Recent Advances in the Synthesis of Coumarin Derivatives from Different Starting Materials
Abstract
:1. Introduction
2. Coumarin Derivatives Synthesized from Aldehydes
3. Coumarin Derivatives Synthesized from Phenols
4. Coumarin Derivatives Synthesized from Ketones
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Nikhil, B.; Shikha, B.; Anil, P.; Prakash, N.B. Diverse pharmacological activities of 3-substituted coumarins: A review. Int. Res. J. Pharm. 2012, 3, 24–29. [Google Scholar]
- Kontogiorgis, C.; Detsi, A.; Hadjipavlou-Litina, D. Coumarin-based drugs: A patent review (2008–present). Expert Opin. Ther. Pat. 2012, 22, 437–454. [Google Scholar] [CrossRef]
- Venugopala, K.N.; Rashmi, V.; Odhav, B. Review on Natural Coumarin Lead Compounds for Their Pharmacological Activity. BioMed Res. Int. 2013, 2013, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prahadeesh, N.; Sithambaresan, M.; Mathiventhan, U. A Study on Hydrogen Peroxide Scavenging Activity and Ferric Reducing Ability of Simple Coumarins. Emerg. Sci. J. 2018, 2, 417–427. [Google Scholar] [CrossRef] [Green Version]
- Kulkarni, M.V.; Kulkarni, G.M.; Lin, C.-H.; Sun, C.-M. Recent advances in coumarins and 1-azacoumarins as versatile biodynamic agents. Curr. Med. Chem. 2006, 13, 2795–2818. [Google Scholar] [CrossRef] [PubMed]
- Bairagi, S.H.; Salaskar, P.P.; Loke, S.D.; Surve, N.N.; Tandel, D.V.; Dusara, M.D. Medicinal significance of coumarins: A review. Int. J. Pharm. Res. 2012, 4, 16–19. [Google Scholar]
- Thakur, A.; Singla, R.; Jaitak, V. Coumarins as anticancer agents: A review on synthetic strategies, mechanism of action and SAR studies. Eur. J. Med. Chem. 2015, 101, 476–495. [Google Scholar] [CrossRef]
- Seo, W.D.; Kim, J.Y.; Ryu, H.W.; Kim, J.H.; Han, S.-I.; Ra, J.-E.; Seo, K.H.; Jang, K.C.; Lee, J.H. Identification and characterisation of coumarins from the roots of Angelica dahurica and their inhibitory effects against cholinesterase. J. Funct. Foods 2013, 5, 1421–1431. [Google Scholar] [CrossRef]
- Bai, Y.; Li, D.; Zhou, T.; Qin, N.; Li, Z.; Yu, Z.; Hua, H. Coumarins from the roots of Angelica dahurica with antioxidant and antiproliferative activities. J. Funct. Foods 2016, 20, 453–462. [Google Scholar] [CrossRef]
- Iranshahi, M.; Kalategi, F.; Sahebkar, A.; Sardashti, A.; Schneider, B. New sesquiterpene coumarins from the roots of Ferula flabelliloba. Pharm. Boil. 2010, 48, 217–220. [Google Scholar] [CrossRef]
- Peng, W.-W.; Zheng, Y.-Q.; Chen, Y.-S.; Zhao, S.-M.; Ji, C.-J.; Tan, N.-H. Coumarins from roots of Clausena excavata. J. Asian Nat. Prod. Res. 2013, 15, 215–220. [Google Scholar] [CrossRef] [PubMed]
- Naseri, M.; Monsef-Esfehani, H.; Saeidnia, S.; Dastan, D.; Gohari, A. Antioxidative Coumarins from the Roots of Ferulago subvelutina. Asian J. Chem. 2013, 25, 1875–1878. [Google Scholar] [CrossRef]
- Joshi, K.R.; Devkota, H.P.; Yahara, S. Chemical Analysis of Flowers of Bombax ceiba from Nepal. Nat. Prod. Commun. 2013, 8, 583–584. [Google Scholar] [CrossRef] [Green Version]
- Sukumaran, S.; Kiruba, S.; Mahesh, M.; Nisha, S.; Miller, P.Z.; Ben, C.; Jeeva, S. Phytochemical constituents and antibacterial efficacy of the flowers of Peltophorum pterocarpum (DC.) Baker ex Heyne. Asian Pac. J. Trop. Med. 2011, 4, 735–738. [Google Scholar] [CrossRef] [Green Version]
- Kicel, A.; Wolbis, M. Coumarins from the flowers of Trifolium repens. Chem. Nat. Compd. 2012, 48, 130–132. [Google Scholar] [CrossRef]
- Joselin, J.; Brintha, T.S.S.; Florence, A.R.; Jeeva, S. Screening of select ornamental flowers of the family Apocynaceae for phytochemical constituents. Asian Pac. J. Trop. Dis. 2012, 2, S260–S264. [Google Scholar] [CrossRef]
- Wang, S.; Tang, F.; Yue, Y.; Yao, X.; Wei, Q.; Yu, J. Simultaneous Determination of 12 Coumarins in Bamboo Leaves by HPLC. J. AOAC Int. 2013, 96, 942–946. [Google Scholar] [CrossRef]
