Antiproliferative, Antimicrobial and Antiviral Activity of β-Aryl-δ-iodo-γ-lactones, Their Effect on Cellular Oxidative Stress Markers and Biological Membranes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Tested Compounds
2.2. Antimicrobial Activity
2.2.1. Microbial Strains
2.2.2. Disc Diffusion Method
2.2.3. Determination of Minimum Inhibitory and Minimum Bactericidal Concentrations
2.3. Cytotoxic Properties
2.3.1. Cell Lines and Media
2.3.2. Cytotoxicity Assay
2.4. Antiviral Assay
2.5. Oxidative Stress Markers Analysis
2.5.1. Catalase Activity (EC 1.11.1.6)
2.5.2. Glutathione Peroxidase (GPx) Activity (EC 1.11.1.9)
2.5.3. Glutathione-S-Transferase (GST) Activity (EC 2.5.1.18)
2.5.4. Superoxide Dismutase (SOD) Activity (EC 1.15.1.1)
2.5.5. Lipid Peroxidation
2.5.6. Total Antioxidant Capacity (TAC)
2.5.7. Total Oxidative Status (TOS)
2.6. Hemolytic Activity
2.7. Biophysics Research
2.7.1. Fluorimetric Method
2.7.2. Fourier Transform Infrared Spectroscopy
3. Results and Discussion
3.1. Antimicrobial Assays
3.2. Cytotoxicity towards Normal and Tumor Cells
3.3. Antiviral Properties
3.4. Oxidative Stress Markers Analysis
3.5. Hemolytic Activity
3.6. Biophysical Research
3.6.1. Fluorimetric Method
3.6.2. Fourier Transform Infrared Spectroscopy
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- World Health Organization. Available online: https://www.who.int/news-room/fact-sheets/detail/cancer (accessed on 18 November 2020).
- Chung, L.M.; Liang, J.A.; Lin, C.L.; Sun, L.M.; Kao, C.H. Cancer risk in patients with candidiasis: A nationwide population-based cohort study. Oncotarget 2017, 8, 63562–63573. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liao, J.B. Cancer Issue: Viruses and human cancer. Yale J. Biol. Med. 2006, 79, 115. [Google Scholar] [PubMed]
- Sheweita, S.A.; Alsamghan, A.S. Molecular mechanisms contributing bacterial infections to the incidence of various types of cancer. Mediators Inflamm. 2020, 2020. [Google Scholar] [CrossRef] [PubMed]
- Elsland, D.; Neefjes, J. Bacterial infections and cancer. EMBO Rep. 2018, 19, 1–11. [Google Scholar] [CrossRef]
- Parsonnet, J. Bacterial infection as a cause of cancer. Environ. Health Perspect. 1995, 103, 263–268. [Google Scholar] [CrossRef]
- Halliwell, B.; Gutteridge, J.M.C. Free Radicals in Biology and Medicine; Halliwell, B., Gutteridge, J.M.C., Eds.; Oxford University Press: Oxford, UK, 1999; Volume 186, pp. 1–25. [Google Scholar]
- Olusi, S.O. Obesity is an independent risk factor for plasma lipid peroxidation and depletion of erythrocyte cytoprotectic enzymes in humans. Int. J. Obes. 2002, 26, 1159–1164. [Google Scholar] [CrossRef] [Green Version]
- Nawrot, J.; Dams, I.; Wawrzeńczyk, C. Feeding deterrent activity of terpenoid lactones with a p-menthane system against stored-product pests. J. Stored Prod. Res. 2009, 45, 221–225. [Google Scholar] [CrossRef]
- Adekenov, S.M.; Mukhametzhanova, G.M.; Atazhanova, G.A.; Harmatha, J. Insect repellent and feeding deterrent activity of natural sesquiterpene lactones and their derivatives. Czech Chem. Soc. Symp. Ser. 2015, 13, 163–184. [Google Scholar]
