Biochemical and Comparative Transcriptome Analyses Reveal Key Genes Involved in Major Metabolic Regulation Related to Colored Leaf Formation in Osmanthus fragrans ‘Yinbi Shuanghui’ during Development
Abstract
:1. Introduction
2. Material and Methods
2.1. Plant Materials
2.2. Pigment Determination
2.3. Transmission Electron Microscopy
2.4. RNA Extraction, cDNA Library Preparation, and Sequencing
2.5. De Novo Assembly of RNA-Seq Reads and Quantifying Gene Expression
2.6. Identification and Functional Analysis of DEGs
2.7. Validation of DEGs by Quantitative Real-Time PCR (qRT-PCR)
3. Results
3.1. Phenotypic and Physiological Characterization in Colored and Green Leaves
3.2. Transcriptome Analysis
3.3. Identification and Functional Annotation of DEGs during Leaf Development
3.4. Identification of DEGs Related to Pigment Metabolism
3.4.1. Identification of DEGs Related to Chlorophyll Metabolism
3.4.2. Identification of DEGs Related to Carotenoid Metabolism
3.4.3. Identification of DEGs Related to Secondary Metabolism
3.5. Identification of DEGs Co-Expression Modules by WGCNA
3.6. Co-Expression Networks Reveal a Differential Regulatory Network of Chlorophyll Metabolism and Carotenoid Metabolism
3.7. Verification of the Gene Expression through qRT-PCR
4. Discussion
4.1. Colored Leaves are Closely Related to Chloroplast Dysplasia
4.2. Colored Leaves are Affected by the Expression of Genes Related to Chlorophyll Degradation
4.3. The Expression of Genes Associated with Carotenoid Metabolism in Colored Leaves impedes the Synthesis of Carotenoids
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kang, S.J.; Xia, F.Y.; Xing., Z.G.; Pu., R.B.; Juan., Z.; Jun., D.G.; Xian., Y.M.; Yu., G.Z.; Li, Z. Gene Encoding Protochlorophyllide Oxidoreductase B Is Involved in Chlorophyll Synthesis of Rice. Crop. Sci. 2015, 55, 284–293. [Google Scholar] [CrossRef]
- Guo, H.J.; Zhao, H.B.; Zhao, L.S.; Gu, J.Y.; Zhao, S.R.; Li, J.H.; Liu, Q.C.; Liu, L.X. Characterization of a Novel Chlorophyll-Deficient Mutant Mt6172 in Wheat. J.Integr. Agr. 2012, 11, 888–897. [Google Scholar] [CrossRef]
- Waters, M.T.; Wang, P.; Korkaric, M.; Capper, R.G.; Saunders, N.J.; Langdale, J.A. GLK Transcription Factors Coordinate Expression of the Photosynthetic Apparatus in Arabidopsis. Plant Cell 2009, 21, 1109–1128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chu, P.; Yan, G.X.; Yang, Q.; Zhai, L.N.; Zhang, C.; Zhang, F.Q.; Guan, R.Z. iTRAQ-based quantitative proteomics analysis of Brassica napus leaves reveals pathways associated with chlorophyll deficiency. J. Proteomics 2015, 113, 244–259. [Google Scholar] [CrossRef] [PubMed]
- Lu, M.; Liu, H.H.; Mao, H.; Zhao, Q.R.; Zhao, H.X.; Hu, S.W. Chlorophyll anabolic changes in leaves of Brassica napus L. yellow mutants. Acta Botanica Boreali Occidential Sinica 2010, 30, 2177–2183. [Google Scholar]
- Ou, L.J. Study on the development of chloroplasts in rice leaf color mutants. Acta Botanica Boreali Occidential Sinica 2010, 30, 85–92. [Google Scholar]