- Nguyen, P.-H.; Zhao, B.T.; Kim, O.; Lee, J.H.; Choi, J.S.; Min, B.S.; Woo, M.H. Anti-inflammatory terpenylated coumarins from the leaves of Zanthoxylum schinifolium with α-glucosidase inhibitory activity. J. Nat. Med. 2016, 70, 276–281. [Google Scholar] [CrossRef]
- Cho, J.-Y.; Hwang, T.-L.; Chang, T.-H.; Lim, Y.-P.; Sung, P.-J.; Lee, T.-H.; Chen, J.-J. New coumarins and anti-inflammatory constituents from Zanthoxylum avicennae. Food Chem. 2012, 135, 17–23. [Google Scholar] [CrossRef]
- Sakunpak, A.; Matsunami, K.; Otsuka, H.; Panichayupakaranant, P. Isolation of new monoterpene coumarins from Micromelum minutum leaves and their cytotoxic activity against Leishmania major and cancer cells. Food Chem. 2013, 139, 458–463. [Google Scholar] [CrossRef]
- Petruľová-Poracká, V.; Repcak, M.; Vilkova, M.; Imrich, J. Coumarins of Matricaria chamomilla L.: Aglycones and glycosides. Food Chem. 2013, 141, 54–59. [Google Scholar] [CrossRef] [PubMed]
- Aziz, S.S.S.A.; Sukari, M.A.; Rahmani, M.; Kitajima, M.; Aimi, N.; Ahpandi, N.J. Coumarins from Murraya paniculata (Rutaceae). Malays. J. Anal. Sci. 2010, 14, 1–5. [Google Scholar]
- Sun, J.; Yue, Y.-D.; Tang, F.; Guo, X.-F. Coumarins from the leaves of Bambusa pervariabilis McClure. J. Asian Nat. Prod. Res. 2010, 12, 248–251. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.-L.; Li, Y.; Qin, N.-B.; Li, D.-H.; Liu, Z.-G.; Liu, Q.; Hua, H.-M. Four new coumarins from the leaves of Calophyllum inophyllum. Phytochem. Lett. 2016, 16, 203–206. [Google Scholar] [CrossRef]
- Razavi, S.M.; Imanzadeh, G.; Davari, M. Coumarins from Zosima absinthifolia seeds, with allelopatic effects. Eur. Asian J. Biosci. 2010, 4, 17–22. [Google Scholar] [CrossRef]
- Li, G.; Li, X.; Cao, L.; Zhang, L.; Shen, L.; Zhu, J.; Wang, J.; Si, J. Sesquiterpene coumarins from seeds of Ferula sinkiangensis. Fitoterapia 2015, 103, 222–226. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Wang, J.; Li, X.; Cao, L.; Lv, N.; Chen, G.; Zhu, J.; Si, J. Two new sesquiterpene coumarins from the seeds of Ferula sinkiangensis. Phytochem. Lett. 2015, 13, 123–126. [Google Scholar] [CrossRef]
- Dien, P.H.; Nhan, N.T.; Le Thuy, H.T.; Quang, D.N. Main constituents from the seeds of Vietnamese Cnidium monnieri and cytotoxic activity. Nat. Prod. Res. 2012, 26, 2107–2111. [Google Scholar]
- Dugrand, A.; Olry, A.; Duval, T.; Hehn, A.; Froelicher, Y.; Bourgaud, F.; Dugrand-Judek, A. Coumarin and Furanocoumarin Quantitation in Citrus Peel via Ultraperformance Liquid Chromatography Coupled with Mass Spectrometry (UPLC-MS). J. Agric. Food Chem. 2013, 61, 10677–10684. [Google Scholar] [CrossRef]
- Dhanavade, M.J.; Jalkute, C.B.; Ghosh, J.S.; Sonawane, K.D. Study antimicrobial activity of lemon (Citrus lemon L.) peel extract. Br. J. Pharm. Toxicol. 2011, 2, 119–122. [Google Scholar]
- Miyake, Y.; Hiramitsu, M. Isolation and extraction of antimicrobial substances against oral bacteria from lemon peel. J. Food Sci. Technol. 2011, 48, 635–639. [Google Scholar] [CrossRef] [Green Version]
- Sasidharan, S.; Chen, Y.; Saravanan, D.; Sundram, K.M.; Latha, L.Y. Extraction, isolation and characterization of bioactive compounds from plants’ extracts. Afr. J. Tradit. Complement. Altern. Med. 2011, 8, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vekariya, R.H.; Patel, H.D. Recent advances in the synthesis of coumarin derivatives via Knoevenagel condensation: A review. Synth. Commun. 2014, 44, 2756–2788. [Google Scholar] [CrossRef]
- He, X.; Yan, Z.; Hu, X.; Zuo, Y.; Jiang, C.; Jin, L.; Shang, Y. FeCl 3-Catalyzed Cascade Reaction: An Efficient Approach to Functionalized Coumarin Derivatives. Synth. Commun. 2014, 44, 1507–1514. [Google Scholar] [CrossRef]
- Asif, M. Pharmacologically potentials of different substituted coumarin derivatives. Chem. Int. 2015, 1, 1–11. [Google Scholar]
- Barot, K.P.; Jain, S.V.; Kremer, L.; Singh, S.; Ghate, M.D. Recent advances and therapeutic journey of coumarins: Current status and perspectives. Med. Chem. Res. 2015, 24, 2771–2798. [Google Scholar] [CrossRef]
