High-Density Lipoprotein Cholesterol in Age-Related Ocular Diseases
Abstract
:1. Introduction
2. HDL-C in Age-Related Macular Degeneration
2.1. Background of AMD
2.2. Epidemiological Evidence
2.3. Laboratory Evidence
2.3.1. HDL-C and the Complement System
2.3.2. Genetic Associations between HDL-C and AMD
3. HDL-C in Age-Related Cataracts
3.1. Background of Cataract
3.2. Epidemiological Evidence
4. HDL-C in Glaucoma
4.1. Background of Glaucoma
4.2. Epidemiological Evidence
4.3. Laboratory Evidence
4.4. Clinical Implications
5. HDL-C in Diabetic Retinopathy
5.1. Background of Diabetic Retinopathy
5.2. The Relationship between HDL-C and DR
5.3. Implications on Future Studies
6. Conclusions and Future Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Asztalos, B.F.; Schaefer, E.J. High-density lipoprotein subpopulations in pathologic conditions. Am. J. Cardiol. 2003, 91, 12–17. [Google Scholar] [CrossRef]
- Connelly, M.A.; Shalaurova, I.; Otvos, J.D. High-density lipoprotein and inflammation in cardiovascular disease. Transl. Res. 2016, 173, 7–18. [Google Scholar] [CrossRef] [PubMed]
- Kontush, A.; Lindahl, M.; Lhomme, M.; Calabresi, L.; Chapman, M.J.; Davidson, W.S. Structure of HDL: Particle Subclasses and Molecular Components. Handb. Exp. Pharmacol. 2014, 224, 3–51. [Google Scholar] [CrossRef] [Green Version]
- Rosenson, R.S.; Brewer, H.B.; Ansell, B.; Barter, P.J.; Chapman, M.J.; Heinecke, J.W.; Kontush, A.; Tall, A.R.; Webb, N.R. Translation of High-Density Lipoprotein Function Into Clinical Practice. Circulation 2013, 128, 1256–1267. [Google Scholar] [CrossRef] [Green Version]
- Rosenson, R.S.; Brewer, H.B.; Ansell, B.J.; Barter, P.; Chapman, M.J.; Heinecke, J.W.; Kontush, A.; Tall, A.R.; Webb, N.R. Dysfunctional HDL and atherosclerotic cardiovascular disease. Nat. Rev. Cardiol. 2015, 13, 48–60. [Google Scholar] [CrossRef]
- Rosenson, R.S.; Brewer, H.B.; Chapman, M.J.; Fazio, S.; Hussain, M.M.; Kontush, A.; Krauss, R.M.; Otvos, J.D.; Remaley, A.T.; Schaefer, E.J. HDL Measures, Particle Heterogeneity, Proposed Nomenclature, and Relation to Atherosclerotic Cardiovascular Events. Clin. Chem. 2011, 57, 392–410. [Google Scholar] [CrossRef] [Green Version]
- Rye, K.-A.; Barter, P.J. Regulation of High-Density Lipoprotein Metabolism. Circ. Res. 2014, 114, 143–156. [Google Scholar] [CrossRef] [Green Version]
- Cugati, S.; Kifley, A.; Mitchell, P.; Wang, J.J. Temporal trends in the age-specific prevalence of diabetes and diabetic retinopathy in older persons: Population-based survey findings. Diabetes Res. Clin. Pract. 2006, 74, 301–308. [Google Scholar] [CrossRef]
- Tham, Y.C.; Li, X.; Wong, T.Y.; Quigley, H.A.; Aung, T.; Cheng, C.-Y. Global Prevalence of Glaucoma and Projections of Glaucoma Burden through 2040. Ophthalmology 2014, 121, 2081–2090. [Google Scholar] [CrossRef]
- Wong, W.L.; Su, X.; Li, X.; Cheung, C.M.G.; Klein, A.P.; Cheng, C.-Y.; Wong, T.Y. Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: A systematic review and meta-analysis. Lancet Glob. Heal. 2014, 2, e106–e116. [Google Scholar] [CrossRef] [Green Version]
- Flaxman, S.R.; Bourne, R.R.A.; Resnikoff, S.; Ackland, P.; Braithwaite, T.; Cicinelli, M.V.; Das, A.; Jonas, J.B.; Keeffe, J.; Kempen, J.H.; et al. Global causes of blindness and distance vision impairment 1990–2020: A systematic review and meta-analysis. Lancet Glob. Health 2017, 5, e1221–e1234. [Google Scholar] [CrossRef] [Green Version]
