Impact of Sucrose as Osmolyte on Molecular Dynamics of Mouse Acetylcholinesterase
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Elastic Incoherent Neutron Scattering
2.3. Molecular Dynamics Simulations
3. Results
3.1. Incoherent Neutron Scattering
3.2. MD Simulations
4. Discussion
- When sucrose molecules are located at the entrance of the gorge, the gorge acts as semi-permeable membrane, and water can get out, but not enter due to the osmotic effect. Such an effect was previously observed with human BChE [42]. Moreover, sucrose molecules cannot enter due to their volume. At 0 wt% sucrose, there is only water inside and outside the cavity. The simulations allowed us to see that at 5 wt% sucrose, the motion of the protein’s outer part is dampened, but inside the gorge motion is increased due to water depletion. Finally, at 10 wt% sucrose structural modifications seem to occur in such a way that the sugar molecules form a layer at the protein’s surface and protect the water layer, which permits a higher flexibility of the enzyme. These results are reflected in the neutron scattering data through a higher stability at 5 wt% sucrose and higher mobility at 10 wt%.
- Sugars have a small binding affinity for cholinesterases. It seems that the enzymes become more flexible in the presence of sugar. This increases both the conformational entropy and the affinity to bind, so that water molecules bound on the surface can be replaced by sugar [49].
- Similar effects were reported earlier by Cicerone et al. [50] and Curtis et al. [51], showing that a binary glycerol–trehalose glassy matrix can stabilize a protein at a particular mass fraction of glycerol. The minimum in flexibility of the protein coincides with the lowest flexibility of trehalose in the binary glass. The authors have shown that the stabilization of the protein is due to the suppression of local fast motions in both the host matrix and the protein, although much of the important dynamics of the protein may not be coupled with viscosity of the host fluid.
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Masson, P.; Lushchekina, S. Catalytic bioscavengers: The second generation of bioscavenger-based medical countermeasures. In Handbook of Toxicology of Chemical Warfare Agents; Gupta, R.C., Ed.; Academic Press: Cambridge, MA, USA, 2020; pp. 1199–1229. [Google Scholar]
- Sussman, J.L.; Harel, M.; Frolow, F.; Oefner, C.; Goldman, A.; Toker, L.; Silman, I. Atomic structure of acetylcholinesterase from Torpedo californica: A prototypic acetylcholine-binding protein. Science 1991, 253, 872–879. [Google Scholar] [CrossRef] [PubMed]
- Tai, K.; Shen, T.; Borjesson, U.; Philippopoulos, M.; McCammon, J.A. Analysis of a 10-ns molecular dynamics simulation of mouse acetylcholinesterase. Biophys. J. 2001, 81, 715–724. [Google Scholar] [CrossRef] [Green Version]
- Tara, S.; Helms, V.; Straatsma, T.P.; McCammon, J.A. Molecular dynamics of mouse acetylcholinesterase complexed with huperzine A. Biopolymers 1999, 50, 347–359. [Google Scholar] [CrossRef]
- Tara, S.; Straatsma, T.P.; McCammon, J.A. Mouse acetylcholinesterase unliganded and in complex with huperzine A: A comparison of molecular dynamics simulations. Biopolymers 1999, 50, 35–43. [Google Scholar] [CrossRef]