- Dighe, N.S.; Pattan, S.R.; Dengale, S.S.; Musmade, D.S.; Shelar, M.; Tambe, V.; Hole, M.B. Synthetic and pharmacological profiles of coumarins: A review. Sch. Res. Libr. 2010, 2, 65–71. [Google Scholar]
- Abdou, M.M. 3-Acetyl-4-hydroxycoumarin: Synthesis, reactions and applications. Arab. J. Chem. 2017, 10, S3664–S3675. [Google Scholar] [CrossRef] [Green Version]
- Al-Ayed, A.S. Synthesis, Spectroscopy and Electrochemistry of New 3-(5-Aryl-4,5-Dihydro-1H-Pyrazol-3-yl)-4-Hydroxy-2H-Chromene-2-One 4, 5 as a Novel Class of Potential Antibacterial and Antioxidant Derivatives. Int. J. Org. Chem. 2011, 1, 87–96. [Google Scholar] [CrossRef] [Green Version]
- Al-Majedy, Y.K.; Kadhum, A.A.H.; Al-Amiery, A.A.; Mohamad, A.B. Coumarins: The Antimicrobial agents. Syst. Rev. Pharm. 2017, 8, 62–70. [Google Scholar] [CrossRef]
- Aslam, K.K.; Khosa, M.K.; Jahan, N.; Nosheen, S. Short communication: Synthesis and applications of Coumarin. Pak. J. Pharm. Sci. 2010, 23, 449–454. [Google Scholar]
- Liu, H.; Ren, Z.-L.; Wang, W.; Gong, J.-X.; Chu, M.-J.; Ma, Q.-W.; Wang, J.-C.; Lv, X.-H. Novel coumarin-pyrazole carboxamide derivatives as potential topoisomerase II inhibitors: Design, synthesis and antibacterial activity. Eur. J. Med. Chem. 2018, 157, 81–87. [Google Scholar] [CrossRef] [PubMed]
- Sahoo, J.; Kumar, P.S.; Mekap, S.K. Synthesis, spectral characterization of some new 3-heteroaryl azo 4-hydroxy coumarin derivatives and their antimicrobial evaluation. J. Taibah Univ. Sci. 2015, 9, 187–195. [Google Scholar] [CrossRef] [Green Version]
- Vekariya, R.H.; Patel, K.D.; Rajani, D.P.; Rajani, S.D.; Patel, H.D. A one pot, three component synthesis of coumarin hybrid thiosemicarbazone derivatives and their antimicrobial evolution. J. Assoc. Arab. Univ. Basic Appl. Sci. 2017, 23, 10–19. [Google Scholar] [CrossRef] [Green Version]
- Basanagouda, M.; Shivashankar, K.; Kulkarni, M.V.; Rasal, V.P.; Patel, H.; Mutha, S.S.; Mohite, A.A. Synthesis and antimicrobial studies on novel sulfonamides containing 4-azidomethyl coumarin. Eur. J. Med. Chem. 2010, 45, 1151–1157. [Google Scholar] [CrossRef] [Green Version]
- Soni, J.N.; Soman, S.S. Reactions of coumarin-3-carboxylate, its crystallographic study and antimicrobial activity. Pharma Chem. 2014, 6, 396–403. [Google Scholar]
- Vyas, K.B.; Nimavat, K.S.; Jani, G.R.; Hathi, M.V. Synthesis and antimicrobial activity of coumarin derivatives metal complexes: An in vitro evaluation. Orbital Electron. J. Chem. 2009, 1, 183–192. [Google Scholar]
- Wei, Y.; Li, S.Q.; Hao, S.H. New angular oxazole-fused coumarin derivatives: Synthesis and biological activities. Nat. Prod. Res. 2018, 32, 1824–1831. [Google Scholar] [CrossRef]
- Al-Amiery, A.A.; Al-Majedy, Y.K.; Kadhum, A.A.H.; Mohamad, A.B. Novel macromolecules derived from coumarin: Synthesis and antioxidant activity. Sci. Rep. 2015, 5, 11825. [Google Scholar] [CrossRef] [Green Version]
- Matos, M.J.; Mura, F.; Vazquez-Rodriguez, S.; Borges, F.; Santana, L.; Uriarte, E.; Olea-Azar, C. Study of Coumarin-Resveratrol Hybrids as Potent Antioxidant Compounds. Molecules 2015, 20, 3290–3308. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Cruz, K.; Moncada-Basualto, M.; Morales-Valenzuela, J.; Barriga-González, G.; Navarrete-Encina, P.; Núñez-Vergara, L.; Squella, J.; Olea-Azar, C.; Barriga, G. Synthesis and antioxidant study of new polyphenolic hybrid-coumarins. Arab. J. Chem. 2018, 11, 525–537. [Google Scholar] [CrossRef]
- Nagamallu, R.; Srinivasan, B.; Ningappa, M.B.; Kariyappa, A.K. Synthesis of novel coumarin appended bis(formylpyrazole) derivatives: Studies on their antimicrobial and antioxidant activities. Bioorg. Med. Chem. Lett. 2016, 26, 690–694. [Google Scholar] [CrossRef] [PubMed]
- Salem, M.A.I.; Marzouk, M.I.; El-Kazak, A.M. Synthesis and Characterization of Some New Coumarins with in Vitro Antitumor and Antioxidant Activity and High Protective Effects against DNA Damage. Molecules 2016, 21, 249. [Google Scholar] [CrossRef] [PubMed]