- Lu, D.H.; Zong, X.F.; Wang, S.G.; Ling, Y.H.; Sang, X.C.; Hua, H.G. Photosynthetic characteristics of two rice leaf color mutants. Crop. J. 2009, 35, 2304–2308. [Google Scholar]
- Zhou, H.; Pan, Y.Z.; Liu, X.Z.; Ma, X.J.; Chen, S.L.; Lin, D.Z.; Wang, J.M.; Dong, Y.J.; Teng, S. Genetic analysis of a new rice chlorophyll-deficient yellow leaf mutant and its gene mapping. Mol. Plant Breed. 2013, 11, 145–151. [Google Scholar]
- Ma, X.Z.; Sun, X.Q.; Li, C.M.; Huan, R.; Sun, C.H.; Wang, Y.; Xiao, F.L.; Wang, Q.; Chen, P.R.; Ma, F.R.; et al. Map-based cloning and characterization of the novel yellow-green leaf gene ys83 in rice (Oryza sativa). Plant Physiol. Biochem. 2017, 111, 1–9. [Google Scholar] [CrossRef]
- Zhu, X.; Guo, S.; Wang, Z.; Du, Q.; Xing, Y.; Zhang, T.; Shen, W.; Sang, X.; Ling, Y.; He, G. Map-based cloning and functional analysis of YGL8, which controls leaf colour in rice (Oryza sativa). BMC Plant Biol. 2016, 16, 134. [Google Scholar] [CrossRef] [Green Version]
- Gomez, F.; Carrión, C.; Costa, M.; Desel, C.; Kieselbach, T.; Funk, C.; Krupinska, K.; Guiamet, J. Extra-plastidial degradation of chlorophyll and photosystem I in tobacco leaves involving “senescence-associated vacuoles”. Plant J. 2019, 99, 465–477. [Google Scholar] [CrossRef] [PubMed]
- Li, C.F.; Xu, Y.X.; Ma, J.Q.; Jin, J.Q.; Huang, D.J.; Yao, M.Z.; Ma, C.L.; Chen, L. Biochemical and transcriptomic analyses reveal different metabolite biosynthesis profiles among three color and developmental stages in ‘Anji Baicha‘ (Camellia sinensis). BMC Plant Biol. 2016, 16, 195. [Google Scholar] [CrossRef] [Green Version]
- Lu, M.; Han, J.; Zhu, B.; Jia, H.; Yang, T.; Wang, R.; Deng, W.W.; Zhang, Z.Z. Significantly increased amino acid accumulation in a novel albino branch of the tea plant (Camellia sinensis). Planta 2019, 249, 363–376. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Yue, C.; Cao, H.L.; Zhou, Y.H.; Zeng, J.M.; Yang, Y.J.; Wang, X.H. Biochemical and transcriptome analyses of anovel chlorophyll-deficient chlorina tea plant cultivar. BMC Plant Biol. 2014, 14, 352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, H.Y.; Shi, N.R.; An, X.Y.; Liu, C.; Fu, H.F.; Cao, L.; Feng, Y.; Sun, D.J.; Zhang, L.L. Candidate Genes for Yellow Leaf Color in Common Wheat (Triticum aestivum L.) and Major Related Metabolic Pathways according to Transcriptome Profiling. Int. J. Mol. Sci. 2018, 19, 1594. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, G.; Yang, F.; Shi, S.; Li, D.; Wang, Z.; Liu, H.; Huang, D.; Wang, C. Transcriptome Characterization of Cymbidium sinense ‘Dharma‘ Using 454 Pyrosequencing and Its Application in the Identification of Genes Associated with Leaf Color Variation. PLoS ONE 2015, 10, e0128592. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Song, H.Y.; He, J.R.; Wang, Q.; Liu, J. Comparative transcriptome analysis provides global insight into gene expression differences between two orchid cultivars. PLoS ONE 2018, 13, e0200155. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, Z.Y.; Wang, P.; Wang, S.A.; Ma, L.L.; Li, L.F.; Yang, R.T.; Ma, Y.Z.; Wang, Q. Comprehensive transcriptome analysis discovers novel candidate genes related to leaf color in a Lagerstroemia indica yellow leaf mutant. Genes Genomics 2015, 37, 851–863. [Google Scholar] [CrossRef]
