Variation in ω-3 and ω-6 Polyunsaturated Fatty Acids Produced by Different Phytoplankton Taxa at Early and Late Growth Phase
Abstract
:1. Introduction
2. Materials and Methods
2.1. Phytoplankton Culturing
2.2. Lipid Extraction and Fatty Acid Methylation
2.3. Quantitation of Fatty Acids
2.4. Statistical Methods
2.5. Implementing Laboratory Culturing Data on Field Data
3. Results
3.1. Growth Rate
3.2. Phytoplankton Taxa and Growth Phase Impact on the Contribution of ω-3 and ω-6 PUFA
3.3. Phytoplankton Taxa and Growth Phase Impact on the Content of ω-3 and ω-6 PUFA
3.4. Phytoplankton Taxa and Growth Phase Impact on the Production of ω-3 and ω-6 PUFA
3.5. Extrapolation to Field Data
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Reynolds, C.S. The Ecology of Phytoplankton; University Press: Cambridge, UK, 2006. [Google Scholar]
- Brett, M.; Müller-Navarra, D. The role of highly unsaturated fatty acids in aquatic foodweb processes. Freshwat. Biol. 1997, 38, 483–499. [Google Scholar] [CrossRef]
- Ravet, J.L.; Brett, M.T.; Arhonditsis, G.B. The effects of seston lipids on zooplankton fatty acid composition in Lake Washington, Washington, USA. Ecology 2010, 91, 180–190. [Google Scholar] [CrossRef] [Green Version]
- Strandberg, U.; Taipale, S.J.; Hiltunen, M.; Galloway, A.; Brett, M.T.; Kankaala, P. Inferring phytoplankton community composition with a fatty acid mixing model. Ecosphere 2015, 6, 1–18. [Google Scholar] [CrossRef]
- Das, U.N. Essential fatty acids-a review. Curr. Pharm. Biotechnol. 2006, 7, 467–482. [Google Scholar] [CrossRef] [PubMed]
- Goedkoop, W.; Sonesten, L.; Ahlgren, G.; Boberg, M. Fatty acids in profundal benthic invertebrates and their major food resources in lake erken, sweden: Seasonal variation and trophic indications. Can. J. Fish Aquat. Sci. 2000, 57, 2267–2279. [Google Scholar] [CrossRef]
- Lau, D.C.; Vrede, T.; Pickova, J.; Goedkoop, W. Fatty acid composition of consumers in boreal lakes–variation across species, space and time. Freshwat. Biol. 2012, 57, 24–38. [Google Scholar] [CrossRef]
- Makhutova, O.N.; Gladyshev, M.I.; Sushchik, N.N.; Dubovskaya, O.P.; Buseva, Z.F.; Fefilova, E.B.; Semenchenko, V.P.; Kalachova, G.S.; Kononova, O.N.; Baturina, M.A. Comparison of fatty acid composition of cladocerans and copepods from lakes of different climatic zones. Contemp. Probl. Ecol. 2014, 7, 474–483. [Google Scholar] [CrossRef]
- Makhutova, O.N.; Shulepina, S.P.; Sharapova, T.A.; Dubovskaya, O.P.; Sushchik, N.N.; Baturina, M.A.; Pryanichnikova, E.G.; Kalachova, G.S.; Gladyshev, M.I. Content of polyunsaturated fatty acids essential for fish nutrition in zoobenthos species. Freshw. Sci. 2016, 35, 1222–1234. [Google Scholar] [CrossRef] [Green Version]
- Hiltunen, M.; Strandberg, U.; Taipale, S.J.; Kankaala, P. Taxonomic identity and phytoplankton diet affect fatty acid composition of zooplankton in large lakes with differing dissolved organic carbon concentration. Limnol. Oceanogr. 2015, 60, 303–317. [Google Scholar] [CrossRef]
- Peltomaa, E.T.; Aalto, S.L.; Vuorio, K.M.; Taipale, S.J. The importance of phytoplankton biomolecule availability for secondary production. Front. Ecol. Evol. 2017, 5, 128. [Google Scholar] [CrossRef] [Green Version]
- Jónasdóttir, S.H. Effects of food quality on the reproductive success of acartia tonsa and acartia hudsonica: Laboratory observations. Mar. Biol. 1994, 121, 67–81. [Google Scholar] [CrossRef]