- Anand, P.; Singh, B.; Singh, N. A review on coumarins as acetylcholinesterase inhibitors for Alzheimer’s disease. Bioorg. Med. Chem. 2012, 20, 1175–1180. [Google Scholar] [CrossRef] [PubMed]
- Bagheri, S.M.; Khoobi, M.; Nadri, H.; Moradi, A.; Emami, S.; Jalili-Baleh, L.; Jafarpour, F.; Moghadam, F.H.; Foroumadi, A.; Shafiee, A. Synthesis and Anticholinergic Activity of 4-hydroxycoumarin Derivatives Containing Substituted Benzyl-1,2,3-triazole Moiety. Chem. Boil. Drug Des. 2015, 86, 1215–1220. [Google Scholar] [CrossRef]
- Razavi, S.F.; Khoobi, M.; Nadri, H.; Sakhteman, A.; Moradi, A.; Emami, S.; Foroumadi, A.; Shafiee, A. Synthesis and evaluation of 4-substituted coumarins as novel acetylcholinesterase inhibitors. Eur. J. Med. Chem. 2013, 64, 252–259. [Google Scholar] [CrossRef]
- Chen, L.Z.; Sun, W.W.; Bo, L.; Wang, J.Q.; Xiu, C.; Tang, W.J.; Shi, J.B.; Zhou, H.P.; Liu, X.H. New arylpyrazoline-coumarins: Synthesis and anti-inflammatory activity. Eur. J. Med. Chem. 2017, 138, 170–181. [Google Scholar] [CrossRef]
- Pu, W.; Lin, Y.; Zhang, J.; Wang, F.; Wang, C.; Zhang, G. 3-Arylcoumarins: Synthesis and potent anti-inflammatory activity. Bioorg. Med. Chem. Lett. 2014, 24, 5432–5434. [Google Scholar] [CrossRef]
- Olmedo, D.; Sancho, R.; Bedoya, L.M.; López-Pérez, J.L.; Del Olmo, E.; Muñoz, E.; Alcami, J.; Gupta, M.P.; Feliciano, A.S. 3-Phenylcoumarins as Inhibitors of HIV-1 Replication. Molecules 2012, 17, 9245–9257. [Google Scholar] [CrossRef]
- Emami, S.; Dadashpour, S. Current developments of coumarin-based anti-cancer agents in medicinal chemistry. Eur. J. Med. Chem. 2015, 102, 611–630. [Google Scholar] [CrossRef]
- Keri, R.S.; Sasidhar, B.S.; Nagaraja, B.M.; Santos, M.A. Recent progress in the drug development of coumarin derivatives as potent antituberculosis agents. Eur. J. Med. Chem. 2015, 100, 257–269. [Google Scholar] [CrossRef] [PubMed]
- Akoudad, S.; Darweesh, S.K.; Leening, M.J.; Koudstaal, P.J.; Hofman, A.; Van Der Lugt, A.; Stricker, B.H.; Ikram, M.A.; Vernooij, M.W. Use of Coumarin Anticoagulants and Cerebral Microbleeds in the General Population. Stroke 2014, 45, 3436–3439. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hassan, M.Z.; Osman, H.; Ali, M.A.; Ahsan, M.J.; Ahsan, M.J. Therapeutic potential of coumarins as antiviral agents. Eur. J. Med. Chem. 2016, 123, 236–255. [Google Scholar] [CrossRef] [PubMed]
- Wijayabandara, M.D.J.; Choudhary, M.I.; Adhikari, A. Characterization of an anti-hyperglycemic coumarin from the fruits of Averrhoa. P. Ann. Sci. Sess. Fac. Med. Sci. 2015, 2. [Google Scholar]
- Keshavarzipour, F.; Tavakol, H. The synthesis of coumarin derivatives using choline chloride/zinc chloride as a deep eutectic solvent. J. Iran. Chem. Soc. 2016, 13, 149–153. [Google Scholar] [CrossRef]
- Phadtare, S.B.; Shankarling, G.S. Greener coumarin synthesis by Knoevenagel condensation using biodegradable choline chloride. Environ. Chem. Lett. 2012, 10, 363–368. [Google Scholar] [CrossRef]
- Mi, X.; Wang, C.; Huang, M.; Wu, Y.; Wu, Y. Preparation of 3-Acyl-4-arylcoumarins via Metal-Free Tandem Oxidative Acylation/Cyclization between Alkynoates with Aldehydes. J. Org. Chem. 2014, 80, 148–155. [Google Scholar] [CrossRef]
- Suljić, S.; Pietruszka, J. Synthesis of 3-Arylated 3,4-Dihydrocoumarins: Combining Continuous Flow Hydrogenation with Laccase-Catalysed Oxidation. Adv. Synth. Catal. 2014, 356, 1007–1020. [Google Scholar] [CrossRef]
- Brahmachari, G. Room Temperature One-Pot Green Synthesis of Coumarin-3-carboxylic Acids in Water: A Practical Method for the Large-Scale Synthesis. ACS Sustain. Chem. Eng. 2015, 3, 2350–2358. [Google Scholar] [CrossRef]
- Pinto, L.D.S.; De Souza, M.V.N. Sonochemistry as a General Procedure for the Synthesis of Coumarins, Including Multigram Synthesis. Synthesis 2017, 49, 2677–2682. [Google Scholar]
- Khan, D.; Mukhtar, S.; Alsharif, M.A.; Alahmdi, M.I.; Ahmed, N. PhI(OAc) 2 mediated an efficient Knoevenagel reaction and their synthetic application for coumarin derivatives. Tetrahedron Lett. 2017, 58, 3183–3187. [Google Scholar] [CrossRef]