- Shen, T.; Tai, K.; Henchman, R.H.; McCammon, J.A. Molecular dynamics of acetylcholinesterase. ACC Chem. Res. 2002, 35, 332–340. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Shen, J.; Luo, X.; Silman, I.; Sussman, J.L.; Chen, K.; Jiang, H. How Does Huperzine A Enter and Leave the Binding Gorge of Acetylcholinesterase? Steered Molecular Dynamics Simulations. J. Am. Chem. Soc. 2003, 125, 11340–11349. [Google Scholar] [CrossRef]
- Xu, Y.; Colletier, J.P.; Jiang, H.; Silman, I.; Sussman, J.L.; Weik, M. Induced-fit or preexisting equilibrium dynamics? Lessons from protein crystallography and MD simulations on acetylcholinesterase and implications for structure-based drug design. Protein Sci. 2008, 17, 601–605. [Google Scholar] [CrossRef]
- Wei, M.J.; Zhou, J.; Lu, X.; Zhu, Y.; Liu, W.; Lu, L.; Zhang, L. Diffusion of water molecules confined in slits of rutile TiO2(1 1 0) and graphite(0 0 0 1). Fluid Phase Equilibria 2011, 302, 316–320. [Google Scholar] [CrossRef]
- Marion, J.; Trovaslet, M.; Martinez, N.; Masson, P.; Schweins, R.; Nachon, F.; Trapp, M.; Peters, J. Pressure-induced molten globule state of human acetylcholinesterase: Structural and dynamical changes monitored by neutron scattering. Phys. Chem. Chem. Phys. 2015, 17, 3157–3163. [Google Scholar] [CrossRef]
- Timasheff, S.N. Thermodynamic binding and site occupancy in the light of the Schellman exchange concept. Biophys. Chem. 2002, 101–102, 99–111. [Google Scholar] [CrossRef]
- Timasheff, S.N. Protein-solvent preferential interactions, protein hydration, and the modulation of biochemical reactions by solvent components. Proc. Natl. Acad. Sci. USA 2002, 99, 9721–9726. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Masson, P.; Clery, C.; Guerra, P.; Redslob, A.; Albaret, C.; Fortier, P.L. Hydration change during the aging of phosphorylated human butyrylcholinesterase: Importance of residues aspartate-70 and glutamate-197 in the water network as probed by hydrostatic and osmotic pressures. Biochem. J. 1999, 343, 361–369. [Google Scholar] [CrossRef] [PubMed]
- Peters, J.; Trovaslet, M.; Trapp, M.; Nachon, F.; Hill, F.; Royer, E.; Gabel, F.; van Eijck, L.; Masson, P.; Tehei, M. Activity and molecular dynamics relationship within the family of human cholinesterases. Phys. Chem. Chem. Phys. 2012, 14, 6764–6770. [Google Scholar] [CrossRef] [PubMed]
- Ellman, G.L.; Courtney, K.D.; Andres, V., Jr.; Feather-Stone, R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 1961, 7, 88–95. [Google Scholar] [CrossRef]
- Available online: http://www.ill.eu/instruments-support/instruments-groups/instruments/in6/description/instrument-layout/ (accessed on 11 December 2020).
- Natali, F.; Peters, J.; Russo, D.; Barbieri, S.; Chiapponi, C.; Cupane, A.; Deriu, A.; Di Bari, M.T.; Farhi, E.; Gerelli, Y.; et al. IN13 Backscattering Spectrometer at ILL: Looking for Motions in Biological Macromolecules and Organisms. Neutron News 2008, 19, 14–18. [Google Scholar] [CrossRef]
- Frick, B.; Gonzalez, M. Five years operation of the second generation backscattering spectrometer IN16-a retrospective, recent developments and plans. Phys. B Condens. Matter 2001, 301, 8–19. [Google Scholar] [CrossRef]
