Chemical Constituents from Fraxinus hupehensis and Their Antifungal and Herbicidal Activities
Abstract
:1. Introduction
2. Experimental
2.1. Plant Collection and Authentication
2.2. Extraction, Isolation and Identification
2.3. Biological Activities
2.3.1. Determination of Antifungal Activities
2.3.2. Determination of Herbicidal Activities
2.3.3. Determination of Antibacterial Activities
3. Results
3.1. Antifungal Activity
3.2. Herbicidal Activity
3.3. Antibacterial Activity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Qu, S.Z.; Xiang, Q.B.; Su, P.L. A new specie of the genus Fraxinus Linn. from Hubei province. J. Nanjing For. Univ. 1979, 21, 146–148. [Google Scholar]
- Cheng, J.R.; Zhou, M.Q. The distribution status and conservation strategy of Fraxinus hupehensis germplasm resources. J. Yangtze Univ. 2016, 13, 7–9. [Google Scholar]
- Zeng, X.B.; Wang, J.C.; Wu, W.X. Fraxinus hupehensis—A new specie of the genus Fraxinus Linn. For. Sci. Technol. 1979, 12, 6–7. [Google Scholar]
- Ming, J.; Liao, H.R. On the present situation of Fraxinus hupehensis and its sustainable utilization. J. Plant Resour. Environ. 1998, 7, 19–22. [Google Scholar]
- Chinese Pharmacopoeia Commission. Fraxini Cortex, 4th ed.; Zhao, Y.Y., Ed.; The Pharmacopoeia of the People’s Republic of China: Beijing, China, 2015; p. 271. [Google Scholar]
- Wu, J.L.; Fu, G.L.; Li, F. Identification of Qin–Pi (Cortex fraxini) by ultraviolet spectrum. Tradit. Chin. Med. J. 1983, 8, 11–16. [Google Scholar]
- Choi, J.H.; Kim, D.Y.; Yoon, J.H.; Youn, H.Y.; Yi, J.B.; Rhee, H.I.; Ryu, K.H.; Jung, C.K.; Han, C.K.; Kwak, W.J.; et al. Effects of SKI 306X, a new herbal agent, on proteoglycan degradation in cartilage explant culture and collagenase-induced rabbit osteoarthritis model. Osteoarthr. Cartil. 2002, 10, 471–478. [Google Scholar] [CrossRef] [Green Version]
- Park, C.; Jin, C.Y.; Kwon, H.J.; Hwang, H.J.; Kim, G.Y.; Choi, W.; Kwon, T.K.; Kim, B.W.; Kim, W.J.; Choi, Y.H. Induction of apoptosis by esculetin in human leukemia U937 cells: Roles of Bcl-2 and extracellular–regulated kinase signaling. Toxicol. In Vitro 2010, 24, 486–494. [Google Scholar] [CrossRef]
- Wang, H.T.; Zhou, D.; Xie, K.P.; Xie, M.J. Antibacterial mechanism of fraxetin against Staphylococcus aureus. Mol. Med. Rep. 2014, 10, 2341–2345. [Google Scholar] [CrossRef] [Green Version]
- Galabov, A.S.; Iosifova, T.; Vassileva, E.; Kostova, I. Antiviral activity of some hydroxycoumarin derivativese. Z. Naturforsch. C Biosci. 1996, 51, 558–562. [Google Scholar] [CrossRef]
- Wu, C.R.; Huang, M.Y.; Lin, Y.T.; Ju, H.Y.; Ching, H. Antioxidant properties of Cortex Fraxini and its simple coumarins. Food Chem. 2007, 104, 1464–1471. [Google Scholar] [CrossRef]