- Lim, L.S.; Mitchell, P.; Seddon, J.M.; Holz, F.G.; Wong, T.Y. Age-related macular degeneration. Lancet 2012, 379, 1728–1738. [Google Scholar] [CrossRef]
- A Bourne, R.R.; Stevens, G.A.; A White, R.; Smith, J.L.; Flaxman, S.R.; Price, H.; Jonas, J.B.; Keeffe, J.; Leasher, J.; Naidoo, K.; et al. Causes of vision loss worldwide, 1990–2010: A systematic analysis. Lancet Glob. Heal. 2013, 1, e339–e349. [Google Scholar] [CrossRef] [Green Version]
- Lee, P.; Feldman, Z.W.; Ostermann, J.; Brown, D.S.; Sloan, F. Longitudinal Prevalence of Major Eye Diseases. Arch. Ophthalmol. 2003, 121, 1303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jager, R.D.; Mieler, W.F.; Miller, J.W. Age-Related Macular Degeneration. N. Engl. J. Med. 2008, 358, 2606–2617. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DeAngelis, M.M.; Owen, L.A.; Morrison, M.A.; Morgan, D.J.; Li, M.; Shakoor, A.; Vitale, A.; Iyengar, S.; Stambolian, D.; Kim, I.K.; et al. Genetics of age-related macular degeneration (AMD). Hum. Mol. Genet. 2017, 26, R246. [Google Scholar] [CrossRef] [Green Version]
- Fritsche, L.G.; Fariss, R.N.; Stambolian, D.; Abecasis, G.; Curcio, C.A.; Swaroop, A. Age-related macular degeneration: Genetics and biology coming together. Annu. Rev. Genom. Hum. Genet. 2014, 15, 151–171. [Google Scholar] [CrossRef] [Green Version]
- A Curcio, C.; Millican, C.L. Basal linear deposit and large drusen are specific for early age-related maculopathy. Arch. Ophthalmol. 1999, 117, 329–339. [Google Scholar] [CrossRef]
- Green, W.R.; Enger, C. Age-related macular degeneration histopathologic studies: The 1992 Lorenz E. Zimmerman Lecture. 1992. Retina 2005, 25, 1519–1535. [Google Scholar] [CrossRef]
- Sarks, J.P.; Sarks, S.H.; Killingsworth, M.C. Evolution of geographic atrophy of the retinal pigment epithelium. Eye 1988, 2, 552–577. [Google Scholar] [CrossRef]
- Balaratnasingam, C.; Yannuzzi, L.A.; Curcio, C.A.; Morgan, W.H.; Querques, G.; Capuano, V.; Souied, E.; Jung, J.; Freund, K.B. Associations Between Retinal Pigment Epithelium and Drusen Volume Changes During the Lifecycle of Large Drusenoid Pigment Epithelial Detachments. Investig. Opthalmol. Vis. Sci. 2016, 57, 5479–5489. [Google Scholar] [CrossRef] [PubMed]
- Ferris, F.L.; Wilkinson, C.; Bird, A.; Chakravarthy, U.; Chew, E.; Csaky, K.G.; Sadda, S.R. Clinical Classification of Age-related Macular Degeneration. Ophthalmology 2013, 120, 844–851. [Google Scholar] [CrossRef] [PubMed]
- Klein, A.P.; Sharrett, A.R.; Klein, B.E.; Moss, S.E.; Folsom, A.R.; Wong, T.Y.; Brancati, F.L.; Hubbard, L.D.; Couper, D. The association of atherosclerosis, vascular risk factors, and retinopathy in adults with diabetes: The atherosclerosis risk in communities study. Ophthalmology 2002, 109, 1225–1234. [Google Scholar] [CrossRef]