- Grudniewska, A.; Kłobucki, M.; Dancewicz, K.; Szczepanik, M.; Gabryś, B.; Wawrzeńczyk, C. Synthesis and antifeedant activity of racemic and optically active hydroxy lactones with the p-menthane system. PLoS ONE 2015, 10, e0131028. [Google Scholar] [CrossRef] [Green Version]
- Skrobiszewski, A.; Gładkowski, W.; Mazur, M.; Szczepanik, M.; Maciejewska, G.; Wawrzeńczyk, C. Microbial hydrolysis of racemic β-aryl-γ-ethylidene-γ-lactones and antifeedant activity of the products against Alphitobius diaperinus Panzer. Molecules 2018, 23, 1516. [Google Scholar] [CrossRef] [Green Version]
- De Pascale, G.; Nazi, I.; Harrison, P.H.M.; Wright, G.D. β-Lactone natural products and derivatives inactivate homoserine transacetylase, a target for antimicrobial agents. J. Antibiot. (Tokyo) 2011, 64, 483–487. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.K.; Song, H.E.; Lee, H.B.; Kim, C.S.; Koketsu, M.; Ngan, L.T.M.; Ahn, Y.J. Growth inhibitory, bactericidal, and morphostructural effects of dehydrocostus lactone from Magnolia sieboldii leaves on antibiotic-susceptible and -resistant strains of Helicobacter pylori. PLoS ONE 2014, 9, e95530. [Google Scholar] [CrossRef] [PubMed]
- Skrobiszewski, A.; Gładkowski, W.; Walczak, P.; Gliszczyńska, A.; Maciejewska, G.; Klejdysz, T.; Nawrot, J.; Wawrzeńczyk, C. Synthesis of β-aryl-γ-lactones and relationship: Structure - antifeedant and antifungal activity. J. Chem. Sci. 2015, 127, 687–699. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.L.; Gao, Y.Q.; Wang, D.L.; Zhong, C.Q.; Feng, J.T.; Zhang, X. Bioactivity-guided mixed synthesis and evaluation of α-alkenyl-γ and δ-lactone derivatives as potential fungicidal agents. RSC Adv. 2017, 7, 56496–56508. [Google Scholar] [CrossRef] [Green Version]
- Gładkowski, W.; Siepka, M.; Janeczko, T.; Kostrzewa-Susłow, E.; Mazur, M.; Żarowska, B.; Łaba, W.; Maciejewska, G.; Wawrzeńczyk, C. Synthesis and antimicrobial activity of methoxy-substituted γ-oxa-ε-lactones derived from flavanones. Molecules 2019, 24, 4151. [Google Scholar] [CrossRef] [Green Version]
- Ghantous, A.; Gali-Muhtasib, H.; Vuorela, H.; Saliba, N.A.; Darwiche, N. What made sesquiterpene lactones reach cancer clinical trials? Drug Discov. Today 2010, 15, 668–678. [Google Scholar] [CrossRef]
- Albrecht, Ł.; Wojciechowski, J.; Albrecht, A.; Wolf, W.M.; Janecka, A.; Studzian, K.; Krajewska, U.; Rózalski, M.; Janecki, T.; Krawczyk, H. Synthesis and cytotoxic evaluation of β-alkyl or β-aryl-δ-methyl-α-methylene-δ-lactones. Comparison with the corresponding γ-lactones. Eur. J. Med. Chem. 2010, 45, 710–718. [Google Scholar] [CrossRef]
- Zhao, Y.; Liu, P.Y.; Hsieh, K.Y.; Hsu, P.L.; Goto, M.; Morris-Natschke, S.L.; Harn, H.J.; Lee, K.H. Design, synthesis and structure-activity relationships of (±)-isochaihulactone derivatives. Medchemcomm 2017, 8, 2040–2049. [Google Scholar] [CrossRef]
- Kamizela, A.; Gawdzik, B.; Urbaniak, M.; Lechowicz, Ł.; Białońska, A.; Gonciarz, W.; Chmiela, M. Synthesis, characterization, cytotoxicity, and antibacterial properties of trans-γ-halo-δ-lactones. ChemistryOpen 2018, 7, 543–550. [Google Scholar] [CrossRef] [Green Version]
- da Silva Castro, E.; Alves Antunes, L.A.; Revoredo Lobo, J.F.; Ratcliffe, N.A.; Borges, R.M.; Rocha, L.; Burth, P.; Fonte Amorim, L.M. Antileukemic properties of sesquiterpene lactones: A systematic review. Anticancer. Agents Med. Chem. 2018, 18, 323–334. [Google Scholar] [CrossRef]
