Adsorption of Fibrinogen on Silica Surfaces—The Effect of Attached Nanoparticles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Coarse-Grained Model
2.2. Method
2.3. Analysis
3. Results and Discussion
3.1. Characterization of Fibrinogen
3.2. Adsorption Simulations of the Main Body of Fibrinogen
3.2.1. Adsorption onto a Flat Surface
3.2.2. Adsorption Onto a Surface with Attached Nanoparticles
3.2.3. Adsorption Onto Nanoparticles with Different Size
3.2.4. Adsorption Onto Nanostructured Surfaces with Different Nanoparticle Size
3.2.5. Adsorption Onto Nanostructured Surfaces with Different Nanoparticle Spacing
3.3. Simulations of the C-Chain of Fibrinogen
3.3.1. Simulations in Bulk and with a Flat Surface
3.3.2. Adsorption Onto Different Types of Surfaces
3.3.3. Adsorption Onto Nanoparticles with Different Size
3.3.4. Adsorption Onto Nanostructured Surfaces with Different Nanoparticle Size
3.3.5. Adsorption Onto Nanostructured Surfaces with Different Nanoparticle Spacing
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pei, L.; Palma, M.; Nilsson, M.; Guss, B.; Flock, J.I. Functional Studies of a Fibrinogen Binding Protein from Staphylococcus epidermidis. Infect. Immun. 1999, 67, 4525–4530. Available online: https://iai.asm.org/content/67/9/4525.full.pdf (accessed on 6 March 2020). [CrossRef] [Green Version]
- Davis, S.L.; Gurusiddappa, S.; McCrea, K.W.; Perkins, S.; Höök, M. SdrG, a Fibrinogen-binding Bacterial Adhesin of the Microbial Surface Components Recognizing Adhesive Matrix Molecules Subfamily from Staphylococcus epidermidis, Targets the Thrombin Cleavage Site in the Bβ Chain. J. Biol. Chem. 2001, 276, 27799–27805. [Google Scholar] [CrossRef] [Green Version]
- Arciola, C.R.; Campoccia, D.; Gamberini, S.; Donati, M.; Montanaro, L. Presence of fibrinogen-binding adhesin gene in Staphylococcus epidermidis isolates from central venous catheters-associated and orthopaedic implant-associated infections. Biomaterials 2004, 25, 4825–4829. [Google Scholar] [CrossRef]
- Hu, W.J.; Eaton, J.W.; Ugarova, T.P.; Tang, L. Molecular basis of biomaterial-mediated foreign body reactions. Blood 2001, 98, 1231–1238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramasamy, M.; Lee, J. Recent nanotechnology approaches for prevention and treatment of biofilm-associated infections on medical devices. BioMed. Res. Int. 2016, 2016. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCann, M.T.; Gilmore, B.F.; Gorman, S.P. Staphylococcus epidermidis device-related infections: Pathogenesis and clinical management. J. Pharm. Pharmacol. 2008, 60, 1551–1571. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hulander, M.; Valen-Rukke, H.; Sundell, G.; Andersson, M. Influence of Fibrinogen on Staphylococcus epidermidis Adhesion Can Be Reversed by Tuning Surface Nanotopography. ACS Biomater. Sci. Eng. 2019, 5, 4323–4330. [Google Scholar] [CrossRef]
- Kollman, J.M.; Pandi, L.; Sawaya, M.R.; Riley, M.; Doolittle, R.F. Crystal Structure of Human Fibrinogen. Biochemistry 2009, 48, 3877–3886. [Google Scholar] [CrossRef] [PubMed]
- Burton, R.A.; Tsurupa, G.; Medved, L.; Tjandra, N. Identification of an Ordered Compact Structure within the Recombinant Bovine Fibrinogen αC-Domain Fragment by NMR. Biochemistry 2006, 45, 2257–2266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsurupa, G.; Hantgan, R.R.; Burton, R.A.; Pechik, I.; Tjandra, N.; Medved, L. Structure, Stability, and Interaction of the Fibrin(ogen) αC-Domains. Biochemistry 2009, 48, 12191–12201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vilaseca, P.; Dawson, K.A.; Franzese, G. Understanding and modulating the competitive surface-adsorption of proteins through coarse-grained molecular dynamics simulations. Soft Matter 2013, 9, 6978–6985. [Google Scholar] [CrossRef] [Green Version]