- Paalman, H.H.; Pings, C.J. Numerical Evaluation of X-Ray Absorption Factors for Cylindrical Samples and Annular Sample Cells. J. Appl. Phys. 1962, 33, 2635–2639. [Google Scholar] [CrossRef]
- Richard, D.; Ferrand, M.; Kearley, G.J. Analysis and visualisation of neutron-scattering data. J. Neutron Res. 1996, 4, 33–39. [Google Scholar] [CrossRef]
- Bée, M. Quasielastic Neutron Scattering: Principles and Applications in Solid State Chemistry, Biology and Materials Science; Adam Hilger: Philadelphia, PA, USA, 1988. [Google Scholar]
- Aaboud, M.; Aad, G.; Abbott, B.; Abdinov, O.; Abeloos, B.; Abhayasinghe, D.K.; Abidi, S.H.; AbouZeid, O.S.; Abraham, N.L.; Abramowicz, H.; et al. Search for Resonant and Nonresonant Higgs Boson Pair Production in the bb[over]tau^{+}tau^{-} Decay Channel in pp Collisions at sqrt[s]=13 TeV with the ATLAS Detector. Phys. Rev. Lett. 2018, 121, 191801. [Google Scholar] [CrossRef] [Green Version]
- Singwi, K.S.; Sjölander, A. Diffusive Motions in Water and Cold Neutron Scattering. Phys. Rev. 1960, 119, 863–871. [Google Scholar] [CrossRef]
- Volino, F.; Dianoux, A.J. Neutron Incoherent-Scattering Law for Diffusion in a Potential of Spherical-Symmetry—General Formalism and Application to Diffusion inside a Sphere. Mol. Phys. 1980, 41, 271–279. [Google Scholar] [CrossRef]
- Bellissent-Funel, M.-C.; Teixeira, J.; Bradley, K.F.; Chen, S.H. Dynamics of hydration water in protein. J. Phys. I Fr. 1992, 2, 995–1001. [Google Scholar] [CrossRef]
- Stadler, A.M.; Digel, I.; Embs, J.P.; Unruh, T.; Tehei, M.; Zaccai, G.; Buldt, G.; Artmann, G.M. From powder to solution: Hydration dependence of human hemoglobin dynamics correlated to body temperature. Biophys. J. 2009, 96, 5073–5081. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bourne, Y.; Taylor, P.; Radic, Z.; Marchot, P. Structural insights into ligand interactions at the acetylcholinesterase peripheral anionic site. EMBO J. 2003, 22, 1–12. [Google Scholar] [CrossRef]
- Sali, A.; Potterton, L.; Yuan, F.; van Vlijmen, H.; Karplus, M. Evaluation of comparative protein modeling by MODELLER. Proteins 1995, 23, 318–326. [Google Scholar] [CrossRef]
- Word, J.M.; Lovell, S.C.; Richardson, J.S.; Richardson, D.C. Asparagine and glutamine: Using hydrogen atom contacts in the choice of side-chain amide orientation. J. Mol. Biol. 1999, 285, 1735–1747. [Google Scholar] [CrossRef] [Green Version]
- Pedretti, A.; Villa, L.; Vistoli, G. VEGA—An open platform to develop chemo-bio-informatics applications, using plug-in architecture and script programming. J. Comput. Mol. Des. 2004, 18, 167–173. [Google Scholar] [CrossRef]
- Phillips, J.C.; Braun, R.; Wang, W.; Gumbart, J.; Tajkhorshid, E.; Villa, E.; Chipot, C.; Skeel, R.D.; Kale, L.; Schulten, K. Scalable molecular dynamics with NAMD. J. Comput. Chem. 2005, 26, 1781–1802. [Google Scholar] [CrossRef] [Green Version]
- Best, R.B.; Zhu, X.; Shim, J.; Lopes, P.E.; Mittal, J.; Feig, M.; Mackerell, A.D., Jr. Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone phi, psi and side-chain chi(1) and chi(2) dihedral angles. J. Chem. Theory Comput. 2012, 8, 3257–3273. [Google Scholar] [CrossRef] [Green Version]