- Chen, M.; Liu, H.; Chen, B. Effects of dietary essential fatty acids on reproduction rates of a subtropical calanoid copepod, acartia erythraea. Mar. Ecol. Prog. Ser. 2012, 455, 95–110. [Google Scholar] [CrossRef] [Green Version]
- Guo, F.; Kainz, M.J.; Sheldon, F.; Bunn, S.E. The importance of high-quality algal food sources in stream food webs–current status and future perspectives. Freshwat. Biol. 2016, 61, 815–831. [Google Scholar] [CrossRef]
- Taipale, S.; Strandberg, U.; Peltomaa, E.; Galloway, A.W.; Ojala, A.; Brett, M.T. Fatty acid composition as biomarkers of freshwater microalgae: Analysis of 37 strains of microalgae in 22 genera and in seven classes. Aquat. Microb. Ecol. 2013, 71, 165–178. [Google Scholar] [CrossRef] [Green Version]
- Taipale, S.J.; Hiltunen, M.; Vuorio, K.; Peltomaa, E. Suitability of phytosterols alongside fatty acids as chemotaxonomic biomarkers for phytoplankton. Front. Plant Sci. 2016, 7, 212. [Google Scholar] [CrossRef]
- Taipale, S.J.; Vuorio, K.; Strandberg, U.; Kahilainen, K.K.; Järvinen, M.; Hiltunen, M.; Peltomaa, E.; Kankaala, P. Lake eutrophication and brownification downgrade availability and transfer of essential fatty acids for human consumption. Env. Int. 2016, 96, 156–166. [Google Scholar] [CrossRef] [Green Version]
- Los, D.A.; Mironov, K.S. Modes of fatty acid desaturation in cyanobacteria: An update. Life 2015, 5, 554–567. [Google Scholar] [CrossRef] [Green Version]
- Arts, M.T.; Brett, M.T.; Kainz, M. Lipids in Aquatic Ecosystems. Springer: New York, NY, USA, 2009. [Google Scholar]
- Raheem, A.; Prinsen, P.; Vuppaladadiyam, A.K.; Zhao, M.; Luque, R. A review on sustainable microalgae based biofuel and bioenergy production: Recent developments. J. Clean. Prod. 2018, 181, 42–59. [Google Scholar] [CrossRef]
- Mathimani, T.; Pugazhendhi, A. Utilization of algae for biofuel, bio-products and bio-remediation. Biocatal. Agric. Biotechnol. 2019, 17, 326–330. [Google Scholar] [CrossRef]
- Galloway, A.W.; Winder, M. Partitioning the relative importance of phylogeny and environmental conditions on phytoplankton fatty acids. PLoS ONE 2015, 10, e0130053. [Google Scholar] [CrossRef] [Green Version]
- Grima, E.M.; Pérez, J.S.; Sánchez, J.G.; Camacho, F.G.; Alonso, D.L. EPA from isochrysis galbana: Growth conditions and productivity. Process Biochem. 1992, 27, 299–305. [Google Scholar] [CrossRef]
- Thompson, P.A.; Guo, M.; Harrison, P.J.; Whyte, J.N. Effects of variation in temperature. ii. on the fatty acid composition of eight species of marine phytoplankton. J. Phycol. 1992, 28, 488–497. [Google Scholar] [CrossRef]
- Mitchell, S.F.; Trainor, F.R.; Rich, P.H.; Goulden, C.E. Growth of daphnia magna in the laboratory in relation to the nutritional state of its food species, chlamydomonas reinhardtii. J. Plankton. Res. 1992, 14, 379–391. [Google Scholar] [CrossRef]
- Taipale, S.J.; Vuorio, K.; Aalto, S.L.; Peltomaa, E.; Tiirola, M. Eutrophication reduces the nutritional value of phytoplankton in boreal lakes. Env. Res. 2019, 179, 108836. [Google Scholar] [CrossRef]
- Guillard, R.R. Culture of Phytoplankton for Feeding Marine Invertebrates. In Culture of Marine Invertebrate Animals; Smith, W.L., Chanley, M.H., Eds.; Springer: Boston, MA, USA, 1975; pp. 29–60. [Google Scholar]
- Guillard, R.R.; Lorenzen, C.J. Yellow-green algae with chlorophyllide c 1, 2. J. Phycol. 1972, 8, 10–14. [Google Scholar] [CrossRef]
- Media for Freshwater, Terrestrial, Hot Spring and Salt Water Algae. Available online: https://mcc.nies.go.jp/medium/en/media_web_e.html (accessed on 1 April 2020).
