Physicochemical Characterization and Evaluation of Emulsions Containing Chemically Modified Fats and Different Hydrocolloids
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material
2.2. Methods for Fats Preparation and Analysis
2.2.1. Calf Tallow Bleaching
2.2.2. Chemical Interesterification (CIE)
2.2.3. Acid Value (AV) of Fats
2.2.4. Composition of Fats
2.2.5. Fatty Acids Profile
2.3. Methods for Emulsions Preparation and Analysis
2.3.1. Emulsion Preparation
2.3.2. Microphotographs of Emulsions
2.3.3. Colour Determination of Emulsions
2.3.4. Viscosity Determination of Emulsions
2.3.5. Turbiscan Test
2.3.6. Droplet Size of Emulsions
2.3.7. Texture Analysis of Emulsions
2.3.8. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Donato, P.; Dugo, P.; Mondello, L. Separation of Lipids. In Liquid Chromatography, 2nd ed.; Fanali, S., Haddad, P., Poole, C., Schoenmakers, P., Llyod, D., Eds.; Elsevier: Amsterdam, The Netherlands, 2013; pp. 203–248. [Google Scholar] [CrossRef]
- Da Silva, R.C.; Soares, D.F.; Lourenço, M.B.; Soares, F.A.; da Silva, K.G.; Gonçalves, M.I.A.; Gioielli, L.A. Structured lipids obtained by chemical interesterification of olive oil and palm stearin. LWT Food Sci. Technol. 2010, 43, 752–758. [Google Scholar] [CrossRef]
- Dos Santos, M.T.; Gerbaud, V.; Le Roux, G.A.C. Modeling and simulation of melting curves and chemical interesterification of binary blends of vegetable oils. Chem. Eng. Sci. 2013, 87, 14–22. [Google Scholar] [CrossRef] [Green Version]
- De Graef, V.; Vereecken, J.; Smith, K.W.; Bhaggan, K.; Dewettinck, K. Effect of TAG composition on the solid fat content profile, microstructure, and hardness of model fat blends with identical saturated fatty acid content. Eur. J. Lipid Sci. Technol. 2012, 114, 592–601. [Google Scholar] [CrossRef]
- Soares, F.A.S.D.M.; da Silva, R.C.; da Silva, K.C.G.; Lourenço, M.B.; Soares, D.F.; Gioielli, L.A. Effects of chemical interesterification on physicochemical properties of blends of palm stearin and palm olein. Food Res. Int. 2009, 42, 1287–1294. [Google Scholar] [CrossRef]
- Fauzi, S.H.M.; Rashid, N.A.; Omar, Z. Effects of chemical interesterification on the physicochemical, microstructural and thermal properties of palm stearin, palm kernel oil and soybean oil blends. Food Chem. 2013, 137, 8–17. [Google Scholar] [CrossRef] [PubMed]
- Mahjoob, R.; Nafchi, A.M.; Amiri, E.O.; Farmani, J. An investigation on the physicochemical characterization of interesterified blends of fully hydrogenated palm olein and soybean oil. Food Sci. Biotechnol. 2018, 27, 343–352. [Google Scholar] [CrossRef] [PubMed]
- Kowalska, M.; Zbikowska, A.; Tarnowska, K. Stability of emulsions containing interesterified fats based on mutton tallow and walnut oil. J. Am. Oil Chem. Soc. 2015, 92, 993–1002. [Google Scholar] [CrossRef]
- Korma, S.A.; Zou, X.; Ali, A.H.; Abed, S.M.; Jin, Q.; Wang, X. Preparation of structured lipids enriched with medium-and long-chain triacylglycerols by enzymatic interesterification for infant formula. Food Bioprod. Process. 2018, 107, 121–130. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, X.; Xie, D.; Zou, S.; Jin, Q.; Wang, X. Synthesis and concentration of 2-monoacylglycerols rich in polyunsaturated fatty acids. Food Chem. 2018, 250, 60–66. [Google Scholar] [CrossRef]