- Gładkowski, W.; Włoch, A.; Pawlak, A.; Sysak, A.; Białońska, A.; Mazur, M.; Mituła, P.; Maciejewska, G.; Obmińska-Mrukowicz, B.; Kleszczyńska, H. Preparation of enantiomeric β-(2′,5′-dimethylphenyl) bromolactones, their antiproliferative activity and effect on biological membranes. Molecules 2018, 23, 3035. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davis, B.M.; Jensen, R.; Williams, P.; O’Shea, P. The interaction of N-acylhomoserine lactone quorum sensing signaling molecules with biological membranes: Implications for inter-kingdom signaling. PLoS ONE 2010, 5, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Khajanchi, B.K.; Kirtley, M.L.; Brackman, S.M.; Chopra, A.K. Immunomodulatory and protective roles of quorum-sensing signaling molecules N-acyl homoserine lactones during infection of mice with Aeromonas hydrophila. Infect. Immun. 2011, 79, 2646–2657. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, J.; Yoshida, K.; Ikegame, M.; Okamura, H. Quorum sensing molecule N-(3-oxododecanoyl)-L-homoserine lactone: An all-rounder in mammalian cell modification. J. Oral Biosci. 2020, 62, 16–29. [Google Scholar] [CrossRef]
- Chen, Y.L.; Lin, S.Z.; Chang, J.Y.; Cheng, Y.L.; Tsai, N.M.; Chen, S.P.; Chang, W.L.; Harn, H.J. In Vitro and in vivo studies of a novel potential anticancer agent of isochaihulactone on human lung cancer A549 cells. Biochem. Pharmacol. 2006, 72, 308–319. [Google Scholar] [CrossRef]
- Chen, L.H.; Fang, J.; Li, H.; Demark-Wahnefried, W.; Lin, X. Enterolactone induces apoptosis in human prostate carcinoma LNCaP cells via a mitochondrial-mediated, caspase-dependent pathway. Mol. Cancer Ther. 2007, 6, 2581–2590. [Google Scholar] [CrossRef] [Green Version]
- Wzorek, A.; Gawdzik, B.; Gładkowski, W.; Urbaniak, M.; Barańska, A.; Malińska, M.; Woźniak, K.; Kempińska, K.; Wietrzyk, J. Synthesis, characterization and antiproliferative activity of β-aryl-δ-iodo-γ-lactones. J. Mol. Struct. 2013, 1047, 160–168. [Google Scholar] [CrossRef]
- Gładkowski, W.; Skrobiszewski, A.; Mazur, M.; Siepka, M.; Pawlak, A.; Obmińska-Mrukowicz, B.; Białońska, A.; Poradowski, D.; Drynda, A.; Urbaniak, M. Synthesis and anticancer activity of novel halolactones with β-aryl substituents from simple aromatic aldehydes. Tetrahedron 2013, 69, 10414–10423. [Google Scholar] [CrossRef]
- Alves, A.C.; Ribeiro, D.; Nunes, C.; Reis, S. Biophysics in cancer: The relevance of drug-membrane interaction studies. Biochim. Biophys. Acta Biomembr. 2016, 1858, 2231–2244. [Google Scholar] [CrossRef]
- Suwalsky, M.; Castillo, I.; Sánchez-Eguía, B.N.; Gallardo, M.J.; Dukes, N.; Santiago-Osorio, E.; Aguiñiga, I.; Rivera-Martínez, A.R. In Vitro effects of benzimidazole/thioether-copper complexes with antitumor activity on human erythrocytes. J. Inorg. Biochem. 2018, 178, 87–93. [Google Scholar] [CrossRef]
- National Committee for Clinical Laboratory Standards. Performance Standards for Antimicrobial Disk Susceptibility Tests. Approved Standard M2-A6; National Committee for Clinical Laboratory Standards: Wayne, PA, USA, 1997.
