System Approach for Building of Calcium-Binding Sites in Proteins
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Metal Cation-Binding Clampn,(n−2) Unit
3.2. Metal Cation-Binding Clampn,(n+2) Unit
3.3. Metal Cation-Binding Clampn,(n−1) and Clampn,(n+1) Units
3.4. Metal Cation-Binding Clampn,n Unit
3.5. System Approach in a Joint Use of OR/TR and Clamp Units
3.6. Hierarchy of OR/TR and Clamp units
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Permyakov, E.A. Metalloproteomics; A John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2009. [Google Scholar]
- Permyakov, E.A.; Kretsinger, R.H. Calcium Binding Proteins; A John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2011. [Google Scholar]
- Dudev, T.; Lim, C. Principles governing Mg, Ca, and Zn binding and selectivity in proteins. Chem. Rev. 2003, 103, 773–787. [Google Scholar] [CrossRef] [PubMed]
- Denesyuk, A.I.; Permyakov, S.E.; Johnson, M.S.; Permyakov, E.A.; Denessiouk, K. Building kit for metal cation binding sites in proteins. Biochem. Biophys. Res. Commun. 2017, 494, 311–317. [Google Scholar] [CrossRef] [PubMed]
- Declercq, J.P.; Evrard, C.; Lamzin, V.; Parello, J. Crystal structure of the EF-hand parvalbumin at atomic resolution (0.91 Å) and at low temperature (100 K). Evidence for conformational multistates within the hydrophobic core. Protein Sci. 1999, 8, 2194–2204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wan, W.Y.; Milner-White, E.J. A natural grouping of motifs with an aspartate or asparagine residue forming two hydrogen bonds to residues ahead in sequence: Their occurrence at alpha-helical N termini and in other situations. J. Mol. Biol. 1999, 286, 1633–1649. [Google Scholar] [CrossRef] [PubMed]
- Wan, W.Y.; Milner-White, E.J. A recurring two-hydrogen-bond motif incorporating a serine or threonine residue is found both at alpha-helical N termini and in other situations. J. Mol. Biol. 1999, 286, 1651–1662. [Google Scholar] [CrossRef]
- Duddy, W.J.; Nissink, J.W.; Allen, F.H.; Milner-White, E.J. Mimicry by asx- and ST-turns of the four main types of beta-turn in proteins. Protein Sci. 2004, 13, 3051–3055. [Google Scholar] [CrossRef] [Green Version]
- Torrance, G.M.; Leader, D.P.; Gilbert, D.R.; Milner-White, E.J. A novel main-chain motif in proteins bridged by cationic groups: The niche. J. Mol. Biol. 2009, 385, 1076–1086. [Google Scholar] [CrossRef] [PubMed]
- Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The Protein Data Bank. Nucleic Acids Res. 2000, 28, 235–242. [Google Scholar] [CrossRef] [Green Version]
- Berman, H.; Henrick, K.; Nakamura, H. Announcing the worldwide Protein Data Bank. Nat. Struct. Biol. 2003, 10, 980. [Google Scholar] [CrossRef]
- Sobolev, V.; Sorokine, A.; Prilusky, J.; Abola, E.E.; Edelman, M. Automated analysis of interatomic contacts in proteins. Bioinformatics 1999, 15, 327–332. [Google Scholar] [CrossRef] [PubMed]