- Xu, Y.; Zhu, X.; Ma, X.; Xiong, H.; Zeng, Z.; Peng, H.; Hu, J. Enzymatic production of trans-free shortening from coix seed oil, fully hydrogenated palm oil and Cinnamomum camphora seed oil. Food Biosci. 2018, 22, 1–8. [Google Scholar] [CrossRef]
- Karabulut, I.; Turan, S.; Ergin, G. Effects of chemical interesterification on solid fat content and slip melting point of fat/oil blends. Eur. Food Res. Technol. 2004, 218, 224–229. [Google Scholar] [CrossRef]
- Palla, C.; Giacomozzi, A.; Genovese, D.B.; Carrín, M.E. Multi–objective optimization of high oleic sunflower oil and monoglycerides oleogels: Searching for rheological and textural properties similar to margarine. Food Struct. 2017, 12, 1–14. [Google Scholar] [CrossRef]
- Oliveira, P.D.; Rodrigues, A.M.; Bezerra, C.V.; Silva, L.H. Chemical interesterification of blends with palm stearin and patawa oil. Food Chem. 2017, 215, 369–376. [Google Scholar] [CrossRef] [PubMed]
- Aktas, A.B.; Alamprese, C.; Fessas, D.; Ozen, B. IR spectroscopy and chemometrics for physical property prediction of structured lipids produced by interesterification of beef tallow. LWT 2019, 110, 25–31. [Google Scholar] [CrossRef]
- Segura, N.; Da Silva, R.C.; de M. Soares, F.A.S.; Gioielli, L.A.; Jachmanián, I. Valorization of beef tallow by lipase-catalyzed interesterification with high oleic sunflower oil. J. Am. Oil Chem. Soc. 2011, 88, 1945–1954. [Google Scholar] [CrossRef]
- Rezig, L.; Chouaibi, M.; Ojeda-Amador, R.M.; Gomez-Alonso, S.; Salvador, M.D.; Fregapane, G.; Hamdi, S. Cucurbita maxima pumpkin seed oil: From the chemical properties to the different extracting techniques. Not. Bot. Horti Agrobot. Cluj-Napoca 2018, 46, 663–669. [Google Scholar] [CrossRef] [Green Version]
- Stevenson, D.G.; Eller, F.J.; Wang, L.; Jane, J.L.; Wang, T.; Inglett, G.E. Oil and tocopherol content and composition of pumpkin seed oil in 12 cultivars. J. Agric. Food Chem. 2007, 55, 4005–4013. [Google Scholar] [CrossRef] [Green Version]
- Dickinson, E. Hydrocolloids at interfaces and the influence on the properties of dispersed systems. Food Hydrocoll. 2003, 17, 25–39. [Google Scholar] [CrossRef]
- Park, N.; Walsh, M.K. Physical and emulsion stabilizing properties of maltodextrin fatty acid polymers produced by lipase-catalyzed reactions in ethanol. Carbohydr. Polym. 2019, 226, 115309. [Google Scholar] [CrossRef]
- Pan, L.G.; Tomás, M.C.; Añón, M.C. Effect of sunflower lecithins on the stability of water-in-oil and oil-in-water emulsions. J. Surfactants Deterg. 2002, 5, 135–143. [Google Scholar] [CrossRef]
- ISO Method 660. Animal and Vegetable Fats and Oils: Determination of Acid Value and Acidity; ISO: Geneva, Switzerland, 2009. [Google Scholar]
- Kowalska, M.; Żbikowska, A.; Śmiechowski, K.; Marciniak-Łukasiak, K. Wpływ ilości lecytyny słonecznikowej i czasu homogenizacji na stabilność emulsji spożywczej zawierającej olej z orzechów włoskich. Żywność Nauka Technologia Jakość 2014, 1, 78–91. [Google Scholar]
