Spin-Polarized Electron Transmission in DNA-Like Systems
Abstract
:1. Introduction
2. Results
2.1. Tight-Binding Model with Generalized Rashba Interaction
2.2. Band Structure of a Molecule with Site-Independent SOC
2.3. Transmission and Spin Polarization
2.4. Analysis of Symmetries
3. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Göhler, B.; Hamelbeck, V.; Markus, T.Z.; Kettner, M.; Hanne, G.F.; Vager, Z.; Naaman, R.; Zacharias, H. Spin Selectivity in Electron Transmission Through Self-Assembled Monolayers of Double-Stranded DNA. Science 2011, 331, 894. [Google Scholar] [CrossRef] [PubMed]
- Xie, Z.; Markus, T.Z.; Cohen, S.R.; Vager, Z.; Gutierrez, R.; Naaman, R. Spin Specific Electron Conduction Through DNA Oligomers. Nano Lett. 2011, 11, 4652. [Google Scholar] [CrossRef] [PubMed]
- Kessler, J. Polarized Electrons; Springer: Berlin, Germany, 1976. [Google Scholar]
- Kiran, V.; Mathew, S.P.; Cohen, S.R.; Hernández Delgado, I.; Lacour, J.; Naaman, R. Helicenes—A New Class of Organic Spin Filter. Adv. Mat. 2016, 28, 1957. [Google Scholar] [CrossRef] [PubMed]
- Michaeli, K.; Kantor-Uriel, N.; Naaman, R.; Waldeck, D.H. The Electron’s Spin and Molecular Chirality—How are They Related and How do They Affect Life Processes? Chem. Soc. Rev. 2016, 45, 6478. [Google Scholar] [CrossRef] [PubMed]
- Mishra, D.; Markus, T.Z.; Naaman, R.; Kettner, M.; Göhler, B.; Zacharias, H.; Friedman, N.; Sheves, M.; Fontanesi, C. Spin-Dependent Electron Transmission Through Bacteriorhodopsin Embedded in Purple Membrane. Proc. Nat. Acad. Sci. USA 2013, 110, 14872. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kiran, V.; Cohen, S.R.; Naaman, R. Structure Dependent Spin Selectivity in Electron Transport Through Oligopeptides. J. Chem. Phys. 2017, 146, 92302. [Google Scholar] [CrossRef]
- Aragonès, A.C.; Medina, E.; Ferrer-Huerta, M.; Gimeno, N.; Teixidó, M.; Palma, J.L.; Tao, N.; Ugalde, J.M.; Giralt, E.; Díez-Pérez, I.; et al. Measuring the Spin-Polarization Power of a Single Chiral Molecule. Small 2017, 13, 1602519. [Google Scholar] [CrossRef]
- Kumar, A.; Capua, E.; Kesharwani, M.K.; Martin, J.M.L.; Sitbon, E.; Waldeck, D.H.; Naaman, R. Chirality-Induced Spin Polarization Places Symmetry Constraints on Biomolecular Interactions. Proc. Natl. Acad. Sci. USA 2017, 114, 2474. [Google Scholar] [CrossRef] [Green Version]
- Mondal, P.C.; Fontanesi, C.; Waldeck, D.H.; Naaman, R. Field and Chirality Effects on Electrochemical Charge Transfer Rates: Spin Dependent Electrochemistry. ACS Nano 2015, 9, 3377. [Google Scholar] [CrossRef] [Green Version]
- Kettner, M.; Göhler, B.; Zacharias, H.; Mishra, D.; Kiran, V.; Naaman, R.; Fontanesi, C.; Waldeck, D.H.; Sȩk, S.; Pawłowski, J.; et al. Spin Filtering in Electron Transport Through Chiral Oligopeptides. J. Phys. Chem. C 2015, 119, 14542. [Google Scholar] [CrossRef]
- Naaman, R.; Waldeck, D.H. Spintronics and Chirality: Spin Selectivity in Electron Transport Through Chiral Molecules. Annu. Rev. Phys. Chem. 2015, 66, 263. [Google Scholar] [CrossRef] [PubMed]
- Zwang, T.J.; Hürlimann, S.; Hill, M.G.; Barton, J.K. Helix-Dependent Spin Filtering Through the DNA Duplex. J. Am. Chem. Soc. 2016, 138, 15551. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mtangi, W.; Tassinari, F.; Vankayala, K.; Vargas Jentzsch, A.; Adelizzi, B.; Palmans, A.R.A.; Fontanesi, C.; Meijer, E.W.; Naaman, R. Control of Electrons’ Spin Eliminates Hydrogen Peroxide Formation During Water Splitting. J. Am. Chem. Soc. 2017, 139, 2794. [Google Scholar] [CrossRef] [PubMed]