- Li, W.; Yang, S.; Lu, Z.; He, Z.; Ye, Y.; Zhao, B.; Wang, L.; Jin, B. Cytological, physiological, and transcriptomic analyses of golden leaf coloration in Ginkgo biloba L. Hortic. Res. 2018, 5, 12. [Google Scholar] [CrossRef] [Green Version]
- Mu, H.N.; Li, H.G.; Wang, L.G.; Yang, X.L.; Sun, T.Z.; Xu, C. Transcriptome sequencing and analysis of sweet osmanthus (Osmanthus fragrans Lour.). Genes Genomics 2014, 36, 777–788. [Google Scholar] [CrossRef]
- Xiang, M.; Duan, Y.F.; Xiang, Q.B. Establishment of Caiyegui Group. J. Nanjing For. Univ. Nat. Sci. Ed. 2014, 38, 187. [Google Scholar]
- Zhang, X.Z. Comparative study on determination methods of plant chlorophyll content. J. Shenyang Agr. Univ. 1985, 4, 84–87. [Google Scholar]
- Zhang, C.; Fu, J.X.; Wang, Y.G.; Bao, Z.Y.; Zhao, H.B. Identification of Suitable Reference Genes for Gene Expression Normalization in the Quantitative Real-Time PCR Analysis of Sweet Osmanthus (Osmanthus fragrans Lour.). PLoS ONE 2015, 10, e0136355. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qiu, Z.; Chen, D.; He, L.; Zhang, S.; Yang, Z.; Zhang, Y.; Wang, Z.; Ren, D.; Qian, Q.; Guo, L.; et al. The rice white green leaf 2 gene causes defects in chloroplast development and affects the plastid ribosomal protein S9. Rice 2018, 11, 39. [Google Scholar] [CrossRef] [Green Version]
- Mansilla, N.; Racca, S.; Gras, D.; Gonzalez, D.; Welchen, E. The Complexity of Mitochondrial Complex IV: An Update of Cytochrome c Oxidase Biogenesis in Plants. Int. J. Mol. Sci. 2018, 19, 662. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.; Feng, B.H.; Chen, T.T.; Zhang, C.X.; Tao, L.X.; Fu, G.F. Transcriptome analysis of pale-green leaf rice reveals photosynthetic regulatory pathways. Acta Physiologiae Plantarum 2017, 39, 274. [Google Scholar] [CrossRef]
- Wei, X.D.; Chen, G.X.; Xu, Y.L.; Lei, H.; Shi, D.W. Changes of Photosynthetic Physiological Characteristics and Chloroplast Ultrastructure of Ginkgo Leaves During Senescence. Bull. Botan. Res. 2008, 04, 433–437. [Google Scholar]
- Hall, L.N.; Rossini, L.; Cribb, L.; Langdale, J.A. GOLDEN 2: A novel transcriptional regulator of cellular differentiation in the maize leaf. Plant Cell 1998, 10, 925–936. [Google Scholar] [CrossRef] [Green Version]
- Waters, M.T.; Moylan, E.C.; Langdale, J.A. GLK transcription factors regulate chloroplast development in a cell-autonomous manner. Plant J. 2008, 56, 432–444. [Google Scholar] [CrossRef]
- Fitter, D.W.; Martin, D.J.; Copley, M.J.; Scotland, R.W.; Langdale, J.A. GLK gene pairs regulate chloroplast development in diverse plant species. Plant J. 2002, 31, 713–727. [Google Scholar] [CrossRef] [Green Version]