- Kowalska, M.; Ziomek, M.; Żbikowska, A. Stability of cosmetic emulsion containing different amount of hemp oil. Int. J. Cosmetic Sci. 2015, 37, 408–416. [Google Scholar] [CrossRef] [PubMed]
- Tijskens, L.M.M.; Schijvens, E.P.H.M.; Biekman, E.S.A. Modelling the change in colour of broccoli and green beans during blanching. Innov. Food Sci. Emerg. Technol. 2001, 2, 303–313. [Google Scholar] [CrossRef]
- Liu, J.; Huang, X.F.; Lu, L.J.; Li, M.X.; Xu, J.C.; Deng, H.P. Turbiscan Lab® Expert analysis of the biological demulsification of a water-in-oil emulsion by two biodemulsifiers. J. Hazard. Mater. 2011, 190, 214–221. [Google Scholar] [CrossRef]
- Xu, D.; Zhang, J.; Cao, Y.; Wang, J.; Xiao, J. Influence of microcrystalline cellulose on the microrheological property and freeze-thaw stability of soybean protein hydrolysate stabilized curcumin emulsion. LWT Food Sci. Technol. 2016, 66, 590–597. [Google Scholar] [CrossRef]
- Cerimedo, M.S.Á.; Iriart, C.H.; Candal, R.J.; Herrera, M.L. Stability of emulsions formulated with high concentrations of sodium caseinate and trehalose. Food Res. Int. 2010, 43, 1482–1493. [Google Scholar] [CrossRef]
- Farfán, M.; Álvarez, A.; Gárate, A.; Bouchon, P. Comparison of chemical and enzymatic interesterification of fully hydrogenated soybean oil and walnut oil to produce a fat base with adequate nutritional and physical characteristics. Food Technol. Biotechnol. 2015, 53, 361. [Google Scholar] [CrossRef]
- Jeyarani, T.; Reddy, S.Y. Preparation of plastic fats with zero trans FA from palm oil. J. Am. Oil Chem. Soc. 2003, 80, 1107–1113. [Google Scholar] [CrossRef]
- Asif, M. Process advantages and product benefits of interesterification in oils and fats. Int. J. Nutr. Pharmacol. Neurol. Dis. 2011, 1, 134. [Google Scholar] [CrossRef]
- Amir, R.A.; Shabbir, M.A.; Khan, M.R.; Hussain, S. Interesterification of fats and oils—A review. Pak. J. Food Sci. 2012, 22, 143–153. [Google Scholar]
- Hu, M.; Jacobsen, C. Oxidative Stability and Shelf Life of Foods Containing Oils and Fats; Elsevier: Amsterdam, The Netherlands; AOCS Press: San Diego, CA, USA, 2016. [Google Scholar]
- Bryś, J.; Wirkowska, M.; Górska, A.; Ostrowska-Ligęza, E.; Bryś, A.; Koczoń, P. The use of DSC and FT-IR spectroscopy for evaluation of oxidative stability of interesterified fats. J. Thermal Anal. Calorim. 2013, 112, 481–487. [Google Scholar] [CrossRef] [Green Version]
- Kowalska, M.; Woźniak, M.; Krzton-Maziopa, A.; Tavernier, S.; Pazdur, Ł.; Żbikowska, A. Development of the emulsions containing modified fats formed via enzymatic interesterification catalyzed by specific lipase with various amount of water. J. Disper. Sci. Technol. 2019, 40, 192–205. [Google Scholar] [CrossRef]
- Hasenhuettl, G.L. Synthesis and commercial preparation of food emulsifiers. In Food Emulsifiers and Their Applications; Hasenhuettl, G.L., Hartel, R.W., Eds.; Springer: New York, NY, USA, 2008; pp. 11–13. [Google Scholar]
- Seriburi, V.; Akoh, C.C. Enzymatic interesterification of lard and high-oleic sunflower oil with Candida antarctica lipase to produce plastic fats. J. Am. Oil Chem. Soc. 1998, 75, 1339–1345. [Google Scholar] [CrossRef]