- Daouk, R.K.; Dagher, S.M.; Sattout, E.J. Antifungal activity of the essential oil of Origanum syriacum L. J. Food Prot. 1995, 58, 1147–1149. [Google Scholar] [CrossRef] [PubMed]
- Oussou, K.R.; Kanko, C.; Guessend, N.; Yolou, S.; Koukoua, G.; Dosso, M.; N’Guessan, Y.T.; Figueredo, G.; Chalchat, J.C. Activités antibactériennes des huiles essentielles de trois plantes aromatiques de Côte-d’Ivoire. Comptes Rendus Chim. 2004, 7, 1081–1086. [Google Scholar] [CrossRef]
- EN 14476 Chemical Disinfectants and Antiseptics—Quantitative Suspension Test for the Evaluation of Virucidal Activity in the Medical Area—Test Method and Requirements (Phase2/Step 1); European Committee for Standardization: Brussels, Belgium, 2013. [CrossRef]
- Bażanów, B.; Frącka, A.; Jackulak, N.; Romuk, E.; Gȩbarowski, T.; Owczarek, A.; Stygar, D. Viral, serological, and antioxidant investigations of equine rhinitis a virus in serum and nasal swabs of commercially used horses in Poland. Biomed Res. Int. 2018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skrzep-Poloczek, B.; Stygar, D.; Chełmecka, E.; Nabrdalik, K.; Romuk, E.; Poloczek, J.; Sawczyn, T.; Karcz, K.W.; Gumprecht, J. Antioxidant status in the soleus muscle of sprague-dawley rats in relation to duodenal-jejunal omega switch and different dietary patterns. Oxid. Med. Cell. Longev. 2018, 2018, 3795070. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aebi, H. Catalase In Vitro. Methods Enzymol. 1984, 105, 121–126. [Google Scholar] [CrossRef]
- Mannervik, B. Glutathione peroxidase. Methods Enzymol. 1985, 113, 490–495. [Google Scholar]
- Habig, W.H.; Jakoby, W.B. Assays for differentiation of Glutathione S-Transferases. Methods Enzymol. 1981, 77, 398–405. [Google Scholar] [CrossRef]
- Oyanagui, Y. Reevaluation of assay methods and establishment of kit for superoxide dismutase activity. Anal. Biochem. 1984, 142, 290–296. [Google Scholar] [CrossRef]
- Ohkawa, H.; Ohishi, N.; Yagi, K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem. 1979, 95, 351–358. [Google Scholar] [CrossRef]
- Erel, O. A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clin. Biochem. 2004, 37, 277–285. [Google Scholar] [CrossRef]
- Pruchnik, H.; Włoch, A.; Bonarska-Kujawa, D.; Kleszczyńska, H. An In Vitro study of the effect of cytotoxic triorganotin dimethylaminophenylazobenzoate complexes on red blood cells. J. Membr. Biol. 2018, 251, 735–745. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pagano, M.; Faggio, C. The use of erythrocyte fragility to assess xenobiotic cytotoxicity. Cell Biochem. Funct. 2015, 33, 351–355. [Google Scholar] [CrossRef] [PubMed]
- Dodge, J.T.; Mitchell, C.; Hanahan, D.J. The preparation and chemical characteristics of hemoglobin-free ghosts of human erythrocytes. Arch. Biochem. Biophys. 1963, 100, 119–130. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Mazur, M.; Włoch, A.; Bahri, F.; Pruchnik, H.; Pawlak, A.; Obmińska-Mrukowicz, B.; Maciejewska, G.; Gładkowski, W. Chemoenzymatic synthesis of enantiomeric, bicyclic δ-halo-γ-lactones with a cyclohexane ring, their biological activity and interaction with biological membranes. Biomolecules 2020, 10, 95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krishnan, N.; Ramanathan, S.; Sasidharan, S.; Murugaiyah, V.; Mansor, S.M. Antimicrobial activity evaluation of Cassia spectabilis leaf extracts. Int. J. Pharmacol. 2010, 6, 510–514. [Google Scholar] [CrossRef]