- Powell, A.L.T.; Nguyen, C.V.; Hill, T.; Cheng, K.L.; Figueroa-Balderas, R.; Aktas, H.; Ashrafi, H.; Pons, C.; Fernandez-Munoz, R.; Vicente, A.; et al. Uniform ripening Encodes a Golden 2-like Transcription Factor Regulating Tomato Fruit Chloroplast Development. Science 2012, 336, 1711–1715. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, M.; Zhu, L.; Pan, C.; Xu, L.; Liu, Y.; Ke, W.; Yang, P. Transcriptomic Analysis of the Regulation of Rhizome Formation in Temperate and Tropical Lotus (Nelumbo nucifera). Sci. Rep. 2015, 5, 13059. [Google Scholar] [CrossRef] [PubMed]
- Nagata, N.; Tanaka, R.; Satoh, S.; Tanaka, A. Identification of a vinyl reductase gene for chlorophyll synthesis in Arabidopsis thaliana and implications for the evolution of Prochlorococcus species. Plant Cell 2005, 17, 233–240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, W.; Fu, Y.; Hu, G.; Si, H.; Zhu, L.; Wu, C.; Sun, Z. Identification and fine mapping of a thermo-sensitive chlorophyll deficient mutant in rice (Oryza sativa L.). Planta 2007, 226, 785–795. [Google Scholar] [CrossRef] [PubMed]
- Hoertensteiner, S. Update on the biochemistry of chlorophyll breakdown. Plant Mol. Biol. 2013, 82, 505–517. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.M.; Soll, D. Antisense HEMA1 RNA expression inhibits heme and chlorophyll biosynthesis in arabidopsis. Plant Physiol. 2000, 122, 49–56. [Google Scholar] [CrossRef] [Green Version]
- Tsuchiya, T.; Ohta, H.; Okawa, K.; Iwamatsu, A.; Shimada, H.; Masuda, T.; Takamiya, K. Cloning of chlorophyllase, the key enzyme in chlorophyll degradation: Finding of a lipase motif and the induction by methyl jasmonate. Proc. Natl. Acad. Sci. USA 1999, 96, 15362–15367. [Google Scholar] [CrossRef] [Green Version]
- Harpaz Saad, S.; Azoulay, T.; Arazi, T.; Ben-Yaakov, E.; Mett, A.; Shiboleth, Y.M.; Hoertensteiner, S.; Gidoni, D.; Gal-On, A.; Goldschmidt, E.E.; et al. Chlorophyllase is a rate-limiting enzyme in chlorophyll catabolism and is posttranslationally regulated. Plant Cell 2007, 19, 1007–1022. [Google Scholar] [CrossRef] [Green Version]
- Schenk, N.; Schelbert, S.; Kanwischer, M.; Goldschmidt, E.E.; Doermann, P.; Hoertensteiner, S. The chlorophyllases AtCLH1 and AtCLH2 are not essential for senescence-related chlorophyll breakdown in Arabidopsis thaliana. FEBS Lett. 2007, 581, 5517–5525. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.; Liao, Y.; Ren, G.D.; Zhang, Y.Y.; Chen, W.J.; Kuai, B.K. Repression of AtCLH1 expression results in a decrease in the ratio of chlorophyll a/b but doesnot affect the rate of chlorophyll degradation during leaf senescence. J. Plant Physiol. Mol. Biol. 2007, 33, 596–606. [Google Scholar]
- Suzuki, T.; Kunieda, T.; Murai, F.; Morioka, S.; Shioi, Y. Mg-dechelation activity in radish cotyledons with artificial and native substrates, Mg-chlorophyllin a and chlorophyllide a. Plant Physiol. Biochem. 2005, 43, 459–464. [Google Scholar] [CrossRef] [PubMed]
- Buechert, A.M.; Civello, P.M.; Martinez, G.A. Chlorophyllase versus pheophytinase as candidates for chlorophyll dephytilation during senescence of broccoli. J. Plant Physiol. 2011, 168, 337–343. [Google Scholar] [CrossRef]