- Kraulis, P.J. MOLSCRIPT: A program to produce both detailed and schematic plots of protein structures. J. Appl. Cryst. 1991, 24, 946–950. [Google Scholar] [CrossRef]
- Natchus, M.G.; Bookland, R.G.; Laufersweiler, M.J.; Pikul, S.; Almstead, N.G.; De, B.; Janusz, M.J.; Hsieh, L.C.; Gu, F.; Pokross, M.E.; et al. Development of new carboxylic acid-based MMP inhibitors derived from functionalized propargylglycines. J. Med. Chem. 2001, 44, 1060–1071. [Google Scholar] [CrossRef] [PubMed]
- Machius, M.; Wynn, R.M.; Chuang, J.L.; Li, J.; Kluger, R.; Yu, D.; Tomchick, D.R.; Brautigam, C.A.; Chuang, D.T. A versatile conformational switch regulates reactivity in human branched-chain α-ketoacid dehydrogenase. Structure 2006, 14, 287–298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andersson, C.E.; Mowbray, S.L. Activation of ribokinase by monovalent cations. J. Mol. Biol. 2002, 315, 409–419. [Google Scholar] [CrossRef] [PubMed]
- Salonen, L.M.; Holland, M.C.; Kaib, P.S.; Haap, W.; Benz, J.; Mary, J.L.; Kuster, O.; Schweizer, W.B.; Banner, D.W.; Diederich, F. Molecular recognition at the active site of factor Xa: Cation-π interactions, stacking on planar peptide surfaces, and replacement of structural water. Chemistry 2012, 18, 213–222. [Google Scholar] [CrossRef] [PubMed]
- Seifert, F.; Ciszak, E.; Korotchkina, L.; Golbik, R.; Spinka, M.; Dominiak, P.; Sidhu, S.; Brauer, J.; Patel, M.S.; Tittmann, K. Phosphorylation of serine 264 impedes active site accessibility in the E1 component of the human pyruvate dehydrogenase multienzyme complex. Biochemistry 2007, 46, 6277–6287. [Google Scholar] [CrossRef]
- Wu, D.; Ran, T.; Wang, W.; Xu, D. Structure of a thermostable serralysin from Serratia sp. FS14 at 1.1 Å resolution. Acta Crystallogr. F Struct. Biol. Commun. 2016, 72, 10–15. [Google Scholar] [CrossRef] [Green Version]
- Almog, O.; González, A.; Godin, N.; de Leeuw, M.; Mekel, M.J.; Klein, D.; Braun, S.; Shoham, G.; Walter, R.L. The crystal structures of the psychrophilic subtilisin S41 and the mesophilic subtilisin Sph reveal the same calcium-loaded state. Proteins 2009, 74, 489–496. [Google Scholar] [CrossRef]
- Horn, J.R.; Ramaswamy, S.; Murphy, K.P. Structure and energetics of protein-protein interactions: The role of conformational heterogeneity in OMTKY3 binding to serine proteases. J. Mol. Biol. 2003, 331, 497–508. [Google Scholar] [CrossRef]
- Ushijima, H.; Fuchita, N.; Kajiwara, T.; Motoshima, H.; Ueno, G.; Watanabe, K. Crystal structure of subtilisin NAT at 1.36 Å. 2013; in press. [Google Scholar]
- Teplyakov, A.V.; Kuranova, I.P.; Harutyunyan, E.H.; Vainshtein, B.K.; Frommel, C.; Hohne, W.E.; Wilson, K.S. Crystal structure of thermitase at 1.4 Å resolution. J. Mol. Biol. 1990, 214, 261–279. [Google Scholar] [CrossRef]
- Favier-Perron, B.; Lewit-Bentley, A.; Russo-Marie, F. The high-resolution crystal structure of human annexin III shows subtle differences with annexin V. Biochemistry 1996, 35, 1740–1744. [Google Scholar] [CrossRef] [PubMed]