- Ben Dor, O.; Yochelis, S.; Radko, A.; Vankayala, K.; Capua, E.; Capua, A.; Yang, S.H.; Baczewski, L.T.; Parkin, S.S.P.; Naaman, R.; et al. Magnetization Switching in Ferromagnets by Adsorbed Chiral Molecules Without Current or External Magnetic Field. Nat. Commun. 2017, 8, 14567. [Google Scholar] [CrossRef] [PubMed]
- Kettner, M.; Maslyuk, V.V.; Nürenberg, D.; Seibel, J.; Gutierrez, R.; Cuniberti, G.; Ernst, K.H.; Zacharias, H. Chirality-Dependent Electron Spin Filtering by Molecular Monolayers of Helicenes. J. Phys. Chem. Lett. 2018, 9, 2025. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abendroth, J.M.; Cheung, K.M.; Stemer, D.M.; El Hadri, M.S.; Zhao, C.; Fullerton, E.E.; Weiss, P.S. Spin-Dependent Ionization of Chiral Molecular Films. J. Am. Chem. Soc. 2019, 141, 3863. [Google Scholar] [CrossRef] [PubMed]
- Yeganeh, S.; Ratner, M.A.; Medina, E.; Mujica, V. Chiral electron transport: Scattering through helical potentials. J. Chem. Phys. 2009, 131, 014707. [Google Scholar] [CrossRef]
- Medina, E.; López, F.; Ratner, M.A.; Mujica, V. Chiral molecular films as electron polarizers and polarization modulators. Europhys. Lett. 2012, 99, 17006. [Google Scholar] [CrossRef]
- Gutiérrez, R.; Díaz, E.; Naaman, R.; Cuniberti, G. Spin-selective transport through helical molecular systems. Phys. Rev. B 2012, 85, 081404. [Google Scholar] [CrossRef]
- Gutierrez, R.; Díaz, E.; Gaul, C.; Brumme, T.; Domínguez-Adame, F.; Cuniberti, G. Modeling Spin Transport in Helical Fields: Derivation of an Effective Low-Dimensional Hamiltonian. J. Phys. Chem. C 2013, 117, 22276. [Google Scholar] [CrossRef] [Green Version]
- Díaz, E.; Domínguez-Adame, F.; Gutierrez, R.; Cuniberti, G.; Mujica, V. Thermal Decoherence and Disorder Effects on Chiral-Induced Spin Selectivity. J. Phys. Chem. Lett. 2018, 9, 5753. [Google Scholar] [CrossRef] [PubMed]
- Eremko, A.A.; Loktev, V.M. Spin sensitive electron transmission through helical potentials. Phys. Rev. B 2013, 88, 165409. [Google Scholar] [CrossRef] [Green Version]
- Medina, E.; González-Arraga, L.A.; Finkelstein-Shapiro, D.; Berche, B.; Mujica, V. Continuum model for chiral induced spin selectivity in helical molecules. J. Chem. Phys. 2015, 142, 194308. [Google Scholar] [CrossRef] [PubMed]
- Caetano, R.A. Spin–Current and Spin–Splitting in Helicoidal Molecules Due to Spin-Orbit Coupling. Sci. Rep. 2016, 6, 23452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, A.M.; Sun, Q.F. Spin-selective transport of electrons in DNA double helix. Phys. Rev. Lett. 2012, 108, 218102. [Google Scholar] [CrossRef] [Green Version]
- Guo, A.M.; Díaz, E.; Gaul, C.; Gutierrez, R.; Domínguez-Adame, F.; Cuniberti, G.; Sun, Q.F. Contact effects in spin transport along double-helical molecules. Phys. Rev. B 2014, 89, 205434. [Google Scholar] [CrossRef] [Green Version]
- Díaz, E.; Albares, P.; Estévez, P.G.; Cerveró, J.M.; Gaul, C.; Diez, E.; Domínguez-Adame, F. Spin Dynamics in Helical Molecules with Nonlinear Interactions. New J. Phys. 2018, 20, 043055. [Google Scholar] [CrossRef]
- Matityahu, S.; Utsumi, Y.; Aharony, A.; Entin-Wohlman, O.; Balseiro, C.A. Spin-dependent transport through a chiral molecule in the presence of spin–orbit interaction and nonunitary effects. Phys. Rev. B 2016, 93, 075407. [Google Scholar] [CrossRef] [Green Version]
- Gersten, J.; Kaasbjerg, K.; Nitzan, A. Induced Spin Filtering in Electron Transmission Through Chiral Molecular Layers Adsorbed on Metals with Strong Spin-Orbit Coupling. J. Chem. Phys. 2013, 139, 114111. [Google Scholar] [CrossRef] [Green Version]