- Morita, R.; Sato, Y.; Masuda, Y.; Nishimura, M.; Kusaba, M. Defect in non-yellow coloring 3, an alpha/beta hydrolase-fold family protein, causes a stay-green phenotype during leaf senescence in rice. Plant J. 2009, 60, 1110. [Google Scholar]
- Pruzinska, A.; Tanner, G.; Anders, I.; Roca, M.; Hortensteiner, S. Chlorophyll breakdown: Pheophorbide a oxygenase is a Rieske-type iron-sulfur protein, encoded by the accelerated cell death 1 gene. Proc. Natl. Acad. Sci. USA 2003, 100, 15259–15264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosianskey, Y.; Dahan, Y.; Yadav, S.; Freiman, Z.E.; Milo-Cochavi, S.; Kerem, Z.; Eyal, Y.; Flaishman, M.A. Chlorophyll metabolism in pollinated vs. parthenocarpic fig fruits throughout development and ripening. Planta 2016, 244, 491–504. [Google Scholar] [CrossRef] [PubMed]
- Pruzinska, A.; Tanner, G.; Aubry, S.; Anders, I.; Moser, S.; Muller, T.; Ongania, K.H.; Krautler, B.; Youn, J.Y.; Liljegren, S.J.; et al. Chlorophyll breakdown in senescent Arabidopsis leaves. Characterization of chlorophyll catabolites and of chlorophyll catabolic enzymes involved in the degreening reaction. Plant Physiol. 2005, 139, 52–63. [Google Scholar] [CrossRef] [Green Version]
- Mecey, C.; Hauck, P.; Trapp, M.; Pumplin, N.; Plovanich, A.; Yao, J.; He, S.Y. A Critical Role of STAYGREEN/Mendel’s I Locus in Controlling Disease Symptom Development during Pseudomonas syringae pv tomato Infection of Arabidopsis. Plant Physiol. 2011, 157, 1965–1974. [Google Scholar] [CrossRef] [Green Version]
- Sakuraba, Y.; Schelbert, S.; Park, S.Y.; Han, S.H.; Lee, B.D.; Andres, C.B.; Kessler, F.; Hoertensteiner, S.; Paek, N.C. STAY-GREEN and Chlorophyll Catabolic Enzymes Interact at Light-Harvesting Complex II for Chlorophyll Detoxification during Leaf Senescence in Arabidopsis. Plant Cell 2012, 24, 507–518. [Google Scholar] [CrossRef] [Green Version]
- Ren, G.D.; An, K.; Liao, Y.; Zhou, X.; Cao, Y.J.; Zhao, H.F.; Ge, X.C.; Kuai, B.K. Identification of a novel chloroplast protein AtNYE1 regulating chlorophyll degradation during leaf senescence in arabidopsis. Plant Physiol. 2007, 144, 1429–1441. [Google Scholar] [CrossRef] [Green Version]
- Lin, M.; Pang, C.Y.; Fan, S.L.; Song, M.Z.; Wei, H.L.; Yu, S.X. Global analysis of the Gossypium hirsutum L. Transcriptome during leaf senescence by RNA-Seq. BMC Plant Biol. 2015, 15, 43. [Google Scholar] [CrossRef] [Green Version]
- Qiu, K.; Li, Z.P.; Yang, Z.; Chen, J.Y.; Wu, S.X.; Zhu, X.Y.; Gao, S.; Gao, J.; Ren, G.D.; Kuai, B.K.; et al. EIN3 and ORE1 Accelerate Degreening during Ethylene-Mediated Leaf Senescence by Directly Activating Chlorophyll Catabolic Genes in Arabidopsis. PLoS Genet. 2015, 11, e1005399. [Google Scholar] [CrossRef] [PubMed]