- Colloc’h, N.; Sopkova-de Oliveira Santos, J.; Retailleau, P.; Vivarès, D.; Bonneté, F.; Langlois d’Estainto, B.; Gallois, B.; Brisson, A.; Risso, J.J.; Lemaire, M.; et al. Protein crystallography under xenon and nitrous oxide pressure: Comparison with in vivo pharmacology studies and implications for the mechanism of inhaled anesthetic action. Biophys. J. 2007, 92, 217–224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Toyoshima, C.; Nakasako, M.; Nomura, H.; Ogawa, H. Crystal structure of the calcium pump of sarcoplasmic reticulum at 2.6 Å resolution. Nature 2000, 405, 647–655. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Rogers, C.J.; Fisher, A.J.; Toney, M.D. Aminophosphonate inhibitors of dialkylglycine decarboxylase: Structural basis for slow binding inhibition. Biochemistry 2002, 41, 12320–12328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Henriksen, A.; Brissett, N.; Gajhede, M. Hrpc heme crevice architecture. 2003; in press. [Google Scholar]
- Liebschner, D.; Dauter, M.; Brzuszkiewicz, A.; Dauter, Z. On the reproducibility of protein crystal structures: Five atomic resolution structures of trypsin. Acta Crystallogr. D Biol. Crystallogr. 2013, 69, 1447–1462. [Google Scholar] [CrossRef] [PubMed]
- Spurlino, J.C.; Smallwood, A.M.; Carlton, D.D.; Banks, T.M.; Vavra, K.J.; Johnson, J.S.; Cook, E.R.; Falvo, J.; Wahl, R.C.; Pulvino, T.A.; et al. 1.56 Å structure of mature truncated human fibroblast collagenase. Proteins 1994, 19, 98–109. [Google Scholar] [CrossRef] [PubMed]
- DeLaBarre, B.; Thompson, P.R.; Wright, G.D.; Berghuis, A.M. Crystal structures of homoserine dehydrogenase suggest a novel catalytic mechanism for oxidoreductases. Nat. Struct. Biol. 2000, 7, 238–244. [Google Scholar] [PubMed]
- Yamashita, A.; Singh, S.K.; Kawate, T.; Jin, Y.; Gouaux, E. Crystal structure of a bacterial homologue of Na+/Cl−-dependent neurotransmitter transporters. Nature 2005, 437, 215–223. [Google Scholar] [CrossRef]
- Denessiouk, K.A.; Johnson, M.S. “Acceptor-donor-acceptor” motifs recognize the Watson-Crick, Hoogsteen and Sugar “donor-acceptor-donor” edges of adenine and adenosine-containing ligands. J. Mol. Biol. 2003, 333, 1025–1043. [Google Scholar] [CrossRef] [PubMed]
N | Protein | PDB ID, R (Å) | Ligand | Atom, p. X | Atom, p. Y | Basic Unit | Extra Unit | Ref. |
---|---|---|---|---|---|---|---|---|
0 | Parvalbumin | 2PVB_A, 0.91 | Ca110_A | O/F57 | OG/S55 | ORI1 | N/A | [5] |
1 | BCKD (branched-chain α-ketoacid DH) | 2BFD_A, 1.39 | K501_A | O/P163 | OG/S161 | ORI1 | S161, TRI1 | [15] |
2 | BCKD (branched-chain α-ketoacid DH) | 2BFD_A, 1.39 | Mn503_A | O/Y224 | OD1/N222 | ORI1 | N/A | [15] |
3 | Factor Xa | 2Y5F_A, 1.29 | Na1245_A | O/N72 | OD1/D70 | ORI1 | N/A | [17] |
4 | Pyruvate dehydrogenase | 2OZL_A, 1.90 | Mg2331_A | O/Y198 | OD1/N196 | ORI1 | N/A | [18] |