- Guvench, O.; Hatcher, E.R.; Venable, R.M.; Pastor, R.W.; Mackerell, A.D. CHARMM Additive All-Atom Force Field for Glycosidic Linkages between Hexopyranoses. J. Chem. Theory Comput. 2009, 5, 2353–2370. [Google Scholar] [CrossRef] [Green Version]
- Voevodin, V.V.; Antonov, A.S.; Nikitenko, D.A.; Shvets, P.A.; Sobolev, S.I.; Sidorov, I.Y.; Stefanov, K.S.; Voevodin, V.V.; Zhumatyi, S.A. Supercomputer Lomonosov-2: Large Scale, Deep Monitoring and Fine Analytics for the User Community. Supercomput. Front. Innov. 2019, 6, 4–11. [Google Scholar]
- Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph. 1996, 14, 33–38. [Google Scholar] [CrossRef]
- Bakan, A.; Meireles, L.M.; Bahar, I. ProDy: Protein dynamics inferred from theory and experiments. Bioinformatics 2011, 27, 1575–1577. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Glykos, N.M. Software news and updates. Carma: A molecular dynamics analysis program. J. Comput. Chem. 2006, 27, 1765–1768. [Google Scholar] [CrossRef] [PubMed]
- Zeller, D.; Telling, M.T.F.; Zamponi, M.; Garcia Sakai, V.; Peters, J. Analysis of elastic incoherent neutron scattering data beyond the Gaussian approximation. J. Chem. Phys. 2018, 149, 234908. [Google Scholar] [CrossRef]
- Teixeira, J.; Bellissent-Funel, M.; Chen, S.H.; Dianoux, A.J. Experimental determination of the nature of diffusive motions of water molecules at low temperatures. Phys. Rev. A Gen. Phys. 1985, 31, 1913–1917. [Google Scholar] [CrossRef] [Green Version]
- Grimaldo, M.; Roosen-Runge, F.; Jalarvo, N.; Zamponi, M.; Zanini, F.; Hennig, M.; Zhang, F.; Schreiber, F.; Seydel, T. High-resolution neutron spectroscopy on protein solution samples. EPJ Web Conf. 2015, 83, 02005. [Google Scholar] [CrossRef] [Green Version]
- Murday, J.S.; Cotts, R.M. Self-Diffusion in Liquids: H20, D20, and Na. J. Chem. Phys. 1970, 53, 4724–4725. [Google Scholar] [CrossRef]
- Masson, P.; Lushchekina, S.; Schopfer, L.M.; Lockridge, O. Effects of viscosity and osmotic stress on the reaction of human butyrylcholinesterase with cresyl saligenin phosphate, a toxicant related to aerotoxic syndrome: Kinetic and molecular dynamics studies. Biochem. J. 2013, 454, 387–399. [Google Scholar] [CrossRef] [Green Version]
- Bourne, Y.; Renault, L.; Marchot, P. Crystal structure of snake venom acetylcholinesterase in complex with inhibitory antibody fragment Fab410 bound at the peripheral site: Evidence for open and closed states of a back door channel. J. Biol. Chem. 2015, 290, 1522–1535. [Google Scholar] [CrossRef]
- Wiesner, J.; Kriz, Z.; Kuca, K.; Jun, D.; Koca, J. Influence of the acetylcholinesterase active site protonation on omega loop and active site dynamics. J. Biomol. Struct. Dyn. 2010, 28, 393–403. [Google Scholar] [CrossRef] [PubMed]
- Cornicchi, E.; Marconi, M.; Onori, G.; Paciaroni, A. Controlling the protein dynamical transition with sugar-based bioprotectant matrices: A neutron scattering study. Biophys. J. 2006, 91, 289–297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cornicchi, E.; Onori, G.; Paciaroni, A. Picosecond-Time-Scale Fluctuations of Proteins in Glassy Matrices: The Role of Viscosity. Phys. Rev. Lett. 2005, 95, 158101–158104. [Google Scholar] [CrossRef] [PubMed]