- Nikaido, H.; Vaara, M. Molecular basis of bacterial outer membrane permeability. Microbiol. Rev. 1985, 49, 1–32. [Google Scholar] [CrossRef] [Green Version]
- Waye, M.M.Y.; Sing, C.W. Anti-viral drugs for human adenoviruses. Pharmaceuticals 2010, 3, 3343–3354. [Google Scholar] [CrossRef]
- Thomasz, L.; Oglio, R.; Salvarredi, L.; Perona, M.; Rossich, L.; Copelli, S.; Pisarev, M.; Juvenal, G. Regulation of NADPH oxidase NOX4 by delta iodolactone (IL-δ) in thyroid cancer cells. Mol. Cell. Endocrinol. 2018, 470, 115–126. [Google Scholar] [CrossRef]
- Thomasz, L.; Oglio, R.; Rossich, L.; Villamar, S.; Perona, M.; Salvarredi, L.; Dagrosa, A.; Pisarev, M.A.; Juvenal, G.J. 6 Iodo-δ-lactone: A derivative of arachidonic acid with antitumor effects in HT-29 colon cancer cells. Prostaglandins Leukot. Essent. Fat. Acids 2013, 88, 273–280. [Google Scholar] [CrossRef]
- Parasassi, T.; Krasnowska, E.K.; Bagatolli, L.; Gratton, E. Laurdan and Prodan as polarity-sensitive fluorescent membrane probes. J. Fluoresc. 1998, 8, 365–373. [Google Scholar] [CrossRef]
- Mantsch, H.H.; McElhaney, R.N. Phospholipid phase transitions in model and biological membranes as studied by infrared spectroscopy. Chem. Phys. Lipids 1991, 57, 213–226. [Google Scholar] [CrossRef]
- Grdadolnik, J.; Kidric, J.; Hadži, D. Hydration of phosphatidylcholine reverse micelles and multilayers - an infrared spectroscopic study. Chem. Phys. Lipids 1991, 59, 57–68. [Google Scholar] [CrossRef]
- Grdadolnik, J.; Hadži, D. Conformational effects of metal salt binding to the polar head of phosphatidylcholines investigated by FTIR spectroscopy. Chem. Phys. Lipids 1993, 65, 121–132. [Google Scholar] [CrossRef]
- Lewis, R.N.; McElhaney, R.N.; Pohle, W.; Mantsch, H.H. Components of the carbonyl stretching band in the infrared spectra of hydrated 1,2-diacylglycerolipid bilayers: A reevaluation. Biophys. J. 1994, 67, 2367–2375. [Google Scholar] [CrossRef] [Green Version]
- Binder, H. The molecular architecture of lipid membranes - New insights from hydration-tuning infrared linear dichroism spectroscopy. Appl. Spectrosc. Rev. 2003, 38, 15–69. [Google Scholar] [CrossRef]
- Włoch, A.; Strugała, P.; Pruchnik, H.; Żyłka, R.; Oszmiański, J.; Kleszczyńska, H. Physical effects of buckwheat extract on biological membrane in vitro and its protective properties. J. Membr. Biol. 2016, 249, 155–170. [Google Scholar] [CrossRef] [Green Version]
- Rosa, A.S.; Disalvo, E.A.; Frias, M.A. Water behavior at the phase transition of phospholipid matrixes assessed by FTIR spectroscopy. J. Phys. Chem. B 2020, 124, 6236–6244. [Google Scholar] [CrossRef]
- Sujak, A.; Gabrielska, J.; Milanowska, J.; Mazurek, P.; Strzałka, K.; Gruszecki, W.I. Studies on canthaxanthin in lipid membranes. Biochim. Biophys. Acta Biomembr. 2005, 1712, 17–28. [Google Scholar] [CrossRef] [Green Version]
- Cieślik-Boczula, K.; Maniewska, J.; Grynkiewicz, G.; Szeja, W.; Koll, A.; Hendrich, A.B. Interaction of quercetin, genistein and its derivatives with lipid bilayers - an ATR IR-spectroscopic study. Vib. Spectrosc. 2012, 62, 64–69. [Google Scholar] [CrossRef]