5 | Ribokinase | 1GQT_A, 2.34 | Cs1309_A | O/I251 | OD1/D249 | ORI1 | D249, TRI1, R288, TRII11, G290, ORII11 | [16] |
6 | Serralysin | 5D7W_A, 1.10 | Ca502_A | O/G287 | OD1/D285 | ORI1 | N/A | [19] |
7 | Sphericase | 2IXT_A, 0.80 | Ca1311_A | O/V219 | OD2/D217 | ORI1 | N/A | [20] |
8 | Stromelysin | 1HY7_A, 1.50 | Ca304_A | O/E184 | OD1/D182 | ORII1 | D182, TRII1 | [14] |
9 | Subtilisin Carlsberg | 1R0R_E, 1.10 | Ca302_E | O/T79 | OD1/N77 | ORI1 | N/A | [21] |
10 | Subtilisin Nat | 3VYV_A, 1.36 | Ca303_A | O/I79 | OD1/N77 | ORI1 | N/A | [22] |
11 | Thermitase | 1THM_A, 1.37 | Ca301_A | O/T87 | OD1/N85 | ORI1 | N/A | [23] |
12 | Thermitase | 1THM_A, 1.37 | Ca302_A | O/T64 | OD1/D62 | ORI1 | N/A | [23] |
N | Protein | PDB ID, R (Å) | Ligand | Atom, p. X | Atom, p. Y | Basic Unit | Extra Unit | Ref. |
---|---|---|---|---|---|---|---|---|
0 | Parvalbumin | 2PVB_A, 0.91 | Ca110_A | O/F57 | OE1/E59 | N/A | N/A | [5] |
1 | Annexin III | 1AXN_A, 1.78 | Ca355_A | O/T193 | OE1/E195 | TRI1 | N/A | [24] |
2 | Annexin V | 2IE7_A, 1.75 | Ca407_A | O/T31 | OE1/E33 | TRI1 | N/A | [25] |
3 | Calcium pump | 1SU4_A, 2.40 | Ca995_A | O/I307 | OE1/E309 | TRI1 | N/A | [26] |
4 | Dialkylglycine decarboxylase | 1M0Q_A, 2.00 | K434_A | O/L78 | OG/S80 | N/A | N/A | [27] |
5 | Dialkylglycine decarboxylase | 1M0Q_A, 2.00 | K434_A | O/V305 | OD1/D307 | N/A | L78, ORI1 | [27] |
6 | Peroxidase | 1GWU_A, 1.31 | Ca1307_A | O/G48 | OD1/D50 | N/A | N/A | [28] |
7 | Peroxidase | 1GWU_A, 1.31 | Ca1308_A | O/I228 | OD2/D230 | N/A | N/A | [28] |
8 | Serralysin | 5D7W_A, 1.10 | Ca502_A | O/G255 | OG1/T257 | N/A | G287, TRII4 | [19] |
9 | Serralysin | 5D7W_A, 1.10 | Ca503_A | O/G288 | OD2/D290 | N/A | T327, TRII9 | [19] |
10 | Serralysin | 5D7W_A, 1.10 | Ca503_A | O/T327 | OE2/E329 | N/A | G228, TRI1 | [19] |
11 | Serralysin | 5D7W_A, 1.10 | Ca504_A | O/G336 | OD2/D338 | N/A | A353, TRII4 | [19] |
12 | Serralysin | 5D7W_A, 1.10 | Ca505_A | O/A345 | OD1/N347 | N/A | G362, TRII4 | [19] |
13 | Serralysin | 5D7W_A, 1.10 | Ca506_A | O/G354 | OD2/D356 | N/A | A371, TRII4 | [19] |
14 | Serralysin | 5D7W_A, 1.10 | Ca507_A | O/G372 | OD2/D374 | N/A | N/A | [19] |
15 | Serralysin | 5D7W_A, 1.10 | Ca508_A | O/G363 | OD2/D365 | N/A | N/A | [19] |
16 | Sphericase | 2IXT_A, 0.80 | Ca1310_A | O/G297 | OD1/D299 | N/A | A295, ORI1 | [20] |
17 | Sphericase | 2IXT_A, 0.80 | Ca1311_A | O/V219 | OE1/Q221 | N/A | N/A | [20] |
18 | Stromelysin | 1HY7_A, 1.50 | Ca305_A | O/N175 | OD1/D177 | N/A | D141, TRI1 | [14] |
19 | Subtilisin Carlsberg | 1R0R_E, 1.10 | Ca302_E | O/L75 | OD1/N77 | N/A | T79, ORI1 | [21] |
20 | Subtilisin Nat | 3VYV_A, 1.36 | Ca303_A | O/L75 | OD1/N77 | N/A | I79, ORI1 | [22] |
21 | Subtilisin Nat | 3VYV_A, 1.36 | Ca304_A | O/E195 | OD2/D197 | N/A | T174, TRI1 | [22] |
22 | Thermitase | 1THM_A, 1.37 | Ca302_A | O/T64 | OE1/Q66 | TRI1 | N/A | [23] |
N | Protein | PDB ID, R (Å) | Ligand | Atom, p. X | Atom, p. Y | Basic Unit | Extra Unit | Ref. |