- Fiorito, S.; Taddeo, V.A.; Genovese, S.; Epifano, F. A green chemical synthesis of coumarin-3-carboxylic and cinnamic acids using crop-derived products and waste waters as solvents. Tetrahedron Lett. 2016, 57, 4795–4798. [Google Scholar] [CrossRef]
- Ghomi, J.S.; Akbarzadeh, Z. Ultrasonic accelerated Knoevenagel condensation by magnetically recoverable MgFe2O4 nanocatalyst: A rapid and green synthesis of coumarins under solvent-free conditions. Ultrason. Sonochem. 2018, 40, 78–83. [Google Scholar] [CrossRef] [PubMed]
- Sairam, M.; Saidachary, G.; Raju, B.C. Condensation of salicylaldehydes with ethyl 4, 4, 4-trichloro-3-oxobutanoate: A facile approach for the synthesis of substituted 2H-chromene-3-carboxylates. Tetrahedron Lett. 2015, 56, 1338–1343. [Google Scholar] [CrossRef]
- Augustine, J.K.; Bombrun, A.; Ramappa, B.; Boodappa, C. An efficient one-pot synthesis of coumarins mediated by propylphosphonic anhydride (T3P) via the Perkin condensation. Tetrahedron Lett. 2012, 53, 4422–4425. [Google Scholar] [CrossRef]
- He, X.; Shang, Y.; Zhou, Y.; Yu, Z.; Han, G.; Jin, W.; Chen, J. Synthesis of coumarin-3-carboxylic esters via FeCl3-catalyzed multicomponent reaction of salicylaldehydes, Meldrum’s acid and alcohols. Tetrahedron 2015, 71, 863–868. [Google Scholar] [CrossRef]
- Jiang, S.; Gao, J.; Han, L. One-pot catalyst-free synthesis of 3-heterocyclic coumarins. Res. Chem. Intermediat. 2016, 42, 1017–1028. [Google Scholar] [CrossRef]
- Li, X.T.; Liu, Y.H.; Liu, X.; Zhang, Z.H. Meglumine catalyzed one-pot, three-component combinatorial synthesis of pyrazoles bearing a coumarin unit. RSC Adv. 2015, 5, 25625–25633. [Google Scholar] [CrossRef]
- Ali, M.A.E.A.A. Bismuth triflate: A highly efficient catalyst for the synthesis of bio-active coumarin compounds via one-pot multi-component reaction. Chin. J. Catal. 2015, 36, 1124–1130. [Google Scholar]
- Murugavel, G.; Punniyamurthy, T. Microwave-assisted copper-catalyzed four-component tandem synthesis of 3-N-sulfonylamidine coumarins. J. Org. Chem. 2015, 80, 6291–6299. [Google Scholar] [CrossRef]
- Osman, H.; Arshad, A.; Lam, C.K.; Bagley, M.C. Microwave-assisted synthesis and antioxidant properties of hydrazinyl thiazolyl coumarin derivatives. Chem. Central J. 2012, 6, 32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghanei-Nasab, S.; Khoobi, M.; Hadizadeh, F.; Marjani, A.; Moradi, A.; Nadri, H.; Emami, S.; Foroumadi, A.; Shafiee, A. Synthesis and anticholinesterase activity of coumarin-3-carboxamides bearing tryptamine moiety. Eur. J. Med. Chem. 2016, 121, 40–46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rabahi, A.; Makhloufi-Chebli, M.; Hamdi, S.M.; Silva, A.M.; Kheffache, D.; Boutemeur-Kheddis, B.; Hamdi, M. Synthesis and optical properties of coumarins and iminocoumarins: Estimation of ground- and excited-state dipole moments from a solvatochromic shift and theoretical methods. J. Mol. Liq. 2014, 195, 240–247. [Google Scholar] [CrossRef]
- Phadtare, S.B.; Jarag, K.J.; Shankarling, G.S. Greener protocol for one pot synthesis of coumarin styryl dyes. Dye. Pigment. 2013, 97, 105–112. [Google Scholar] [CrossRef]
- Das, D.K.; Sarkar, S.; Khan, M.; Belal, M.; Khan, A.T. A mild and efficient method for large scale synthesis of 3-aminocoumarins and its further application for the preparation of 4-bromo-3-aminocoumarins. Tetrahedron Lett. 2014, 55, 4869–4874. [Google Scholar] [CrossRef]
- He, X.; Chen, Y.-Y.; Shi, J.-B.; Tang, W.-J.; Pan, Z.-X.; Dong, Z.-Q.; Song, B.-A.; Li, J.; Liu, X.-H. New coumarin derivatives: Design, synthesis and use as inhibitors of hMAO. Bioorg. Med. Chem. 2014, 22, 3732–3738. [Google Scholar] [CrossRef]
- Phakhodee, W.; Duangkamol, C.; Yamano, D.; Pattarawarapan, M. Ph3P/I2-Mediated Synthesis of 3-Aryl-Substituted and 3,4-Disubstituted Coumarins. Synlett 2017, 28, 825–830. [Google Scholar] [CrossRef] [Green Version]