- Oda-Yamamizo, C.; Mitsuda, N.; Sakamoto, S.; Ogawa, D.; Ohme-Takagi, M.; Ohmiya, A. The NAC transcription factor ANAC046 is a positive regulator of chlorophyll degradation and senescence in Arabidopsis leaves. Sci. Rep. 2016, 6, 23609. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wen, C.H.; Lin, S.S.; Chu, F.H. Transcriptome Analysis of a Subtropical Deciduous Tree: Autumn Leaf Senescence Gene Expression Profile of Formosan Gum. Plant Cell Physiol. 2015, 56, 163–174. [Google Scholar] [CrossRef] [Green Version]
- Ohmiya, A.; Kishimoto, S.; Aida, R.; Yoshioka, S.; Sumitomo, K. Carotenoid cleavage dioxygenase (CmCCD4a) contributes to white color formation in chrysanthemum petals. Plant Physiol. 2006, 142, 1193–1201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Henriquez, M.A.; Soliman, A.; Li, G.; Hannoufa, A.; Ayele, B.T.; Daayf, F. Molecular cloning, functional characterization and expression of potato (Solanum tuberosum) 1-deoxy-D-xylulose 5-phosphate synthase 1 (StDXS1) in response to Phytophthora infestans. Plant. Sci. 2016, 243, 71–83. [Google Scholar] [CrossRef] [PubMed]
- Simpson, K.; Quiroz, L.F.; Rodriguez-Concepcion, M.; Stenge, C.R. Differential Contribution of the First Two Enzymes of the MEP Pathway to the Supply of Metabolic Precursors for Carotenoid and Chlorophyll Biosynthesis in Carrot (Daucus carota). Front. Plant Sci. 2016, 7, 1344. [Google Scholar] [CrossRef] [Green Version]
- Burkhardt, P.K.; Beyer, P.; Wunn, J.; Kloti, A.; Armstrong, G.A.; Schledz, M.; von Lintig, J.; Potrykus, I. Transgenic rice (Oryza sativa) endosperm expressing daffodil (Narcissus pseudonarcissus) phytoene synthase accumulates phytoene, a key intermediate of provitamin A biosynthesis. Plant J. 1997, 11, 1071–1078. [Google Scholar] [CrossRef] [Green Version]
- Ampomah Dwamena, C.; McGhie, T.; Wibisono, R.; Montefiori, M.; Hellens, R.P.; Allan, A.C. The kiwifruit lycopene beta-cyclase plays a significant role in carotenoid accumulation in fruit. J. Exp. Bot. 2009, 60, 3765–3779. [Google Scholar] [CrossRef] [Green Version]
- Ha, S.H.; Kim, J.B.; Park, J.S.; Lee, S.W.; Cho, K.J. A comparison of the carotenoid accumulation in Capsicum varieties that show different ripening colours: Deletion of the capsanthin-capsorubin synthase gene is not a prerequisite for the formation of a yellow pepper. J. Exp. Bot. 2007, 58, 3135–3144. [Google Scholar] [CrossRef] [Green Version]
- Fray, R.G.; Grierson, D. Identification and genetic analysis of normal and mutant phytoene synthase genes of tomato by sequencing, complementation and co-suppression. Plant Mol. Biol. 1993, 22, 589–602. [Google Scholar] [CrossRef]
- Ruiz-Sola, M.A.; Rodriguez-Concepcion, M. Carotenoid biosynthesis in Arabidopsis: A colorful pathway. Arabidopsis B. Am. Soc. Plant. Biol. 2012, 10, e0158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nambara, E.; Marion-Poll, A. Abscisic acid biosynthesis and catabolism. Annu. Rev. Plant. Biol. 2005, 56, 165–185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tan, B.C.; Joseph, L.M.; Deng, W.T.; Liu, L.J.; Li, Q.B.; Cline, K.; McCarty, D.R. Molecular characterization of the Arabidopsis 9-cis epoxycarotenoid dioxygenase gene family. Plant J. 2003, 35, 44–56. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.; Duan, J.; Huo, D.; Shi, Q.; Niu, L.; Zhang, Y. Transcriptomic Analysis Reveals Transcription Factors Related to Leaf Anthocyanin Biosynthesis in Paeonia qiui. Molecules 2017, 22, 2186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Sample | Chlorophyll (mg·g−1) | Chlorophyll a (mg·g−1) | Chlorophyll b (mg·g−1) | Carotenoid (mg·g−1) | Chl a/Chl b |