- Naeli, M.H.; Farmani, J.; Zargaran, A. Rheological and physicochemical modification of trans-free blends of palm stearin and soybean oil by chemical interesterification. J. Food Process. 2016, 40, 12409. [Google Scholar] [CrossRef]
- Petrauskaite, V.; De Greyt, W.; Kellens, M.; Huyghebaert, A. Physical and chemical properties of trans-free fats produced by chemical interesterification of vegetable oil blends. J. Am. Oil Chem. Soc. 1998, 75, 489–493. [Google Scholar] [CrossRef]
- McClements, D.J. Critical review of techniques and methodologies for characterization of emulsion stability. Crit. Rev. Food Sci. Nutr. 2007, 47, 611–649. [Google Scholar] [CrossRef]
- Goyal, A.; Sharma, V.; Upadhyay, N.; Singh, A.K.; Arora, S.; Lal, D.; Sabikhi, L. Development of stable flaxseed oil emulsions as a potential delivery system of ω-3 fatty acids. J. Food Sci. Technol. 2015, 52, 4256–4265. [Google Scholar] [CrossRef] [Green Version]
- Ma, H.; Forssell, P.; Kylli, P.; Lampi, A.M.; Buchert, J.; Boer, H.; Partanen, R. Transglutaminase catalyzed cross-linking of sodium caseinate improves oxidative stability of flaxseed oil emulsion. J. Agric. Food Chem. 2012, 60, 6223–6229. [Google Scholar] [CrossRef]
- Bac, L.H.; Kim, J.S.; Kim, J.C. Size, optical and stability properties of gold nanoparticles synthesized by electrical explosion of wire in different aqueous media. Rev. Adv. Mater. Sci. 2011, 28, 117–121. [Google Scholar]
- Lorenzo, G.; Zaritzky, N.; Califano, A. Modeling rheological properties of low-in-fat o/w emulsions stabilized with xanthan/guar mixtures. Food Res. Int. 2008, 41, 487–494. [Google Scholar] [CrossRef]
Component | Emulsion | |||||||
---|---|---|---|---|---|---|---|---|
E1 | E2 | E3 | E4 | E5 | E6 | E7 | E8 | |
Thickener type 1 | MD | MC & XG | XG | CMC | MD | MC&XG | XG | CMC |
Fat type | CIE CT:PO 1:3 | CIE CT:PO 3:1 | ||||||
Thickener wt% | 1.0 | |||||||
CIE blend wt% | 30.0 | |||||||
Lecithin wt% | 5.2 | |||||||
Preservative wt% | 0.3 | |||||||
Water wt% | Up to 100.0 |
Sample | Fat Type | 14:0 (%) | 16:0 (%) | 16:1 (9-cis) (%) | 17:0 (%) | 18:0 (%) | 18:1 (9-cis) (%) | 18:1 (9-trans) (%) | 18:2 (all-cis) n-6 (%) | 18:2 (all-cis) n-3 (%) | Other (%) |
---|---|---|---|---|---|---|---|---|---|---|---|
PO | NIE | N/D | 14.9 ± 0.5 a | N/D | N/D | 5.3 ± 0.2 a | 31.9 ± 0.4 a | 0.8 ± 0.02 a | 46.7 ± 0.5 h | N/D | 0.4 ± 0.01 a |
CT | NIE | 6.3 ± 0.4 g | 30.3 ± 0.6 h | 3.2 ± 0.3 g | 1.1 ± 0.01 g | 16.2 ± 0.3 h | 35.4 ± 0.3 e | 1.8 ± 0.3 f | 1.3 ± 0.2 a | 0.3 ± 0.01 b | 4.1 ± 0.2 f |
CT:PO 9:1 | CIE | 5.7 ± 0.3 f | 27.7 ± 0.5 g | 2.9 ± 0.2 f | 1.0 ± 0.02 f | 14.3 ± 0.4 g | 36.3 ± 0.5 f | 1.8 ± 0.2 f | 6.0 ± 0.3 b | 0.3 ± 0.01 b | 3.8 ± 0.1 ef |
CT:PO 3:1 | CIE | 4.8 ± 0.4 e | 26.1 ± 0.4 f | 2.5 ± 0.2 e | 0.9 ± 0.02 e | 13.4 ± 0.3 f | 35.2 ± 0.4 e | 1.5 ± 0.1 e | 12.5 ± 0.2 c | 0.3 ± 0.02 b | 2.9 ± 0.2 de |
CT:PO 3:2 | CIE | 3.8 ± 0.2 d | 23.9 ± 0.5 e | 2.0 ± 0.3 d | 0.7 ± 0.01 d | 12.5 ± 0.3 e | 34.3 ± 0.6 d | 1.4 ± 0.1 de | 18.8 ± 0.3 d | 0.3 ± 0.02 b | 2.2 ± 0.2 cd |