- Schlechtriem, C.; Henderson, R.J.; Tocher, D.R. A critical assessment of different transmethylation procedures commonly employed in the fatty acid analysis of aquatic organisms. Limnol. Oceanogr.-Meth. 2008, 6, 523–531. [Google Scholar] [CrossRef]
- Anderson, M.; Gorley, R.; Clarke, K.; Anderson, M.J.; Gorley, R.N.; Clarke, K.R.; Anderson, M.; Gorley, R.; Andersom, M.J. PERMANOVA for PRIMER. Guide to Software and Statistical Methods; PRIMER-E: Plymouth, UK, 2008. [Google Scholar]
- Anderson, M.J. Distance-based tests for homogeneity of multivariate dispersions. Biometrics 2006, 62, 245–253. [Google Scholar] [CrossRef]
- Taipale, S.J.; Peltomaa, E.; Hiltunen, M.; Jones, R.I.; Hahn, M.W.; Biasi, C.; Brett, M.T. Inferring phytoplankton, terrestrial plant and bacteria bulk δ13C values from compound specific analyses of lipids and fatty acids. PLoS ONE 2015, 10, e0133974. [Google Scholar] [CrossRef] [Green Version]
- Jónasdóttir, S.H. Fatty acid profiles and production in marine phytoplankton. Mar. Drugs 2019, 17, 151. [Google Scholar] [CrossRef] [Green Version]
- Santer, B. Nutritional suitability of the dinoflagellate ceratium furcoides for four copepod species. J. Plankton Res. 1996, 18, 323–333. [Google Scholar] [CrossRef] [Green Version]
- Brett, M.T.; Müller-Navarra, D.C.; Persson, J. Crustacean Zooplankton Fatty Acid Composition. In Lipids in Aquatic Ecosystems; Kainz, M., Brett, M.T., Arts, M.T., Eds.; Springer: New York, NY, USA, 2009; pp. 115–146. [Google Scholar]
- Persson, J.; Vrede, T. Polyunsaturated fatty acids in zooplankton: Variation due to taxonomy and trophic position. Freshwat. Biol. 2006, 51, 887–900. [Google Scholar] [CrossRef]
- Sushchik, N.N.; Gladyshev, M.I.; Makhutova, O.N.; Kalachova, G.S.; Kravchuk, E.S.; Ivanova, E.A. Associating particulate essential fatty acids of the ω3 family with phytoplankton species composition in a siberian reservoir. Fresh Biol. 2004, 49, 1206–1219. [Google Scholar] [CrossRef]
- Peltomaa, E.; Hällfors, H.; Taipale, S.J. Comparison of diatoms and dinoflagellates from different habitats as sources of PUFAs. Mar. Drugs 2019, 17, 233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sushchik, N.N.; Gladyshev, M.I.; Kalachova, G.S.; Kravchuk, E.S.; Dubovskaya, O.P.; Ivanova, E.A. Particulate fatty acids in two small siberian reservoirs dominated by different groups of phytoplankton. Freshwat. Biol. 2003, 48, 394–403. [Google Scholar] [CrossRef]
- von Elert, E. Determination of limiting polyunsaturated fatty acids in daphnia galeata using a new method to enrich food algae with single fatty acids. Limnol. Oceanogr. 2002, 47, 1764–1773. [Google Scholar] [CrossRef]
- Guschina, I.A.; Harwood, J.L. Algal Lipids and Effect of the Environment on their Biochemistry. In Lipids in Aquatic Ecosystems; Kainz, M., Brett, M.T., Arts, M.T., Eds.; Springer: New York, NY, USA, 2009; pp. 1–24. [Google Scholar]