- Paciaroni, A.; Cornicchi, E.; De Francesco, A.; Marconi, M.; Onori, G. Conditioning action of the environment on the protein dynamics studied through elastic neutron scattering. Eur. Biophys. J. Biophys. Lett. 2006, 35, 591–599. [Google Scholar] [CrossRef] [PubMed]
- Jasnin, M.; Stadler, A.M.; Tehei, M.; Zaccai, G. Specific cellular water dynamics observed in vivo by neutron scattering and NMR. Phys. Chem. Chem. Phys. 2010, 12, 10154–10160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Levitsky, V.; Xie, W.; Froment, M.T.; Lockridge, O.; Masson, P. Polyol-induced activation by excess substrate of the D70G butyrylcholinesterase mutant. Biochim. Biophys. Acta 1999, 1429, 422–430. [Google Scholar] [CrossRef]
- Cicerone, M.T.; Soles, C.L. Fast dynamics and stabilization of proteins: Binary glasses of trehalose and glycerol. Biophys. J. 2004, 86, 3836–3845. [Google Scholar] [CrossRef] [Green Version]
- Curtis, J.E.; Dirama, T.E.; Carri, G.A.; Tobias, D.J. Inertial suppression of protein dynamics in a binary glycerol-trehalose glass. J. Phys. Chem. B 2006, 110, 22953–22956. [Google Scholar] [CrossRef]
(w/w)% Sucrose | Mass of mAChE (mg) | Mass of Sucrose (mg) | Mass of D2O (mg) | Final Sample Mass (mg) after Rehydration |
---|---|---|---|---|
0 | 100 | 0 | 208 | 308 |
5 | 84 | 17.8 | 228 | 339.8 |
10 | 70 | 30.8 | 214 | 314.8 |
15 | 56 | 46.4 | 296 | 398.4 |
(w/w)% Sucrose | Proportion p | Radius R (Å) |
---|---|---|
0 | 72.6 (5)% | 2.11 (6) |
5 | 75.8 (3)% | 2.24 (6) |
10 | 79.8 (6)% | 2.3 (1) |
Water | 5 wt% Sucrose | 10 wt% Sucrose | |
---|---|---|---|
SASA, Å2 | 23,991 ± 367 | 23,934 ± 273 | 24,047 ± 297 |
Rg, Å | 23.0 ± 0.1 | 23.0 ± 0.1 | 23.0 ± 0.1 |
Number of water molecules inside the gorge | 47 ± 4 | 31 ± 4 | 43 ± 5 |
Number of hydrogen bonds | |||
Protein–water | 270 ± 10 | 268 ± 10 | 256 ± 10 |
Protein–sucrose | 8 ± 3 | 12 ± 4 | |
Intra-protein | 317 ± 9 | 317 ± 10 | 314 ± 10 |
Number of atom–atom contacts (2 Å cutoff) | |||
Protein–water | 726 ± 21 | 713 ± 22 | 687 ± 20 |
Protein–sucrose | 19 ± 6 | 33 ± 7 | |
Sum | 732 ± 21 | 720 ± 20 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lushchekina, S.V.; Inidjel, G.; Martinez, N.; Masson, P.; Trovaslet-Leroy, M.; Nachon, F.; Koza, M.M.; Seydel, T.; Peters, J. Impact of Sucrose as Osmolyte on Molecular Dynamics of Mouse Acetylcholinesterase. Biomolecules 2020, 10, 1664. https://doi.org/10.3390/biom10121664
Lushchekina SV, Inidjel G, Martinez N, Masson P, Trovaslet-Leroy M, Nachon F, Koza MM, Seydel T, Peters J. Impact of Sucrose as Osmolyte on Molecular Dynamics of Mouse Acetylcholinesterase. Biomolecules. 2020; 10(12):1664. https://doi.org/10.3390/biom10121664
Chicago/Turabian StyleLushchekina, Sofya V., Gaetan Inidjel, Nicolas Martinez, Patrick Masson, Marie Trovaslet-Leroy, Florian Nachon, Michael Marek Koza, Tilo Seydel, and Judith Peters. 2020. "Impact of Sucrose as Osmolyte on Molecular Dynamics of Mouse Acetylcholinesterase" Biomolecules 10, no. 12: 1664. https://doi.org/10.3390/biom10121664
APA StyleLushchekina, S. V., Inidjel, G., Martinez, N., Masson, P., Trovaslet-Leroy, M., Nachon, F., Koza, M. M., Seydel, T., & Peters, J. (2020). Impact of Sucrose as Osmolyte on Molecular Dynamics of Mouse Acetylcholinesterase. Biomolecules, 10(12), 1664. https://doi.org/10.3390/biom10121664