- Kersten, E.; Paun, C.C.; Schellevis, R.; Hoyng, C.B.; Delcourt, C.; Lengyel, I.; Peto, T.; Ueffing, M.; Klaver, C.C.W.; Dammeier, S.; et al. Systemic and ocular fluid compounds as potential biomarkers in age-related macular degeneration. Surv. Ophthalmol. 2018, 63, 9–39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Wang, M.; Zhang, X.; Zhang, Q.; Nie, J.; Zhang, M.; Liu, X.; Ma, L. The Association between the Lipids Levels in Blood and Risk of Age-Related Macular Degeneration. Nutrients 2016, 8, 663. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burgess, S.; Smith, G.D. Mendelian Randomization Implicates High-Density Lipoprotein Cholesterol-Associated Mechanisms in Etiology of Age-Related Macular Degeneration. Ophthalmology 2017, 124, 1165–1174. [Google Scholar] [CrossRef] [Green Version]
- Cheung, C.M.G.; Gan, A.; Fan, Q.; Chee, M.L.; Apte, R.S.; Khor, C.C.; Yeo, I.; Mathur, R.; Cheng, C.-Y.; Wong, T.Y.; et al. Plasma lipoprotein subfraction concentrations are associated with lipid metabolism and age-related macular degeneration. J. Lipid Res. 2017, 58, 1785–1796. [Google Scholar] [CrossRef] [Green Version]
- Cougnard-Grégoire, A.; Delyfer, M.-N.; Korobelnik, J.-F.; Rougier, M.-B.; Le Goff, M.; Dartigues, J.-F.; Barberger-Gateau, P.; Delcourt, C. Elevated High-Density Lipoprotein Cholesterol and Age-Related Macular Degeneration: The Alienor Study. PLoS ONE 2014, 9, e90973. [Google Scholar] [CrossRef] [Green Version]
- Tan, J.S.; Mitchell, P.; Smith, W.; Wang, J.J. Cardiovascular Risk Factors and the Long-term Incidence of Age-Related Macular Degeneration. Ophthalmology 2007, 114, 1143–1150. [Google Scholar] [CrossRef]
- Klein, R.; Cruickshanks, K.J.; Nash, S.D.; Krantz, E.M.; Nieto, F.J.; Huang, G.H.; Pankow, J.S.; Klein, B.E.K. The Prevalence of Age-Related Macular Degeneration and Associated Risk Factors. Arch. Ophthalmol. 2010, 128, 750–758. [Google Scholar] [CrossRef] [Green Version]
- Colijn, J.M.; Hollander, A.I.D.; Demirkan, A.; Cougnard-Grégoire, A.; Verzijden, T.; Kersten, E.; Meester-Smoor, M.A.; Merle, B.M.; Papageorgiou, G.; Ahmad, S.; et al. Increased High-Density Lipoprotein Levels Associated with Age-Related Macular Degeneration. Ophthalmology 2019, 126, 393–406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saunier, V.; Merle, B.M.; Delyfer, M.-N.; Cougnard-Grégoire, A.; Rougier, M.-B.; Amouyel, P.; Lambert, J.-C.; Dartigues, J.-F.; Korobelnik, J.-F.; Delcourt, C. Incidence of and Risk Factors Associated with Age-Related Macular Degeneration. JAMA Ophthalmol. 2018, 136, 473–481. [Google Scholar] [CrossRef] [PubMed]
- Paun, C.C.; Ersoy, L.; Schick, T.; Groenewoud, J.M.M.; Lechanteur, Y.T.; Fauser, S.; Hoyng, C.; De Jong, E.K.; Hollander, A.I.D. Genetic Variants and Systemic Complement Activation Levels Are Associated With Serum Lipoprotein Levels in Age-Related Macular Degeneration. Investig. Opthalmol. Vis. Sci. 2015, 56, 7766–7773. [Google Scholar] [CrossRef] [PubMed]
- Cho, B.-J.; Heo, J.; Kim, T.W.; Ahn, J.; Chung, H. Prevalence and Risk Factors of Age-Related Macular Degeneration in Korea: The Korea National Health and Nutrition Examination Survey 2010–2011. Investig. Opthalmol. Vis. Sci. 2014, 55, 1101–1108. [Google Scholar] [CrossRef] [PubMed]
- Jonasson, F.; Fisher, D.E.; Eiriksdottir, G.; Sigurdsson, S.; Klein, R.; Launer, L.J.; Harris, T.; Gudnason, V.; Cotch, M.F. Five-year incidence, progression, and risk factors for age-related macular degeneration: The age, gene/environment susceptibility study. Ophthalmology 2014, 121, 1766–1772. [Google Scholar] [CrossRef] [Green Version]