- Piepho, M.; Martin-Creuzburg, D.; Wacker, A. Phytoplankton sterol contents vary with temperature, phosphorus and silicate supply: A study on three freshwater species. Eur. J. Phycol. 2012, 47, 138–145. [Google Scholar] [CrossRef] [Green Version]
- Reynolds, C.S.; Huszar, V.; Kruk, C.; Naselli-Flores, L.; Melo, S. Towards a functional classification of the freshwater phytoplankton. J. Plankton. Res. 2002, 24, 417–428. [Google Scholar] [CrossRef]
- Padisák, J.; Crossetti, L.O.; Naselli-Flores, L. Use and misuse in the application of the phytoplankton functional classification: A critical review with updates. Hydrobiologia 2009, 621, 1–19. [Google Scholar] [CrossRef]
- Taipale, S.J.; Kahilainen, K.K.; Holtgrieve, G.W.; Peltomaa, E.T. Simulated eutrophication and browning alters zooplankton nutritional quality and determines juvenile fish growth and survival. Ecol. Evol. 2018, 8, 2671–2687. [Google Scholar] [CrossRef] [Green Version]
- Salmaso, N.; Naselli-Flores, L.; Padisak, J. Functional classifications and their application in phytoplankton ecology. Freshwat. Biol. 2015, 60, 603–619. [Google Scholar] [CrossRef] [Green Version]
- Boit, A.; Martinez, N.D.; Williams, R.J.; Gaedke, U. Mechanistic theory and modelling of complex food-web dynamics in lake constance. Ecol. Lett. 2012, 15, 594–602. [Google Scholar] [CrossRef] [PubMed]
Taxa | Order | Species | Strain | Nr. | Size (µm) | Growth P1 | Growth P2 |
---|---|---|---|---|---|---|---|
Chlorophyceae (green algae) | Chlamydomonadales | Chlamydomonas reinhardtii | NIVA K-1016 | 1 | 6.1 | 0.14 ± 0.00 | −0.02 ± 0.01 |
Chlamydomonadales | Haematococcus pluvialis | NIVA K-0084 | 2 | 17 | 0.38 ± 0.10 | 0.07 ± 0.03 | |
Sphaeropleales | Acutodesmus sp. | University of Basel | 3 | 5 | 0.11 ± 0.00 | −0.12 ± 0.00 | |
Sphaeropleales | Monoraphidium griffithii | NIVA-CHL 8 | 4 | 4.6 | 0.11 ± 0.04 | 0.07 ± 0.03 | |
Cyanophyceae (cyanobacteria) | Chroococcales | Microcystis sp. | NIVA-CYA 642 | 5 | 4.1 | 0.21 ± 0.01 | −0.06 ± 0.02 |
Synechococcales | Snowella lacustris | NIVA-CYA 339 | 6 | 2 | 0.05 ± 0.00 | −0.08 ± 0.00 | |
Cryptophyceae (cryptophytes) | Cryptomonadales | Cryptomonas erosa | CPCC 446 | 7 | 6.14 | 0.09 ± 0.04 | 0.06 ± 0.00 |
Pyrenomonadales | Rhodomonas lacustris | NIVA 8/82 | 8 | 11.04 | 0.12 ± 0.03 | 0.08 ± 0.00 | |
Synyrophyceae (golden algae) | Synurales | Mallomonas caudata | CCAP 929/8 | 9 | 12.5 | 0.05 ± 0.00 | −0.08 ± 0.00 |
Synurales | Synura petersenii | CCAP 960/3 | 10 | 8.8 | 0.05 ± 0.00 | 0.07 ± 0.01 | |
Chrysophyceae (golden algae) | Dinobryon bavaricum | CCAC 2950B | 11 | 5.6 | 0.12 ± 0.02 | 0.09 ± 0.00 | |
Chromulinales | Uroglena sp. | CPCC 278 | 12 | 8.3 | 0.14 ± 0.00 | 0.02 ± 0.01 | |
Bacillariophyceae | Bacillariales | Nitzchia sp. | 13 | 6.09 | 0.56 ± 0.02 | 0.04 ± 0.01 | |
Tabellariales | Diatoma tenuis | CPCC 62 | 14 | 6.14 | 0.45 ± 0.01 | 0.10 ± 0.02 | |