- Siegismund, D.; Keller, T.F.; Jandt, K.D.; Rettenmayr, M. Fibrinogen Adsorption on Biomaterials—A Numerical Study. Macromol. Biosci. 2010, 10, 1216–1223. [Google Scholar] [CrossRef] [PubMed]
- Zhdanov, V.P.; Rechendorff, K.; Hovgaard, M.B.; Besenbacher, F. Deposition at Glancing Angle, Surface Roughness, and Protein Adsorption: Monte Carlo Simulations. J. Phys. Chem. B 2008, 112, 7267–7272. [Google Scholar] [CrossRef]
- Adamczyk, Z.; Barbasz, J.; Cieśla, M. Kinetics of Fibrinogen Adsorption on Hydrophilic Substrates. Langmuir 2010, 26, 11934–11945. [Google Scholar] [CrossRef] [PubMed]
- Adamczyk, Z.; Barbasz, J.; Cieśla, M. Mechanisms of Fibrinogen Adsorption at Solid Substrates. Langmuir 2011, 27, 6868–6878. [Google Scholar] [CrossRef] [PubMed]
- Adamczyk, Z.; Cichocki, B.; Ekiel-Jeżewska, M.L.; Słowicka, A.; Wajnryb, E.; Wasilewska, M. Fibrinogen conformations and charge in electrolyte solutions derived from DLS and dynamic viscosit measurements. J. Colloid Interface Sci. 2012, 385, 244–257. [Google Scholar] [CrossRef]
- Köhler, S.; Schmid, F.; Settanni, G. The Internal Dynamics of Fibrinogen and Its Implications for Coagulation and Adsorption. PLOS Comput. Biol. 2015, 11, e1004346. [Google Scholar] [CrossRef] [Green Version]
- Köhler, S.; Schmid, F.; Settanni, G. Molecular Dynamics Simulations of the Initial Adsorption Stages of Fibrinogen on Mica and Graphite Surfaces. Langmuir 2015, 31, 13180–13190. [Google Scholar] [CrossRef]
- Tavanti, F.; Pedone, A.; Menziani, M.C. Competitive Binding of Proteins to Gold Nanoparticles Disclosed by Molecular Dynamics Simulations. J. Phys. Chem. C 2015, 119, 22172–22180. [Google Scholar] [CrossRef]
- Lopez, H.; Lobaskin, V. Coarse-grained model of adsorption of blood plasma proteins onto nanoparticles. J. Chem. Phys. 2015, 143, 243138. [Google Scholar] [CrossRef]
- Jung, S.Y.; Lim, S.M.; Albertorio, F.; Kim, G.; Gurau, M.C.; Yang, R.D.; Holden, M.A.; Cremer, P.S. The Vroman Effect: A Molecular Level Description of Fibrinogen Displacement. J. Am. Chem. Soc. 2003, 125, 12782–12786. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marchin, K.L.; Berrie, C.L. Conformational Changes in the Plasma Protein Fibrinogen upon Adsorption to Graphite and Mica Investigated by Atomic Force Microscopy. Langmuir 2003, 19, 9883–9888. [Google Scholar] [CrossRef]
- Lin, Y.; Wang, J.; Wan, L.J.; Fang, X.H. Study of fibrinogen adsorption on self-assembled monolayers on Au(111) by atomic force microscopy. Ultramicroscopy 2005, 105, 129–136. [Google Scholar] [CrossRef] [PubMed]
- Kubiak, K.; Adamczyk, Z.; Wasilewska, M. Mechanisms of fibrinogen adsorption at the silica substrate determined by QCM-D measurements. J. Colloid Interface Sci. 2015, 457, 378–387. [Google Scholar] [CrossRef]
- Doolittle, R.; Watt, K.; Cottrell, B.; Strong, D.; Riley, M. The amino acid sequence of the α-chain of human fibrinogen. Nature 1979, 280, 464. [Google Scholar] [CrossRef]
- Evers, C.H.; Andersson, T.; Lund, M.; Skepö, M. Adsorption of Unstructured Protein β-Casein to Hydrophobic and Charged Surfaces. Langmuir 2012, 28, 11843–11849. [Google Scholar] [CrossRef] [PubMed]
- Kurut, A.; Henriques, J.; Forsman, J.; Skepö, M.; Lund, M. Role of histidine for charge regulation of unstructured peptides at interfaces and in bulk. Proteins Struct. Funct. Bioinf. 2014, 82, 657–667. [Google Scholar] [CrossRef] [Green Version]
- Henriques, J.; Skepö, M. A coarse-grained model for flexible (phospho)proteins: Adsorption and bulk properties. Food Hydrocoll. 2015, 43, 473–480. [Google Scholar] [CrossRef]
- Hyltegren, K.; Nylander, T.; Lund, M.; Skepö, M. Adsorption of the intrinsically disordered saliva protein histatin 5 to silica surfaces. A Monte Carlo simulation and ellipsometry study. J. Colloid Interface Sci. 2016, 467, 280–290. [Google Scholar] [CrossRef]