- Sripathi, S.K.; Logeeswari, K. Synthesis of 3-Aryl Coumarin Derivatives Using Ultrasound. Int. J. Org. Chem. 2013, 3, 42–47. [Google Scholar] [CrossRef] [Green Version]
- Sashidhara, K.; Palnati, G.; Avula, S.; Kumar, A. Efficient and General Synthesis of 3-Aryl Coumarins Using Cyanuric Chloride. Synlett 2012, 23, 611–621. [Google Scholar] [CrossRef]
- Rahmani-Nezhad, S.; Khosravani, L.; Saeedi, M.; Divsalar, K.; Firoozpour, L.; Pourshojaei, Y.; Sarrafi, Y.; Nadri, H.; Moradi, A.; Mahdavi, M.; et al. Synthesis and Evaluation of Coumarin–Resveratrol Hybrids as 15-Lipoxygenaze Inhibitors. Synth. Commun. 2015, 45, 741–749. [Google Scholar] [CrossRef]
- Chandrasekhar, S.; Kumar, H.V. ChemInform Abstract: An Expeditious Coumarin Synthesis via a “Pseudocycloaddition” Between Salicylaldehydes and Ketene. Synth. Commun. 2015, 46, 232–235. [Google Scholar] [CrossRef]
- Fiorito, S.; Genovese, S.; Taddeo, V.A.; Epifano, F. Microwave-assisted synthesis of coumarin-3-carboxylic acids under ytterbium triflate catalysis. Tetrahedron Lett. 2015, 56, 2434–2436. [Google Scholar] [CrossRef]
- Kiyani, H.; Daroonkala, M.D. A cost-effective and green aqueous synthesis of 3-substituted coumarins catalyzed by potassium phthalimide. Bull. Chem. Soc. Ethiop. 2015, 29, 449. [Google Scholar] [CrossRef]
- Lieu, T.N.; Nguyen, K.D.; Le, D.T.; Truong, T.; Phan, N.T.S. Application of iron-based metal–organic frameworks in catalysis: Oxidant-promoted formation of coumarins using Fe 3 O(BPDC) 3 as an efficient heterogeneous catalyst. Catal. Sci. Technol. 2016, 6, 5916–5926. [Google Scholar] [CrossRef]
- Sharma, D.; Makrandi, J.K. Iodine-mediated one-pot synthesis of 3-cyanocoumarins and 3-cyano-4-methylcoumarins. J. Serb. Chem. Soc. 2014, 79, 527–531. [Google Scholar] [CrossRef]
- Rezaei, R.; Farjam, M.H.; Farasat, M. Coumarin synthesis via Pechmann condensation utilizing starch sulfuric acid as a green and efficient catalyst under solvent-free conditions. Org. Chem. Indian J. 2014, 10, 73–78. [Google Scholar]
- Pornsatitworakul, S.; Boekfa, B.; Maihom, T.; Treesukol, P.; Namuangruk, S.; Jarussophon, S.; Limtrakul, J. The coumarin synthesis: A combined experimental and theoretical study. Mon. Chem. Chem. Mon. 2017, 148, 1245–1250. [Google Scholar] [CrossRef]
- Bouasla, S.; Amaro-Gahete, J.; Esquivel, D.; López, M.I.; Jiménez-Sanchidrián, C.; Teguiche, M.; Romero-Salguero, F.J. Coumarin Derivatives Solvent-Free Synthesis under Microwave Irradiation over Heterogeneous Solid Catalysts. Molecules 2017, 22, 2072. [Google Scholar] [CrossRef] [Green Version]
- Mirosanloo, A.; Zareyee, D.; Khalilzadeh, M.A. Recyclable cellulose nanocrystal supported Palladium nanoparticles as an efficient heterogeneous catalyst for the solvent-free synthesis of coumarin derivatives via von Pechmann condensation. Appl. Organomet. Chem. 2018, 32, e4546. [Google Scholar] [CrossRef]
- Pakdel, S.; Akhlaghinia, B.; Mohammadinezhad, A. Fe3O4@Boehmite-NH2-CoII NPs: An Environment Friendly Nanocatalyst for Solvent Free Synthesis of Coumarin Derivatives Through Pechmann Condensation Reaction. Chem. Afr. 2019, 2, 367–376. [Google Scholar] [CrossRef] [Green Version]
- Prateeptongkum, S.; Duangdee, N.; Thongyoo, P. Facile iron (III) Chloride Hexahydrate Catalyzed Synthesis of Coumarins; Michigan Publishing, University of Michigan Library: Ann Arbor, MI, USA, 2015; pp. 248–258. [Google Scholar]
- Mokhtary, M.; Najafizadeh, F. Polyvinylpolypyrrolidone-bound boron trifluoride (PVPP-BF3); a mild and efficient catalyst for synthesis of 4-metyl coumarins via the Pechmann reaction. Comptes Rendus Chim. 2012, 15, 530–532. [Google Scholar] [CrossRef]
- Moradi, L.; Rabiei, K.; Belali, F. ChemInform Abstract: Meglumine Sulfate Catalyzed Solvent-Free One-Pot Synthesis of Coumarins under Microwave and Thermal Conditions. Synth.Commun. 2016, 47, 1283–1291. [Google Scholar] [CrossRef]
- Amoozadeh, A.; Ahmadzadeh, M.; Kolvari, E. Easy access to coumarin derivatives using alumina sulfuric acid as an efficient and reusable catalyst under solvent-free conditions. J. Chem. 2012, 2013, 767825. [Google Scholar] [CrossRef] [Green Version]