- Wu, Q.L.; Zhang, L.J.; Xu, H.H.; Xu, Z.H.; Li, J.K. Study on fungicidal activities of Fraxinus hupehensis extracted from its leaves. Southwest Chin. J. Agric. Sci. 2017, 30, 978–980. [Google Scholar]
- Zhang, L.J.; Xu, H.H.; Xu, Z.H.; Li, J.K.; Wu, Q.L. GC–MS analysis and preliminary study on structures of extracts from Fraxinus hupehensis leaves. Nonwood For. Res. 2017, 35, 186–192, 228. [Google Scholar]
- Zhang, L.J.; Xu, H.H.; Xu, Z.H.; Li, J.K.; Wu, Q.L. Extraction, GC–MS analysis and fungicidal activities determination of volatile components from the leaves of Fraxinus hupehensis. J. Henan. Agric. Sci. 2017, 46, 80–83. [Google Scholar]
- Ma, L.; Yan, H.J.; Qu, J.J.; Zhang, Y. Method for determining the content of esculin and esculetin from the bark of Fraxinus hupehensis. Chin. J. Hosp. Pharm. 2010, 30, 1336–1337. [Google Scholar]
- Ma, L.; Yan, H.J.; Qu, J.J.; Zhang, Y. Extraction technics of total coumarins from the leaf of Fraxinus hupehensis. Herald Med. 2010, 29, 925–928. [Google Scholar]
- Liu, R.M.; Sun, Q.H.; Sun, A.L.; Cui, J.C. Isolation and purification of coumarin compounds from Cortex Fraxinus by high-speed counter-current chromatography. J. Chromatogr. A 2005, 1072, 195–199. [Google Scholar] [CrossRef]
- Zhou, H.Y.; Qin, M.J.; Hong, J.L.; Ni, Y.J.; Wu, G. Chemical constituents of Viola yedoensis. Chin. J. Nat. Med. 2009, 7, 290–292. [Google Scholar] [CrossRef]
- Fang, W.; Ruan, J.L.; Wang, Z.; Cai, Y.L. Studies on chemrical constituents of Arachniodes rhcmboidea. China J. Chin. Mate. Med. 2008, 6, 649–650. [Google Scholar]
- Shan, F.; Zhang, J.; Li, T.; Wang, S.; Ding, W.J.; Zhao, M.M.; Du, Y.F.; Wang, Q.; Jia, J. Multi-responses extraction optimization based on response surface methodology combined with polarity switching HPLC–MS/MS for the simultaneous quantitation of 11 compounds in Cortex Fraxini: Application to four species of Cortex Fraxini and its 3 confusable species. J. Pharm. Biomed. Anal. 2014, 91, 210–221. [Google Scholar]
- Huang, Y.L.; Wei, Y.Q.; He, R.J.; Li, Y.; Tang, P.D.; Ruan, J.; Wang, Y.F.; Li, D.P. Chemical constituents from Agriolimax agrestis. Chin. Trad. Patent Med. 2018, 40, 2471–2474. [Google Scholar]
- Wei, H.; Liu, L.L.; Xu, L.J.; Peng, Y.; Xiao, P.G. Chemical constituents in Tibetan medicine Dolomiaea souliei (Franch.) Shih. Chin. Pharm. 2017, 20, 785–787. [Google Scholar]
- Niu, J.F.; Nie, D.Y.; Yu, D.Y.; Wu, Q.L.; Yu, L.H.; Yao, Z.L.; Du, X.Y.; Li, J.K. Synthesis, fungicidal activities and phloem mobility of phenazine-1-carboxylic acid-alanine conjugates. Pestic. Biochem. Physiol. 2017, 11, 8–13. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.L.; Zhu, X.; Zhang, M.; Wu, Q.L.; Zhou, X.D.; Li, J.K. Synthesis and fungicidal activities of 1, 3, 4–oxadiazol–2–ylthioether derivatives containing a phenazine–1–carboxylic acid scaffold. Nat. Prod. Res. 2019, 33, 2145–2150. [Google Scholar]