- Hyltegren, K.; Skepö, M. Adsorption of polyelectrolyte-like proteins to silica surfaces and the impact of pH on the response to ionic strength. A Monte Carlo simulation and ellipsometry study. J. Colloid Interface Sci. 2017, 494, 266–273. [Google Scholar] [CrossRef]
- Metropolis, N.; Rosenbluth, A.W.; Rosenbluth, M.N.; Teller, A.H.; Teller, E. Equation of State Calculations by Fast Computing Machines. J. Chem. Phys. 1953, 21, 1087–1092. [Google Scholar] [CrossRef] [Green Version]
- Stenqvist, B.; Thuresson, A.; Kurut, A.; Vácha, R.; Lund, M. Faunus—A flexible framework for Monte Carlo simulation. Mol. Simul. 2013, 39, 1233–1239. [Google Scholar] [CrossRef] [Green Version]
- Guex, N.; Peitsch, M.C. SWISS-MODEL and the Swiss-Pdb Viewer: An environment for comparative protein modeling. Electrophoresis 1997, 18, 2714–2723. [Google Scholar] [CrossRef]
- Bolt, G.H. Determination of the Charge Density of Silica Sols. J. Phys. Chem. 1957, 61, 1166–1169. [Google Scholar] [CrossRef]
- Samoshina, Y.; Nylander, T.; Shubin, V.; Bauer, R.; Eskilsson, K. Equilibrium Aspects of Polycation Adsorption on Silica Surface: How the Adsorbed Layer Responds to Changes in Bulk Solution. Langmuir 2005, 21, 5872–5881. [Google Scholar] [CrossRef] [PubMed]
- Rechendorff, K.; Hovgaard, M.B.; Foss, M.; Zhdanov, V.P.; Besenbacher, F. Enhancement of Protein Adsorption Induced by Surface Roughness. Langmuir 2006, 22, 10885–10888. [Google Scholar] [CrossRef] [PubMed]
- Lundqvist, M.; Sethson, I.; Jonsson, B.H. Protein Adsorption onto Silica Nanoparticles: Conformational Changes Depend on the Particles’ Curvature and the Protein Stability. Langmuir 2004, 20, 10639–10647. [Google Scholar] [CrossRef] [PubMed]
Surface Type | Charge Density (e/Å) | Adsorbed Proportion (%) |
---|---|---|
Flat | 0.503 | |
Nanostructured | 2.17 | |
Flat | 7.88 | |
Nanostructured | 100 | |
Flat | 39.2 | |
Nanostructured | 100 |
Nanoparticle Radius (nm) | Adsorbed Proportion (%) | Adsorbed Proportion/Surface Area ( nm) |
---|---|---|
10 | 0.179 | 3.78 |
20 | 0.474 | 1.64 |
30 | 0.825 | 0.729 |
40 | 1.27 | 0.628 |
Nanoparticle Radius (nm) | Adsorbed Proportion (%), nn = 60 nm | Adsorbed Proportion (%), sc = 40% |
---|---|---|
10 | 1.05 | 1.50 |
20 | 2.17 | 2.17 |
30 | 1.46 | 2.73 |
Surface Type | Charge Density (e/Å) | Adsorbed Proportion (%) |
---|---|---|
Flat | 1.23 | |
Nanostructured | 3.14 | |
Flat | 60.1 | |
Nanostructured | 100 | |
Flat | 100 | |
Nanostructured | 100 |
Nanoparticle Radius (nm) | Adsorbed Proportion (%) | Adsorbed Proportion/Surface Area ( nm) |
---|---|---|
10 | 0.128 | 1.02 |
20 | 0.392 | 0.781 |
30 | 0.774 | 0.684 |
40 | 1.38 | 0.687 |
Nanoparticle Radius (nm) | Adsorbed Proportion (%), nn = 60 nm | Adsorbed Proportion (%), sc = 40% |
---|---|---|
10 | 1.54 | 1.69 |
20 | 3.15 | 3.15 |
30 | 1.95 | 3.34 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hyltegren, K.; Hulander, M.; Andersson, M.; Skepö, M. Adsorption of Fibrinogen on Silica Surfaces—The Effect of Attached Nanoparticles. Biomolecules 2020, 10, 413. https://doi.org/10.3390/biom10030413
Hyltegren K, Hulander M, Andersson M, Skepö M. Adsorption of Fibrinogen on Silica Surfaces—The Effect of Attached Nanoparticles. Biomolecules. 2020; 10(3):413. https://doi.org/10.3390/biom10030413
Chicago/Turabian StyleHyltegren, Kristin, Mats Hulander, Martin Andersson, and Marie Skepö. 2020. "Adsorption of Fibrinogen on Silica Surfaces—The Effect of Attached Nanoparticles" Biomolecules 10, no. 3: 413. https://doi.org/10.3390/biom10030413
APA StyleHyltegren, K., Hulander, M., Andersson, M., & Skepö, M. (2020). Adsorption of Fibrinogen on Silica Surfaces—The Effect of Attached Nanoparticles. Biomolecules, 10(3), 413. https://doi.org/10.3390/biom10030413