CT:PO 3:3 | CIE | 3.3 ± 0.3 c | 22.7 ± 0.3 d | 1.7 ± 0.1 c | 0.6 ± 0.02 c | 11.2 ± 0.2 d | 33.8 ± 0.4 c | 1.3 ± 0.2 cd | 23.4 ± 0.4 e | 0.3 ± 0.01 b | 1.8 ± 0.2 bc |
CT:PO 2:3 | CIE | 2.7 ± 0.3 b | 21.1 ± 0.2 c | 1.5 ± 0.2 b | 0.5 ± 0.03 b | 10.1 ± 0.3 c | 33.2 ± 0.4 b | 1.2 ± 0.1 c | 28.0 ± 0.4 f | 0.2 ± 0.02 a | 1.4 ± 0.1 ab |
CT:PO 1:3 | CIE | 1.8 ± 0.2 a | 19.2 ± 0.3 b | 0.9 ± 0.1 a | 0.4 ± 0.01 a | 8.7 ± 0.2 b | 33.0 ± 0.5 b | 1.0 ± 0.03 b | 34.5 ± 0.5 g | 0.2 ± 0.01 a | 0.2 ± 0.01 a |
Fat Type | TAG (%) | DAG (%) | FFA (%) | MAG (%) | |
---|---|---|---|---|---|
Raw fats | PO | 97.7 ± 0.7 e | 1.5 ± 0.03 a | 0.8 ± 0.02 b | N/D |
CT | 99.5 ± 0.6 f | N/D | 0.4 ± 0.03 a | 0.1 ± 0.01 a | |
CIE blends | CT:PO 9:1 | 82.2 ± 0.6 a | 6.6 ± 0.04 c | 8.8 ± 0.06 g | 2.4 ± 0.02 d |
CT:PO 3:1 | 84.5 ± 0.8 bc | 7.4 ± 0.06 d | 7.6 ± 0.06 f | 0.5 ± 0.01 c | |
CT:PO 3:2 | 83.6 ± 0.7 b | 8.4 ± 0.04 g | 7.6 ± 0.05 f | 0.3 ± 0.02 b | |
CT:PO 3:3 | 85.5 ± 0.7 c | 8.0 ± 0.05 f | 4.2 ± 0.04 e | 2.3 ± 0.03 d | |
CT:PO 2:3 | 85.0 ± 0.6 c | 7.7 ± 0.06 e | 2.9 ± 0.03 d | 4.5 ± 0.03 f | |
CT:PO 1:3 | 89.5 ± 0.9 d | 6.2 ± 0.06 b | 1.2 ± 0.03 c | 3.1 ± 0.02 e |
Time | 48h | 1 month | ||||
---|---|---|---|---|---|---|
Emulsion | L* | a* | b* | L* | a* | b* |
E1 | 12.09 ± 0.08 b | −0.43 ± 0.02 a | 9.19 ± 0.14 b | 7.42 ± 0.44 b | −0.52 ± 0.17 a | 6.47 ± 0.21 a |
E2 | 11.95 ± 0.06 a | −0.49 ± 0.06 c | 9.88 ± 0.08 c | 7.15 ± 0.13 a | −0.81 ± 0.13 c | 6.53 ± 0.16 b |
E3 | 12.43 ± 0.06 c | −0.70 ± 0.05 e | 9.03 ± 0.02 a | 8.02 ± 0.25 c | −0.78 ± 0.10 b | 7.09 ± 0.17 c |
E4 | 12.97 ± 0.03 d | −0.46 ± 0.04 b | 9.88 ± 0.02 c | 8.08 ± 0.39 d | −0.80 ± 0.05 bc | 7.13 ± 0.06 c |
E5 | 13.38 ± 0.02 e | −0.66 ± 0.07 d | 10.24 ± 0.06 e | 8.99 ± 0.37 e | −1.21 ± 0.22 g | 7.86 ± 0.25 e |
E6 | 13.01 ± 0.03 d | −0.51 ± 0.11 c | 10.87 ± 0.05 g | 9.27 ± 0.41 f | −0.87 ± 0.07 d | 8.05 ± 0.24 f |
E7 | 13.75 ± 0.03 f | −0.77 ± 0.06 f | 10.13 ± 0.09 d | 8.10 ± 0.59 d | −0.91 ± 0.09 e | 7.42 ± 0.48 d |
E8 | 14.27 ± 0.01 g | −0.78 ± 0.03 f | 10.32 ± 0.04 f | 10.63 ± 0.19 g | −0.94 ± 0.03 f | 8.37 ± 0.19 g |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kowalska, M.; Woźniak, M.; Żbikowska, A.; Kozłowska, M. Physicochemical Characterization and Evaluation of Emulsions Containing Chemically Modified Fats and Different Hydrocolloids. Biomolecules 2020, 10, 115. https://doi.org/10.3390/biom10010115
Kowalska M, Woźniak M, Żbikowska A, Kozłowska M. Physicochemical Characterization and Evaluation of Emulsions Containing Chemically Modified Fats and Different Hydrocolloids. Biomolecules. 2020; 10(1):115. https://doi.org/10.3390/biom10010115
Chicago/Turabian StyleKowalska, Małgorzata, Magdalena Woźniak, Anna Żbikowska, and Mariola Kozłowska. 2020. "Physicochemical Characterization and Evaluation of Emulsions Containing Chemically Modified Fats and Different Hydrocolloids" Biomolecules 10, no. 1: 115. https://doi.org/10.3390/biom10010115
APA StyleKowalska, M., Woźniak, M., Żbikowska, A., & Kozłowska, M. (2020). Physicochemical Characterization and Evaluation of Emulsions Containing Chemically Modified Fats and Different Hydrocolloids. Biomolecules, 10(1), 115. https://doi.org/10.3390/biom10010115