---|---|---|---|---|---|
GA | 0.89 ± 0.02d | 0.41 ± 0.00d | 0.47 ± 0.02d | 0.19 ± 0.00d | 0.88 ± 0.03d |
GB | 2.13 ± 0.07b | 1.21 ± 0.07b | 0.92 ± 0.03b | 0.40 ± 0.03b | 1.31 ± 0.08b |
GC | 2.97 ± 0.01a | 1.88 ± 0.03a | 1.09 ± 0.03a | 0.65 ± 0.00a | 1.73 ± 0.07a |
CA | 1.00 ± 0.01d | 0.50 ± 0.01d | 0.50 ± 0.02d | 0.23 ± 0.01d | 1.01 ± 0.05c |
CB | 1.58 ± 0.08c | 0.88 ± 0.05c | 0.70 ± 0.03c | 0.31 ± 0.02c | 1.26 ± 0.02bc |
CC | 2.14 ± 0.05b | 1.23 ± 0.01b | 0.91 ± 0.05b | 0.32 ± 0.00c | 1.35 ± 0.07b |
Sample | Raw Read | Clean Read | GC% | Base Pair | Q20 (%) | Q30 (%) |
---|---|---|---|---|---|---|
CA-1 | 50136154 | 48697992 (97.13%) | 45.75% | 7123264976 | 6965309247 (97.78%) | 6650946216 (93.37%) |
CA-2 | 47247834 | 45806568 (96.95%) | 47.08% | 6692400673 | 6537141040 (97.68%) | 6229471306 (93.08%) |
CA-3 | 43851748 | 42713330 (97.4%) | 46.62% | 6255173639 | 6122879028 (97.89%) | 5853739955 (93.58%) |
CB-1 | 41291246 | 40007934 (96.89%) | 46.41% | 5851697788 | 5719672342 (97.74%) | 5456822949 (93.25%) |
CB-2 | 39691580 | 38508004 (97.02%) | 46.49% | 5630898128 | 5499410453 (97.66%) | 5240305903 (93.06%) |
CB-3 | 41987310 | 40869684 (97.34%) | 46.78% | 5982309095 | 5851983440 (97.82%) | 5589280458 (93.43%) |
CC-1 | 40240238 | 38318272 (95.22%) | 47.11% | 5496433178 | 5292402611 (96.29%) | 4930302996 (89.70%) |
CC-2 | 47464442 | 45485024 (95.83%) | 46.30% | 6547342914 | 6313888832 (96.43%) | 5896493760 (90.06%) |
CC-3 | 45207378 | 43368058 (95.93%) | 46.12% | 6246637041 | 6025421211 (96.46%) | 5629644889 (90.12%) |
GA-1 | 47923416 | 46863062 (97.79%) | 46.51% | 6920028257 | 6813658441 (98.46%) | 6592998268 (95.27%) |
GA-2 | 52077614 | 49301610 (94.67%) | 47.43% | 7040828776 | 6764478452 (96.08%) | 6283883279 (89.25%) |
GA-3 | 47559986 | 45334370 (95.32%) | 47.04% | 6503246887 | 6258755974 (96.24%) | 5827855536 (89.61%) |
GB-1 | 47687778 | 45908678 (96.27%) | 46.64% | 6616481347 | 6389425806 (96.57%) | 5978986991 (90.37%) |
GB-2 | 40856522 | 38407958 (94.01%) | 46.54% | 5441768736 | 5187774775 (95.33%) | 4761428460 (87.50%) |
GB-3 | 50998640 | 49742274 (97.54%) | 46.50% | 7337535698 | 7216493845 (98.35%) | 6971524292 (95.01%) |
GC-1 | 45633624 | 44576264 (97.68%) | 46.68% | 6583222002 | 6478966906 (98.42%) | 6263761501 (95.15%) |
GC-2 | 52890664 | 51635718 (97.63%) | 47.04% | 7626415754 | 7502551431 (98.38%) | 7248121801 (95.04%) |
GC-3 | 55658706 | 54186622 (97.36%) | 46.75% | 7995143055 | 7859478736 (98.30%) | 7585090670 (94.87%) |
Sample | All Reads Num | UniqueMapped Reads | Multiple Mapped Reads | Mapping Ratio |
---|---|---|---|---|
CA-1 | 47837392 | 35574913 | 5619933 | 86.11% |
CA-2 | 45460760 | 34139028 | 5403742 | 86.98% |