Tabellariales | Tabellaria fenestrata | CPCC 619 | 15 | 5.94 | 0.50 ± 0.07 | 0.07 ± 0.04 | |
Dinophyceae (dinoflagellates) | Peridianales | Peridinium cinctum | SCCAP K-1721 | 16 | 32.29 | 0.13 ± 0.00 | 0.04 ± 0.00 |
PERMANOVA | |||||
---|---|---|---|---|---|
Unit | Factors | Df | Pseudo-F | exp % | P(MC) |
Contribution | Group | 5 | 141.46 | 84 | 0.001 * |
Phase | 1 | 7.2967 | 1 | 0.001 | |
GroupxPhase | 5 | 7.8303 | 5 | 0.001 | |
Biomass content | Group | 5 | 39.307 | 69 | 0.001 |
Phase | 1 | 1.6199 | 1 | 0.154 | |
GroupxPhase | 5 | 1.075 | 2 | 0.345 | |
Cell content | Group | 5 | 33.402 | 65 | 0.001 |
Phase | 1 | 1.2592 | 0 | 0.233 | |
GroupxPhase | 5 | 1.3961 | 2 | 0.12 | |
Production | Group | 5 | 40.176 | 66 | 0.001 |
Phase | 1 | 2.9217 | 1 | 0.019 | |
GroupxPhase | 5 | 3.7874 | 6 | 0.001 |
SIMPER | |||
---|---|---|---|
Taxa | Unit | Average Sim. (%) | Main PUFA |
Diatom | Contribution | 70.7 | EPA |
(n = 3 + 2) | Biomass content | 64.8 | EPA |
Cell content | 60.7 | EPA | |
Production | 72.7 | EPA | |
Golden algae | Contribution | 74.6 | SDA, ALA, LIN |
(n = 4 + 2) | Biomass content | 65.8 | SDA, ALA, LIN |
Cell content | 52.3 | SDA, ALA, LIN | |
Production | 60.7 | SDA, ALA, LIN | |
Dinoflagellate | Contribution | 86.5 | DHA, EPA |
(n = 1 + 2) | Biomass content | 85.8 | DHA, EPA |
Cell content | 83.1 | DHA, EPA | |
Production | 81.3 | DHA, EPA, SDA | |
Cryptophytes | Contribution | 91.3 | SDA, ALA, EPA |
(n = 2 + 2) | Biomass content | 88.5 | SDA, ALA, EPA |
Cell content | 51.8 | SDA, ALA, EPA | |
Production | 83.3 | SDA, ALA, EPA | |
Cyanobacteria | Contribution | 70.7 | ALA, LIN |
(n = 2 + 2) | Biomass content | 62.3 | ALA, LIN |
Cell content | 51.8 | ALA, LIN | |
Production | 41.3 | ALA, LIN | |
Green algae | Contribution | 82.3 | ALA |
(n = 4 + 2) | Biomass content | 57.1 | ALA |
Cell content | 64.6 | ALA | |
Production | 49.2 | ALA |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Taipale, S.; Peltomaa, E.; Salmi, P. Variation in ω-3 and ω-6 Polyunsaturated Fatty Acids Produced by Different Phytoplankton Taxa at Early and Late Growth Phase. Biomolecules 2020, 10, 559. https://doi.org/10.3390/biom10040559
Taipale S, Peltomaa E, Salmi P. Variation in ω-3 and ω-6 Polyunsaturated Fatty Acids Produced by Different Phytoplankton Taxa at Early and Late Growth Phase. Biomolecules. 2020; 10(4):559. https://doi.org/10.3390/biom10040559
Chicago/Turabian StyleTaipale, Sami, Elina Peltomaa, and Pauliina Salmi. 2020. "Variation in ω-3 and ω-6 Polyunsaturated Fatty Acids Produced by Different Phytoplankton Taxa at Early and Late Growth Phase" Biomolecules 10, no. 4: 559. https://doi.org/10.3390/biom10040559
APA StyleTaipale, S., Peltomaa, E., & Salmi, P. (2020). Variation in ω-3 and ω-6 Polyunsaturated Fatty Acids Produced by Different Phytoplankton Taxa at Early and Late Growth Phase. Biomolecules, 10(4), 559. https://doi.org/10.3390/biom10040559