- Zhu, X.; Zhang, M.; Yu, L.H.; Xu, Z.H.; Yang, D.; Du, X.Y.; Wu, Q.L.; Li, J.K. Synthesis and bioactivities of diamide derivatives containing a phenazine–1–carboxamide scaffold. Nat. Prod. Res. 2019, 33, 2453–2460. [Google Scholar] [CrossRef] [PubMed]
- Xue, Q.H.; Cheng, L.J. Microbiology Experiment Course; World Publishing Corporation: Xi’an, China, 2000; pp. 30–32. [Google Scholar]
- Kostova, I.; Iossifova, T. Chemical components of Fraxinus species. Fitoterapia 2007, 78, 85–106. [Google Scholar] [CrossRef]
- Zhang, T.T.; Zheng, C.Y.; He, M.; Wu, A.P.; Nie, L.W. The inhibitory mechanism of linoleic acid on Microcystis aeruginosa. China Environ. Sci. 2009, 29, 419–424. [Google Scholar]
- Zhang, C.J.; Li, Z.R.; Bai, L.Y. Extraction and identification of herbicidal active substances in cottonseed hulls. Chin. J. Pestic. Sci. 2019, 21, 146–150. [Google Scholar]
- Li, Z.R.; Huang, Q.Q.; Peng, Q.; Zhou, Y.; Zhou, X.M.; Bai, L.Y. Herbicidal activity and response mechanism of botanical caprylic acid. J. Plant Prot. 2018, 45, 1161–1167. [Google Scholar]
- Kolar, J.M.; Konduri, S.; Chang, T.N.; Wang, H.J.; McNerlin, C.; Ohlsson, L.; Harrod, M.; Siegel, D.; Saghatelian, A. Linoleic acid esters of hydroxy linoleic acids are anti-inflammatory lipids found in plants and mammals. J. Biol. Chem. 2019, 294, 10698–10707. [Google Scholar] [CrossRef]
- Fukuda, M.; Tsujino, Y.; Fujimori, T.; Wakabayashi, K.; Boger, P. Phytotoxic activity of middle-chain fatty acids I: Effects on cell constituents. Pestic. Biochem. Physiol. 2004, 80, 143–150. [Google Scholar] [CrossRef]
- Qin, Z.G.; Shen, G.H.; Li, T.; Chai, X.L.; Wen, G.Y. Study on the herbicidal activity and applied technology of botanical pelargonic acid. Acta Agric. Shanghai 2010, 26, 1–4. [Google Scholar]
- Liao, H.B.; Liu, M.F.; Cheng, A.C. Structural features and functional mechanism of Ton B in some Gram-negative bacteria—A review. Acta Microbiol. Sin. 2015, 55, 529–536. [Google Scholar]
Compd. | Rhizoctonia solani | Fusarium graminearum | Bipolaris maydis | Botrytis cinema | Sclerotium rolfsii | Alternaria solani |
---|---|---|---|---|---|---|
1 | −1.14 ± 0.99 | 1.28 ± 2.22 | −0.72 ± 1.26 | 4.54 ± 1.07 | 9.46 ± 3.10 | 4.96 ± 0.07 |
2 | 36.37 ± 1.68 | 23.33 ± 2.89 | 37.39 ± 2.85 | 20.1 ± 1.82 | 30.34 ± 8.43 | 32.22 ± 2.09 |
3 | 27.78 ± 4.72 | −1.33 ± 3.00 | 10.08 ± 2.57 | 6.44 ± 4.80 | 13.52 ± 6.26 | 0.79 ± 3.75 |
4 | 17.64 ± 1.44 | 1.26 ± 2.98 | 6.46 ± 2.08 | 11.67 ± 1.73 | 14.19 ± 0.16 | 0.81 ± 1.41 |
5 | −1.63 ± 1.64 | −2.37 ± 1.04 | −2.48 ± 1.06 | 5.34 ± 3.29 | −1.15 ± 3.42 | 2.1 ± 2.08 |
6 | −3.24 ± 0.03 | −0.06 ± 1.03 | −0.31 ± 2.13 | −0.11 ± 4.60 | 0.94 ± 4.81 | 1.4 ± 1.22 |
7 | −1.62 ± 0.02 | 1.78 ± 1.79 | −3.73 ± 1.85 | 0.69 ± 3.46 | 5.20 ± 3.14 | 3.52 ± 1.20 |