- Wesołowska, O.; Gąsiorowska, J.; Petrus, J.; Czarnik-Matusewicz, B.; Michalak, K. Interaction of prenylated chalcones and flavanones from common hop with phosphatidylcholine model membranes. Biochim. Biophys. Acta Biomembr. 2014, 1838, 173–184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kopeć, W.; Telenius, J.; Khandelia, H. Molecular dynamics simulations of the interactions of medicinal plant extracts and drugs with lipid bilayer membranes. FEBS J. 2013, 280, 2785–2805. [Google Scholar] [CrossRef] [PubMed]
- Pruchnik, H.; Kral, T.; Hof, M. Interaction of newly platinum(II) with tris(2-carboxyethyl)phosphine complex with DNA and model lipid membrane. J. Membr. Biol. 2017, 250, 461–470. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pelton, J.T.; McLean, L.R. Spectroscopic methods for analysis of protein secondary structure. Anal. Biochem. 2000, 277, 167–176. [Google Scholar] [CrossRef] [PubMed]
- Escribá, P.V.; Busquets, X.; Inokuchi, J.I.; Balogh, G.; Török, Z.; Horváth, I.; Harwood, J.L.; Vígh, L. Membrane lipid therapy: Modulation of the cell membrane composition and structure as a molecular base for drug discovery and new disease treatment. Prog. Lipid Res. 2015, 59, 38–53. [Google Scholar] [CrossRef] [Green Version]
Compound | Proteus mirabilis ATCC 35659 | Bacillus cereus ATCC 10876 | ||||
---|---|---|---|---|---|---|
MIC | MBC | MBC/MIC | MIC | MBC | MBC/MIC | |
Lactone 1 | 0.25 | 1 | 4 | 0.5 | 1 | 2 |
Lactone 2 | 2 | 2 | 1 | 0.5 | 0.5 | 1 |
Lactone 3 | 1 | 2 | 2 | - | - | - |
Compound | Cell Lines | |||
---|---|---|---|---|
NHDF | A549 | HeLa | MCF7 | |
Lactone 1 | 0.078 | 0.313 | 0.039 | 0.039 |
Lactone 2 | 0.156 | 0.156 | 0.039 | 0.078 |
Lactone 3 | 0.313 | 0.313 | 0.313 | 0.313 |
Cisplatin | 0.005 | 0.01 | 0.005 | 0.01 |
Compounds | ||||||
---|---|---|---|---|---|---|
SC | MTC | p Compound | p Concentration | p Interaction | ||
Glutathione S-transferase (GST) (IU/g protein) | Control | 3.6 ± 0.1 | – | – | – | – |
Lactone 1 | 83.2 ± 0.9 | 13.7 ± 1.2 | <0.001 | <0.001 | <0.001 | |
Lactone 2 | 24.2 ± 0.5 | 13.3 ± 0.4 | ||||
Lactone 3 | 11.0 ± 0.8 | 6.2 ± 0.9 | ||||
Control | 0.9 ± 0.1 | – | – | – | – | |
Catalase CAT (IU/g protein) | Lactone 1 | 152.1 ± 1.8 | 12.1 ± 0.1 | |||
Lactone 2 | 12.0 ± 0.8 | 7.2 ± 1.4 | <0.001 | <0.001 | <0.001 | |
Lactone 3 | 5.6 ± 1.0 | 2.7 ± 0.3 | ||||
Control | 2.1 ± 0.2 | – | – | – | – | |
GPx (IU/g protein) | Lactone 1 | 154.9 ± 0.2 | 12.9 ± 1.0 | |||
Lactone 2 | 77.3 ± 1.6 | 21.7 ± 0.2 | <0.001 | <0.001 | <0.001 | |
Lactone 3 | 11.2 ± 1.1 | 9.0 ± 1.1 | ||||
Control | 4.7 ± 0.1 | – | – | – | – | |
Total SOD (NU/mg protein) | Lactone 1 | 82.9 ± 0.1 | 16.4 ± 0.8 | |||
Lactone 2 | 12.9 ± 0.2 | 4.6 ± 0.2 | <0.001 | <0.001 | <0.001 | |
Lactone 3 | 3.8 ± 0.5 | 2.6 ± 0.2 | ||||
Control | 4.3 ± 0.1 | – | – | – | – | |
MnSOD (NU/mg protein) | Lactone 1 | 52.9 ± 1.8 | 7.6 ± 0.9 | |||
Lactone 2 | 8.3 ± 0.4 | 1.7 ± 0.6 | <0.001 | <0.001 | <0.001 | |
Lactone 3 | 1.2 ± 0.3 | 1.6 ± 0.2 | ||||
CuZnSOD (NU/mg protein) | Control | 0.5 ± 0.1 | – | |||
Lactone 1 | 30.0 ± 1.8 | 8.8 ± 1.0 | ||||
Lactone 2 | 4.5 ± 0.4 | 3.0 ± 0.5 | <0.001 | <0.001 | <0.001 | |
Lactone 3 | 2.6 ± 0.2 | 1.0 ± 0.1 | ||||
TAC (μmol/g protein) | Control | 70.1 ± 0.1 | – | – | – | – |
Lactone 1 | 2.2 ± 0.1 | 36.0 ± 0.8 | <0.001 | <0.001 | <0.001 | |
Lactone 2 | 21.1 ± 0.6 | 32.5 ± 1.14 | ||||
Lactone 3 | 38.7 ± 1.4 | 44.7 ± 2.8 | ||||
TOS (μmol/g protein) | Control | 31.6 ± 4.4 | – | – | – | – |