- Hedegard, P.; Dalum, S. Theory of Chiral Induced Spin Selectivity. Nano Lett. 2019, 19, 5253. [Google Scholar]
- Geyer, M.; Gutierrez, R.; Mujica, V.; Cuniberti, G. Chirality-Induced Spin Selectivity in a Coarse-Grained Tight-Binding Model for Helicene. J. Phys. Chem. C 2019, 123, 27230. [Google Scholar] [CrossRef]
- Michaeli, K.; Naaman, R. Origin of Spin-Dependent Tunneling Through Chiral Molecules. J. Phys. Chem. C 2019, 123, 17043. [Google Scholar] [CrossRef] [Green Version]
- Fransson, J. Chirality-Induced Spin Selectivity: The Role of Electron Correlations. J. Phys. Chem. Lett. 2019, 10, 7126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maslyuk, V.V.; Gutierrez, R.; Dianat, A.; Mujica, V.; Cuniberti, G. Enhanced Magnetoresistance in Chiral Molecular Junctions. J. Phys. Chem. Lett. 2018, 9, 5453. [Google Scholar] [CrossRef]
- Zöllner, M.S.; Varela, S.; Medina, E.; Mujica, V.; Herrmann, C. Chiral-Induced Spin Selectivity: A Symmetry Analysis of Electronic Transmission. ChemRxiv 2019. [Google Scholar] [CrossRef]
- Nürenberg, D.; Zacharias, H. Evaluation of spin–flip scattering in chirality-induced spin selectivity using the Riccati equation. Phys. Chem. Chem. Phys. 2019, 21, 3761. [Google Scholar] [CrossRef] [Green Version]
- Moroz, A.V.; Barnes, C.H.W. Effect of the spin–orbit interaction on the band structure and conductance of quasi-one-dimensional systems. Phys. Rev. B 1999, 60, 14272–14285. [Google Scholar] [CrossRef] [Green Version]
- Haug, H.; Jauho, A.P. Quantum Kinetics in Transport and Optics of Semiconductors; Springer: Berlin, Germany, 1998. [Google Scholar]
- Ryndyk, D. Theory of Quantum Transport at Nanoscale; Springer: Berlin, Germany, 2016. [Google Scholar]
- Kubar, T.; Woiczikowski, P.B.; Cuniberti, G.; Elstner, M. Efficient Calculation of Charge-Transfer Matrix Elements for Hole Transfer in DNA. J. Phys. Chem. B 2008, 112, 7937. [Google Scholar] [CrossRef]
- Molenkamp, L.W.; Schmidt, G.; Bauer, G.E.W. Rashba Hamiltonian and electron transport. Phys. Rev. B 2001, 64, 121202. [Google Scholar] [CrossRef] [Green Version]
- Sánchez, D.; Serra, L. Fano-Rashba effect in a quantum wire. Phys. Rev. B 2006, 74, 153313. [Google Scholar] [CrossRef] [Green Version]
- Artacho, E.; Machado, M.; Sánchez-Portal, D.; Ordejón, P.; Soler, J.M. Electrons in dry DNA from density functional calculations. Mol. Phys. 2003, 101, 1587. [Google Scholar] [CrossRef] [Green Version]
- Díaz, E.; Malyshev, A.V.; Domínguez-Adame, F. Interband optical transitions in DNA-like systems. Phys. Rev. B 2007, 76, 205117. [Google Scholar] [CrossRef] [Green Version]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sierra, M.A.; Sánchez, D.; Gutierrez, R.; Cuniberti, G.; Domínguez-Adame, F.; Díaz, E. Spin-Polarized Electron Transmission in DNA-Like Systems. Biomolecules 2020, 10, 49. https://doi.org/10.3390/biom10010049
Sierra MA, Sánchez D, Gutierrez R, Cuniberti G, Domínguez-Adame F, Díaz E. Spin-Polarized Electron Transmission in DNA-Like Systems. Biomolecules. 2020; 10(1):49. https://doi.org/10.3390/biom10010049
Chicago/Turabian StyleSierra, Miguel A., David Sánchez, Rafael Gutierrez, Gianaurelio Cuniberti, Francisco Domínguez-Adame, and Elena Díaz. 2020. "Spin-Polarized Electron Transmission in DNA-Like Systems" Biomolecules 10, no. 1: 49. https://doi.org/10.3390/biom10010049
APA StyleSierra, M. A., Sánchez, D., Gutierrez, R., Cuniberti, G., Domínguez-Adame, F., & Díaz, E. (2020). Spin-Polarized Electron Transmission in DNA-Like Systems. Biomolecules, 10(1), 49. https://doi.org/10.3390/biom10010049