8 | 18.91 ± 2.32 | −0.12 ± 2.71 | 0.31 ± 1.05 | 7.67 ± 3.21 | 2.58 ± 2.36 | 21.3 ± 2.13 |
9 | 18.94 ± 3.57 | 28.99 ± 1.93 | 0.37 ± 3.21 | −0.85 ± 3.57 | −1.67 ± 2.89 | 3.52 ± 1.21 |
10 | 32.43 ± 1.37 | 4.73 ± 1.00 | −2.49 ± 2.16 | −3.17 ± 2.75 | −0.6 ± 2.49 | 3.49 ± 4.33 |
Carbendazim | 100.00 ± 0.00 | 100.00 ± 0.00 | 24.23 ± 0.26 | 36.35 ± 3.38 | 7.3 ± 4.59 | 11.29 ± 2.56 |
Compd. | Rhizoctonia solani | Fusarium graminearum | Bipolaris maydis | Botrytiscinema | Sclerotiumrolfsii | Alternariasolani |
---|---|---|---|---|---|---|
2 | 0.33 ± 0.01 | 0.48 ± 0.02 | 0.31 ± 0.01 | 1.11 ± 0.02 | 0.50 ± 0.02 | 0.40 ± 0.02 |
Carbendazim | 0.12 ± 0.00 | 0.13 ± 0.01 | 0.74 ± 0.01 | 0.32 ± 0.01 | 1.78 ± 0.01 | 1.41 ± 0.00 |
Compd. | Echinochloa crus-galli | Brassica napus | ||
---|---|---|---|---|
Root | Stalk | Root | Stalk | |
1 | 18.32 ± 0.29 | 4.13 ± 0.29 | 32.28 ± 0.82 | −28.93 ± 1.76 |
2 | 40.36 ± 0.24 | 5.63 ± 0.36 | 13.26 ± 1.94 | −45.62 ± 1.44 |
3 | 43.29 ± 0.23 | 17.56 ± 0.42 | −25.53 ± 4.08 | −33.06 ± 1.89 |
4 | 29.97 ± 0.27 | 18.66 ± 0.33 | −16.85 ± 2.32 | −51.37 ± 1.67 |
5 | 47.86 ± 0.27 | 13.14 ± 0.26 | 48.11 ± 1.22 | −10.91 ± 0.37 |
6 | 9.95 ± 0.21 | 2.69 ± 0.18 | −43.08 ± 4.16 | −27.20 ± 0.38 |
7 | 4.61 ± 0.29 | −7.92 ± 0.20 | −29.04 ± 1.96 | 4.85 ± 0.27 |
8 | 96.71 ± 0.06 | 78.07 ± 0.32 | 29.82 ± 1.78 | 14.35 ± 0.39 |
9 | 64.85 ± 0.41 | 71.56 ± 0.34 | −59.43 ± 4.03 | −35.07 ± 0.78 |
10 | 91.43 ± 0.10 | 63.16 ± 0.32 | 28.54 ± 1.52 | −10.77 ± 0.40 |
Cyanazine | 66.52 ± 0.08 | 40.39 ± 0.21 | 48.83 ± 0.68% | 6.78 ± 0.32 |
Compd. | Root | Stalk |
---|---|---|
8 | 1.16 ± 0.23 | 1.32 ± 0.27 |
9 | 1.28 ± 0.58 | 1.31 ± 0.46 |
10 | 1.33 ± 0.35 | 2.35 ± 0.98 |
Cyanazine | 1.56 ± 0.44 | 2.84 ± 0.73 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, C.-N.; Yao, Z.-L.; Yang, D.; Ke, J.; Wu, Q.-L.; Li, J.-K.; Zhou, X.-D. Chemical Constituents from Fraxinus hupehensis and Their Antifungal and Herbicidal Activities. Biomolecules 2020, 10, 74. https://doi.org/10.3390/biom10010074
Zhao C-N, Yao Z-L, Yang D, Ke J, Wu Q-L, Li J-K, Zhou X-D. Chemical Constituents from Fraxinus hupehensis and Their Antifungal and Herbicidal Activities. Biomolecules. 2020; 10(1):74. https://doi.org/10.3390/biom10010074
Chicago/Turabian StyleZhao, Chi-Na, Zong-Li Yao, Dan Yang, Jian Ke, Qing-Lai Wu, Jun-Kai Li, and Xu-Dong Zhou. 2020. "Chemical Constituents from Fraxinus hupehensis and Their Antifungal and Herbicidal Activities" Biomolecules 10, no. 1: 74. https://doi.org/10.3390/biom10010074
APA StyleZhao, C. -N., Yao, Z. -L., Yang, D., Ke, J., Wu, Q. -L., Li, J. -K., & Zhou, X. -D. (2020). Chemical Constituents from Fraxinus hupehensis and Their Antifungal and Herbicidal Activities. Biomolecules, 10(1), 74. https://doi.org/10.3390/biom10010074