- Karimi-Jaberi, Z.; Masoudi, B.; Rahmani, A.; Alborzi, K. Triethylammonium Hydrogen Sulfate [Et 3 NH][HSO 4] as an Efficient Ionic Liquid Catalyst for the Synthesis of Coumarin Derivatives. Polycycl. Aromat. Compd. 2017, 1–9. [Google Scholar] [CrossRef]
- Hojati, S.F.; Hadadnia, Z. A New Highly Efficient Approach to the Synthesis of Coumarin and Its Derivatives. Jordan J. Chem. 2016, 146, 1–7. [Google Scholar]
- Prousis, K.C.; Avlonitis, N.; Heropoulos, G.A.; Calogeropoulou, T. FeCl3-catalysed ultrasonic-assisted, solvent-free synthesis of 4-substituted coumarins. A useful complement to the Pechmann reaction. Ultrason. Sonochem. 2014, 21, 937–942. [Google Scholar] [CrossRef]
- Nazeruddin, G.; Pandharpatte, M.; Mulani, K. PEG-SO3H: A mild and efficient recyclable catalyst for the synthesis of coumarin derivatives. Comptes Rendus Chim. 2012, 15, 91–95. [Google Scholar] [CrossRef]
- Elgogary, S.R.; Hashem, N.M.; Khodeir, M.N. Synthesis and Photooxygenation of Linear and Angular Furocoumarin Derivatives as a Hydroxyl Radical Source: Psoralen, Pseudopsoralen, Isopseudopsoralen, and Allopsoralen. J. Heterocycl. Chem. 2015, 52, 506–512. [Google Scholar] [CrossRef]
- Sun, Y.-F.; Liu, J.-M.; Sun, J.; Huang, Y.-T.; Lu, J.; Li, M.-M.; Jin, N.; Dai, X.-F.; Fan, B. One-Pot Synthesis of Coumarins Unsubstituted on the Pyranic Nucleus Catalysed by a Wells–Dawson Heteropolyacid (H6P2W18O62). Preprints 2018, 2018090349. [Google Scholar] [CrossRef]
- Zhu, F.; Wu, X.-F. Selectivity Controlled Palladium-Catalyzed Carbonylative Synthesis of Propiolates and Chromenones from Phenols and Alkynes. Org. Lett. 2018, 20, 3422–3425. [Google Scholar] [CrossRef]
- Li, J.; Chen, H.; Zhang-Negrerie, D.; Du, Y.; Zhao, K. Synthesis of coumarins via PIDA/I2-mediated oxidative cyclization of substituted phenylacrylic acids. RSC Adv. 2013, 3, 4311. [Google Scholar] [CrossRef]
- Yan, K.; Yang, D.; Wei, W.; Wang, F.; Shuai, Y.; Li, Q.; Wang, H. Silver-Mediated Radical Cyclization of Alkynoates and α-Keto Acids Leading to Coumarins via Cascade Double C–C Bond Formation. J. Org. Chem. 2015, 80, 1550–1556. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Ding, Q.; Zong, Q.; Qiu, G. Radical 5-exo cyclization of alkynoates with 2-oxoacetic acids for synthesis of 3-acylcoumarins. Org. Chem. Front. 2015, 2, 670–673. [Google Scholar] [CrossRef]
Reaction Conditions | Solvent | Catalyst | Yields (%) | Reference |
---|---|---|---|---|
Substituted 2-oxo-2H-chromene-3-carboxylic acids | ||||
Microwave irradiation | Solvent-free | Yb(OTf)3 | 93–98 | [92] |
Stirring, RT | Water | Potassium phtalamide (PPI) | 87–90 | [93] |
Stirring, RT | Water | K2CO3 | 73–93 | [69] |
NaN3 | 78–99 | |||
Ultrasound irradiation | Water | No-catalyst | 80 | [70] |
Reflux | 95 | |||
Stirring, RT | Lemon, pomegranate, grapefruit, carrot, tomato, kiwi and limoncello juice, vinegar, olive mil and buttermilk waste water | No-catalyst | 91–99 | [72] |
Substituted 2-oxo-2H-chromene-3-carbonitriles | ||||
Stirring, 25–30 °C | Water | Choline chloride | 79–87 | [66] |
Stirring, RT | Water | Potassium phtalamide (PPI) | 89–93 | [93] |
Ultrasound irradiation | Ethanol | Piperidine | 49 | [70] |
Reflux | 50 | |||
Stirring, 35–40 °C | Ethanol | PhI(OAc)2 | 80–92 | [71] |
Stirring, 80 °C | Ethanol | FeCl3 | 72–93 * | [34] |
Stirring, 80 °C | Deep eutectic solvent | Deep eutectic solvent | 73–92 | [65] |
Reflux | Dimethylformamide | I2 | 80–92 | [95] |
Microwave irradiation | 85–95 | |||
Stirring, 120 °C | Butyl acetate | Propylphosphonic anhydride (T3P), trimethylamine (TEA) | 85–98 | [75] |
Substituted 3-acetyl-2H-chromen-2-ones | ||||
Ultrasound irradiation, 45 °C | Solvent-free | MgFe2O4 nanoparticles | 92–96 | [73] |
Stirring, 25–30 °C | Water | Choline chloride | 90 | [66] |
Stirring, 35–40 °C | Ethanol | PhI(OAc)2 | 82–92 | [71] |
Stirring, 60–80 °C, tert-butyl hydroperoxide | Dimethylformamide | Fe3O(BPDC)3 | 65–96 | [94] |