---|---|---|---|---|---|---|---|---|
Clampn,(n−1) unit | ||||||||
1 | Dialkylglycine decarboxylase | 1M0Q_A, 2.00 | Na436_A | O/P99 | OG1/T98 | N/A | N/A | [27] |
2 | Fibroblast collagenase | 1HFC_A, 1.50 | Ca277_A | O/G176 | OD1/D175 | N/A | G178, TRII11, N180, ORII11 | [30] |
3 | Sphericase | 2IXT_A, 0.80 | Ca1310_A | O/I288 | OD1/D287 | N/A | A295, TRII11, G297, ORII11 | [20] |
4 | Stromelysin | 1HY7_A, 1.50 | Ca303_A | O/G159 | OD1/D158 | N/A | G161, TRII11, V163, ORII11 | [14] |
Clampn,(n+1) unit | ||||||||
1 | Annexin III | 1AXN_A, 1.78 | Ca352_A | O/G108 | OG1/T109 | N/A | N/A | [24] |
2 | BCKD (branched-chain α-ketoacid DH) | 2BFD_B, 1.39 | K502_B | O/L130 | OG1/T131 | N/A | N183, TRII1 | [15] |
N | Protein | PDB ID, R (Å) | Ligand | Atom, p. X | Atom, p. Y | Basic Unit | Extra Unit | Ref. |
---|---|---|---|---|---|---|---|---|
1 | Annexin V | 2IE7_A, 1.75 | Ca403_A | O/D224 | OD1/D224 | N/A | T227, ORII1 | [25] |
2 | BCKD (branched-chain α-ketoacid DH) | 2BFD_A, 1.39 | K501_A | O/S161 | OG/S161 | TRI1 | P163, ORI1 | [15] |
3 | Dialkylglycine decarboxylase | 1M0Q_A, 2.00 | Na436_A | O/T98 | OG1/T98 | N/A | N/A | [27] |
4 | Homoserine dehydrogenase | 1EBF_A, 2.30 | Na2104_A | O/E143 | OE2/E143 | TRII1 | L150, TRI1 | [31] |
5 | NaCl-dependent neurotransmitter transporter | 2A65_A, 1.65 | Na752_A | O/T254 | OG1/T254 | TRII1 | N/A | [32] |
6 | Peroxidase | 1GWU_A, 1.31 | Ca1307_A | O/D43 | OD1/D43 | N/A | G48, TRI1 | [28] |
7 | Peroxidase | 1GWU_A, 1.31 | Ca1308_A | O/T171 | OG1/T171 | N/A | I228, TRI1 | [28] |
8 | Peroxidase | 1GWU_A, 1.31 | Ca1308_A | O/T225 | OG1/T225 | N/A | N/A | [28] |
9 | Ribokinase | 1GQT_A, 2.34 | Cs1309_A | O/D249 | OD1/D249 | TRI1 | I251, ORI1, R288, TRII11, G290, ORII11 | [16] |
10 | Stromelysin | 1HY7_A, 1.50 | Ca304_A | O/D182 | OD1/D182 | TRII1 | E184, ORII1 | [14] |
11 | Subtilisin Nat | 3VYV_A, 1.36 | Ca304_A | O/T174 | OG1/T174 | N/A | N/A | [22] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Denesyuk, A.I.; Permyakov, S.E.; Johnson, M.S.; Denessiouk, K.; Permyakov, E.A. System Approach for Building of Calcium-Binding Sites in Proteins. Biomolecules 2020, 10, 588. https://doi.org/10.3390/biom10040588
Denesyuk AI, Permyakov SE, Johnson MS, Denessiouk K, Permyakov EA. System Approach for Building of Calcium-Binding Sites in Proteins. Biomolecules. 2020; 10(4):588. https://doi.org/10.3390/biom10040588
Chicago/Turabian StyleDenesyuk, Alexander I., Sergei E. Permyakov, Mark S. Johnson, Konstantin Denessiouk, and Eugene A. Permyakov. 2020. "System Approach for Building of Calcium-Binding Sites in Proteins" Biomolecules 10, no. 4: 588. https://doi.org/10.3390/biom10040588
APA StyleDenesyuk, A. I., Permyakov, S. E., Johnson, M. S., Denessiouk, K., & Permyakov, E. A. (2020). System Approach for Building of Calcium-Binding Sites in Proteins. Biomolecules, 10(4), 588. https://doi.org/10.3390/biom10040588