CA-3 | 41853268 | 31431109 | 4984757 | 87.01% |
CB-1 | 39921676 | 30448781 | 4373979 | 87.23% |
CB-2 | 38064446 | 29044117 | 4312621 | 87.63% |
CB-3 | 40736136 | 31124068 | 4696715 | 87.93% |
CC-1 | 38049842 | 29707713 | 3795059 | 88.05% |
CC-2 | 45215906 | 35061304 | 4497542 | 87.49% |
CC-3 | 43259684 | 33546908 | 4150829 | 87.14% |
GA-1 | 46725254 | 35483751 | 4884461 | 86.39% |
GA-2 | 48854482 | 36860201 | 5709217 | 87.14% |
GA-3 | 45201006 | 34009232 | 5270798 | 86.90% |
GB-1 | 45666432 | 34822812 | 5256176 | 87.76% |
GB-2 | 38305776 | 28947778 | 4418419 | 87.10% |
GB-3 | 49619384 | 37946864 | 5267936 | 87.09% |
GC-1 | 44405898 | 35133689 | 4016541 | 88.16% |
GC-2 | 51159608 | 40525142 | 4731774 | 88.46% |
GC-3 | 53974230 | 42462991 | 4936445 | 87.82% |
Pathway | Chlorophyll metabolism | Carotenoid biosynthesis |
---|---|---|
all(7005) | 71 | 40 |
blueviolet(248) | 1 | 2 |
brown4(236) | 2 | 2 |
coral(1289) | 20 | 1 |
darkolivegreen2(1404) | 9 | 6 |
darkolivegreen4(645) | 1 | 3 |
honeydew1(274) | 5 | 1 |
lavenderblush1(1466) | 14 | 14 |
lightslateblue(7) | 0 | 0 |
mediumpurple2(682) | 6 | 8 |
navajowhite(8) | 0 | 0 |
orange(457) | 6 | 2 |
plum(42) | 0 | 0 |
plum1(136) | 3 | 0 |
sienna4(111) | 4 | 1 |
Gene Name | Descriptions |
---|---|
Unigene0018388 | transcription factor TCP20 isoform X2(TCP20) |
Unigene0027439 | WRKY transcription factor 3(WRKY3) |
Unigene0036235 | nuclear transcription factor Y subunit C-9-like isoform X1(NFYC9) |
Unigene0000179 | probable WRKY transcription factor 3 isoform X2(WRKY4) |
Unigene0029411 | heat stress transcription factor A-7a-like (HSFA2) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, X.; Yang, X.; Xie, J.; Ding, W.; Li, Y.; Yue, Y.; Wang, L. Biochemical and Comparative Transcriptome Analyses Reveal Key Genes Involved in Major Metabolic Regulation Related to Colored Leaf Formation in Osmanthus fragrans ‘Yinbi Shuanghui’ during Development. Biomolecules 2020, 10, 549. https://doi.org/10.3390/biom10040549
Chen X, Yang X, Xie J, Ding W, Li Y, Yue Y, Wang L. Biochemical and Comparative Transcriptome Analyses Reveal Key Genes Involved in Major Metabolic Regulation Related to Colored Leaf Formation in Osmanthus fragrans ‘Yinbi Shuanghui’ during Development. Biomolecules. 2020; 10(4):549. https://doi.org/10.3390/biom10040549
Chicago/Turabian StyleChen, Xuan, Xiulian Yang, Jun Xie, Wenjie Ding, Yuli Li, Yuanzheng Yue, and Lianggui Wang. 2020. "Biochemical and Comparative Transcriptome Analyses Reveal Key Genes Involved in Major Metabolic Regulation Related to Colored Leaf Formation in Osmanthus fragrans ‘Yinbi Shuanghui’ during Development" Biomolecules 10, no. 4: 549. https://doi.org/10.3390/biom10040549
APA StyleChen, X., Yang, X., Xie, J., Ding, W., Li, Y., Yue, Y., & Wang, L. (2020). Biochemical and Comparative Transcriptome Analyses Reveal Key Genes Involved in Major Metabolic Regulation Related to Colored Leaf Formation in Osmanthus fragrans ‘Yinbi Shuanghui’ during Development. Biomolecules, 10(4), 549. https://doi.org/10.3390/biom10040549