Lactone 1 | 0.5 ± 0.1 | 1.5 ± 0.1 | <0.001 | <0.001 | <0.001 | |
Lactone 2 | 1.7 ± 0.2 | 1.4 ± 0.1 | ||||
Lactone 3 | 1.7 ± 0.1 | 2.2 ± 0.3 | ||||
MDA (μmol/g protein) | Control | 0.5 ± 0.1 | – | – | – | – |
Lactone 1 | 6.4 ± 0.1 | 2.6 ± 0.1 | <0.001 | <0.001 | <0.001 | |
Lactone 2 | 1.5 ± 0.1 | 1.7 ± 0.2 | ||||
Lactone 3 | 1.7 ± 0.1 | 1.0 ± 0.2 |
pSC vs. MTC | SC | MTC | |||||||
---|---|---|---|---|---|---|---|---|---|
Lactone 1 | Lactone 2 | Lactone 3 | p1 vs. 2 | p1 vs. 3 | p2 vs. 3 | p1 vs. 2 | p1 vs. 3 | p2 vs. 3 | |
GST (IU/g protein) | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | 0.337 | <0.001 | <0.001 |
CAT (IU/g protein) | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
GPx (IU/g protein) | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
SOD (Nu/mg protein) | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
MnSOD (NU/mg protein) | <0.001 | <0.001 | 0.407 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | 0.872 |
CuZnSOD (NU/mg protein) | <0.001 | <0.01 | <0.01 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
TAC (μmol/g protein) | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
TOS (μmol/g protein) | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | 0.955 | 0.502 | <0.001 | <0.001 |
MDA (μmol/g protein) | <0.001 | <0.01 | <0.001 | <0.001 | <0.001 | <0.05 | <0.001 | <0.001 | <0.001 |
Type of Bands | RBCMs | RBCMs + Lactone 1 | RBCMs + Lactone 2 | RBCMs + Lactone 3 |
---|---|---|---|---|
vas(CH2) | 2922.77 | 2922.14 | 2922.84 | 2922.95 |
vs(CH2) | 2851.64 | 2851.28 | 2851.67 | 2851.68 |
vas(CH3) | 2956.07 | 2956.25 | 2956.08 | 2956.18 |
v(C=O) | 1741.67 | 1741.49 | 1741.77 | 1741.51 |
Amid I | 1651.61 | 1651.96 | 1651.82 | 1652.75 |
Amid II | 1538.01 | 1539.97 | 1539.16 | 1539.84 |
vas(PO2−) | 1235.33 | 1233.93 | 1234.48 | 1234.70 |
vs(PO2−) | 1063.47 | 1062.57 | 1063.70 | 1063.69 |
vas(C–N+(CH3)) | 969.88 | 969.85 | 970.14 | 970.18 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Włoch, A.; Stygar, D.; Bahri, F.; Bażanów, B.; Kuropka, P.; Chełmecka, E.; Pruchnik, H.; Gładkowski, W. Antiproliferative, Antimicrobial and Antiviral Activity of β-Aryl-δ-iodo-γ-lactones, Their Effect on Cellular Oxidative Stress Markers and Biological Membranes. Biomolecules 2020, 10, 1594. https://doi.org/10.3390/biom10121594
Włoch A, Stygar D, Bahri F, Bażanów B, Kuropka P, Chełmecka E, Pruchnik H, Gładkowski W. Antiproliferative, Antimicrobial and Antiviral Activity of β-Aryl-δ-iodo-γ-lactones, Their Effect on Cellular Oxidative Stress Markers and Biological Membranes. Biomolecules. 2020; 10(12):1594. https://doi.org/10.3390/biom10121594
Chicago/Turabian StyleWłoch, Aleksandra, Dominika Stygar, Fouad Bahri, Barbara Bażanów, Piotr Kuropka, Elżbieta Chełmecka, Hanna Pruchnik, and Witold Gładkowski. 2020. "Antiproliferative, Antimicrobial and Antiviral Activity of β-Aryl-δ-iodo-γ-lactones, Their Effect on Cellular Oxidative Stress Markers and Biological Membranes" Biomolecules 10, no. 12: 1594. https://doi.org/10.3390/biom10121594
APA StyleWłoch, A., Stygar, D., Bahri, F., Bażanów, B., Kuropka, P., Chełmecka, E., Pruchnik, H., & Gładkowski, W. (2020). Antiproliferative, Antimicrobial and Antiviral Activity of β-Aryl-δ-iodo-γ-lactones, Their Effect on Cellular Oxidative Stress Markers and Biological Membranes. Biomolecules, 10(12), 1594. https://doi.org/10.3390/biom10121594