2007, 76, 012705. [Google Scholar] [CrossRef]
- Dolmatov, V.K.; Amusia, M.Y.; Chernysheva, L.V. Electron elastic scattering off A@C60: The role of atomic polarization under confinement. Phys. Rev. A 2017, 95, 012709. [Google Scholar] [CrossRef] [Green Version]
- Felfli, Z.; Belov, S.; Avdonina, N.B.; Marletta, M.; Msezane, A.Z.; Naboko, S.N. In Proceedings of the Third International Workshop on Contemporary Problems in Mathematical Physics, Cotonou, Republic of Benin, 1–7 November 2003; Govaerts, J., Hounkonnou, M.N., Msezane, A.Z., Eds.; World Scientific: Singapore, 2004; pp. 218–232. [Google Scholar]
- Belov, S.; Thylwe, K.-E.; Marletta, M.; Msezane, A.Z.; Naboko, S.N. On Regge pole trajectories for a rational function approximation of Thomas–Fermi potentials. J. Phys. A 2010, 43, 365301. [Google Scholar] [CrossRef]
- Belov, S.M.; Avdonina, N.B.; Felfli, Z.; Marletta, M.; Msezane, A.Z.; Naboko, S.N. Semiclassical approach to Regge poles trajectories calculations for nonsingular potentials: Thomas–Fermi type. J. Phys. A Math. Gen. 2004, 37, 6943. [Google Scholar] [CrossRef]
- Thylwe, K.-E.; McCabe, P. Partial-wave analysis of particular peaks in total scattering cross sections caused by a single partial wave. Eur. Phys. J. D 2014, 68, 323. [Google Scholar] [CrossRef]
- Burke, P.G.; Tate, C. A program for calculating regge trajectories in potential scattering. Comp. Phys. Commun. 1969, 1, 97. [Google Scholar] [CrossRef]
- Msezane, A.Z.; Felfli, Z. Low-energy electron scattering from fullerenes and heavy complex atoms: Negative ions formation. Eur. Phys. J. D 2018, 72, 173. [Google Scholar] [CrossRef]
- Connor, J.N.L. New theoretical methods for molecular collisions: The complex angular-momentum approach. J. Chem. Soc. Faraday Trans. 1990, 86, 1627. [Google Scholar] [CrossRef]
- Regge, T. Bound States, Shadow States and Mandelstam Representation. Nuovo Cimento. 1960, 18, 947. [Google Scholar] [CrossRef]
- Johnson, W.R.; Guet, C. Elastic scattering of electrons from Xe, Cs+, and Ba2+. Phys. Rev. A 1994, 49, 1041. [Google Scholar] [CrossRef] [PubMed]
- Msezane, A.Z. Negative Ion Binding Energies in Complex Heavy Systems. JAMCNP 2018, 5, 195–204. [Google Scholar] [CrossRef] [Green Version]
- Achiba, Y.; Kohno, M.; Ohara, M.; Suzuki, S.; Shiromaru, H.J. Electron detachment spectroscopic study on carbon and silicon cluster anions. J. Electron. Spectros. Rel. Phenom. 2005, 142, 231. [Google Scholar] [CrossRef]
- Yang, S.; Taylor, K.J.; Craycraft, M.J.; Conceicao, J.; Pettiette, C.L.; Cherhnovsky, O.; Smalley, R.E. UPS of 2–30-atom carbon clusters: Chains and rings. Chem. Phys. Lett. 1988, 144, 431. [Google Scholar] [CrossRef]
- Bahrim, C.; Thumm, U. Low-lying 3Po and 3Se states of Rb−, Cs−, and Fr−. Phys. Rev. A 2000, 61, 022722. [Google Scholar] [CrossRef]
- O’Malley, S.M.; Beck, D.R. Valence calculations of actinide anion binding energies: All bound 7p and 7s attachments. Phys. Rev. A 2009, 80, 032514. [Google Scholar] [CrossRef] [Green Version]
- Guo, Y.; Whitehead, M.A. Electron affinities of alkaline-earth and actinide elements calculated with the local-spin-density-functional theory. Phys. Rev. A 1989, 40, 28. [Google Scholar] [CrossRef]
- Eliav, E.; Kaldor, U.; Ishikawa, Y. Transition energies of ytterbium, lutetium, and lawrencium by the relativistic coupled-cluster method. Phys. Rev. A 1995, 52, 291. [Google Scholar] [CrossRef] [PubMed]
- Borschevsky, A.; Eliav, E.; Vilkas, M.J.; Ishikawa, Y.; Kaldor, U. Transition energies of atomic lawrencium. Eur. Phys. J. D 2007, 45, 115–119. [Google Scholar] [CrossRef]
- Msezane, A.Z.; Felfli, Z.; Sokolovski, D. Near-threshold resonances in electron elastic scattering cross sections for Au and Pt atoms: Identification of electron affinities. J. Phys. B At. Mol. Opt. Phys. 2008, 41, 105201. [Google Scholar] [CrossRef]
- Li, J.; Zhao, Z.; Andersson, M.; Zhang, X.; Chen, C. Theoretical study for the electron affinities of negative ions with the MCDHF method. J. Phys. B 2012, 45, 165004. [Google Scholar] [CrossRef]
- Felfli, Z.; Msezane, A.Z.; Sokolovski, D. Slow electron elastic scattering cross sections for In, Tl, Ga and At atoms. J. Phys. B At. Mol. Opt. Phys. 2012, 45, 045201. [Google Scholar] [CrossRef]
- Zollweg, R.J. Electron Affinities of the Heavy Elements. J. Chem. Phys. 1969, 50, 4251. [Google Scholar] [CrossRef]
- Munoz-Castro, R.A. Bruce King. J. Comput. Chem. 2016, 38, 44. [Google Scholar] [CrossRef]
- Tiago, M.L.; Kent, P.R.C.; Hood, R.Q.; Reboredo, F. A Neutral and charged excitations in carbon fullerenes from first-principles many-body theories. J. Chem. Phys. 2008, 129, 084311. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Msezane, A.Z.; Felfli, Z. Low-Energy Electron Elastic Collisions with Actinide Atoms Am, Cm, Bk, Es, No and Lr: Negative-Ion Formation. Atoms 2021, 9, 84. https://doi.org/10.3390/atoms9040084
Msezane AZ, Felfli Z. Low-Energy Electron Elastic Collisions with Actinide Atoms Am, Cm, Bk, Es, No and Lr: Negative-Ion Formation. Atoms. 2021; 9(4):84. https://doi.org/10.3390/atoms9040084
Chicago/Turabian StyleMsezane, Alfred Z., and Zineb Felfli. 2021. "Low-Energy Electron Elastic Collisions with Actinide Atoms Am, Cm, Bk, Es, No and Lr: Negative-Ion Formation" Atoms 9, no. 4: 84. https://doi.org/10.3390/atoms9040084
APA StyleMsezane, A. Z., & Felfli, Z. (2021). Low-Energy Electron Elastic Collisions with Actinide Atoms Am, Cm, Bk, Es, No and Lr: Negative-Ion Formation. Atoms, 9(4), 84. https://doi.org/10.3390/atoms9040084