Substituted methyl 2-oxo-2H-chromene-3-carboxylates | ||||
Stirring, 2–30 °C | Water | Choline chloride | 87–96 | [66] |
Stirring, 120 °C | Butyl acetate | Propylphosphonic anhydride (T3P), trimethylamine (TEA) | 94 | [75] |
Stirring, 60–80 °C, tert-butyl hydroperoxide | Dimethylformamide | Fe3O(BPDC)3 | 28 | [94] |
Substituted ethyl 2-oxo-2H-chromene-3-carboxylates | ||||
Ultrasound irradiation, 45 °C | Solvent-free | MgFe2O4 nanoparticles | 88–93 | [73] |
Stirring, 25–30 °C | Water | Choline chloride | 91–92 | [66] |
Stirring, RT | Ethanol | Piperidine, AcOH | 67–83 | [68] |
Stirring, 35–40 °C | Ethanol | PhI(OAc)2 | 84–92 | [71] |
Ultrasound irradiation | Ethanol | Piperidine, AcOH | 60–88 | [70] |
Reflux | 48–85 | |||
Stirring, 80 °C | Ethanol | FeCl3 | 70–95 | [34] |
Reflux | Toluene | Piperidine | 25–82 | [74] |
Reaction Conditions | Solvent | Catalyst | Yields (%) | Reference |
---|---|---|---|---|
Substituted 4-methyl-2H-chromen-2-ones | ||||
Stirring, 80 °C | Solvent-free | Starch sulfuric acid (SSA) | 75–95 | [96] |
Ultrasound irradiation | Solvent-free | H2SO4 | 87 | [70] |
Stirring | Solvent-free | H2SO4 | 86 | [97] |
Microwave irradiation, 100 °C | Solvent-free | Amberlyst-15 | 43–97 | [98] |
Stirring, 130 °C | Solvent-free | Cellulose nanocrystal supported palladium nanoparticles (CNC-AMPD-Pd) | 45–97 | [99] |
Stirring, 90 °C | Solvent-free | Magnetic-core-shell-like Fe3O4@Boehmite-NH2-CoII NPs | 60–95 * | [100] |
Stirring, 80 °C | Solvent-free | PEG-SO3H | 78–91 | [108] |
Stirring, 100 °C | Solvent-free | Meglumine sulfate (MS) | 88–92 | [103] |
Microwave irradiation | 88–93 | |||
Stirring, 100 °C | Solvent-free | Alumina sulfuric acid (ASA) | 25–99 * | [104] |
Stirring, 110 °C | Solvent-free | Triethylammonium hydrogen sulfate | 79–94 | [105] |
Stirring, 140 °C | Solvent-free | TCCA (1,3,5-trichloroisocyanuric acid) | 53–98 | [106] |
Stirring, 70 °C | Solvent-free | FeCl3 | 36–99 | [107] |
Microwave irradiation, 100 °C | 39–99 | |||
Ultrasound irradiation | 55–99 | |||
Reflux | Ethanol | Polyvinylpolypyrrolidone-bound boron trifluoride (PVPP-BF3) | 72–96 | [102] |
Reflux | Toluene | FeCl3·6H2O | 44–92 | [101] |
Substituted 4-phenyl-2H-chromen-2-ones | ||||
Stirring, 80 °C | Solvent-free | Starch sulfuric acid (SSA) | 78 | [96] |
Stirring, 100 °C | Solvent-free | Alumina sulfuric acid (ASA) | 91 | [104] |
Heating, 100 °C | Solvent-free | Meglumine sulfate (MS) | 88–90 | [103] |
Microwave irradiation | 88–92 | |||
Stirring, 110 °C | Solvent-free | Triethylammonium hydrogen sulfate | 85–88 | [105] |
Stirring, 140 °C | Solvent-free | TCCA (1,3,5-trichloroisocyanuric acid) | 50–98 | [106] |
Substituted 4-(chloromethyl)-2H-chromen-2-ones | ||||
Stirring, 80 °C | Solvent-free | Starch sulfuric acid (SSA) | 85 | [96] |
Stirring, 100 °C | Solvent-free | Alumina sulfuric acid (ASA) | 88–96 | [104] |
Stirring, 70 °C | Solvent-free | FeCl3 | 95 * | [107] |
Microwave irradiation, 100 °C | 68 * | |||
Ultrasound irradiation | 75–96 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lončarić, M.; Gašo-Sokač, D.; Jokić, S.; Molnar, M. Recent Advances in the Synthesis of Coumarin Derivatives from Different Starting Materials. Biomolecules 2020, 10, 151. https://doi.org/10.3390/biom10010151
Lončarić M, Gašo-Sokač D, Jokić S, Molnar M. Recent Advances in the Synthesis of Coumarin Derivatives from Different Starting Materials. Biomolecules. 2020; 10(1):151. https://doi.org/10.3390/biom10010151
Chicago/Turabian StyleLončarić, Melita, Dajana Gašo-Sokač, Stela Jokić, and Maja Molnar. 2020. "Recent Advances in the Synthesis of Coumarin Derivatives from Different Starting Materials" Biomolecules 10, no. 1: 151. https://doi.org/10.3390/biom10010151
APA StyleLončarić, M., Gašo-Sokač, D., Jokić, S., & Molnar, M. (2020). Recent Advances in the Synthesis of Coumarin Derivatives from Different Starting Materials. Biomolecules, 10(1), 151. https://doi.org/10.3390/biom10010151