- Haapasalo, K.; Van Kessel, K.; Nissila, E.; Metso, J.; Johansson, T.; Miettinen, S.; Varjosalo, M.; Kirveskari, J.; Kuusela, P.; Chroni, A.; et al. Complement Factor H Binds to Human Serum Apolipoprotein E and Mediates Complement Regulation on High Density Lipoprotein Particles. J. Boil. Chem. 2015, 290, 28977–28987. [Google Scholar] [CrossRef] [Green Version]
- Cheng, C.-Y.; Yamashiro, K.; Chen, L.J.; Ahn, J.; Huang, L.; Huang, L.; Cheung, C.M.G.; Miyake, M.; Cackett, P.D.; Yeo, I.Y.; et al. New loci and coding variants confer risk for age-related macular degeneration in East Asians. Nat. Commun. 2015, 6, 6063. [Google Scholar] [CrossRef] [Green Version]
- Toomey, C.B.; Kelly, U.; Saban, D.R.; Rickman, C.B. Regulation of age-related macular degeneration-like pathology by complement factor H. Proc. Natl. Acad. Sci. USA 2015, 112, E3040–9. [Google Scholar] [CrossRef] [Green Version]
- Ristau, T.; Paun, C.; Ersoy, L.; Hahn, M.; Lechanteur, Y.; Hoyng, C.; de Jong, E.K.; Daha, M.R.; Kirchhof, B.; den Hollander, A.I.; et al. Impact of the common genetic associations of age-related macular degeneration upon systemic complement Component C3d Levels. PLoS ONE 2014, 9, e93459. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.; Stambolian, D.; Edwards, A.O.; Branham, K.E.; Othman, M.; Jakobsdottir, J.; Tosakulwong, N.; Pericak-Vance, M.A.; Campochiaro, P.A.; Klein, M.L.; et al. Genetic variants near TIMP3 and high-density lipoprotein-associated loci influence susceptibility to age-related macular degeneration. Proc. Natl. Acad. Sci. USA 2010, 107, 7401–7406. [Google Scholar] [CrossRef] [Green Version]
- Gordon, S.M.; Deng, J.; Lu, L.J.; Davidson, W.S. Proteomic Characterization of Human Plasma High Density Lipoprotein Fractionated by Gel Filtration Chromatography. J. Proteome Res. 2010, 9, 5239–5249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rezaee, F.; Casetta, B.; Levels, J.H.M.; Speijer, D.; Meijers, J.C.M. Proteomic analysis of high-density lipoprotein. Proteomics 2006, 6, 721–730. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, J.; Charles-Schoeman, C.; Miao, Y.; Elashoff, D.; Lee, Y.Y.; Katselis, G.; Lee, T.D.; Reddy, S.T. Proteomic profiling following immunoaffinity capture of high-density lipoprotein: Association of acute-phase proteins and complement factors with proinflammatory high-density lipoprotein in rheumatoid arthritis. Arthritis Rheum. 2012, 64, 1828–1837. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnson, L.V.; Ozaki, S.; Staples, M.K.; A Erickson, P.; Anderson, D.H. A Potential Role for Immune Complex Pathogenesis in Drusen Formation. Exp. Eye Res. 2000, 70, 441–449. [Google Scholar] [CrossRef]
- Johnson, L.V.; Leitner, W.P.; Staples, M.K.; Anderson, D.H. Complement Activation and Inflammatory Processes in Drusen Formation and Age Related Macular Degeneration. Exp. Eye Res. 2001, 73, 887–896. [Google Scholar] [CrossRef]
- Hageman, G.S. An Integrated Hypothesis That Considers Drusen as Biomarkers of Immune-Mediated Processes at the RPE-Bruch’s Membrane Interface in Aging and Age-Related Macular Degeneration. Prog. Retin. Eye Res. 2001, 20, 705–732. [Google Scholar] [CrossRef]
- Eren, E.; Yilmaz, N.; Aydin, O. High Density Lipoprotein and it’s Dysfunction. Open Biochem. J. 2012, 6, 78–93. [Google Scholar] [CrossRef] [Green Version]
- Rao, V.S.; Kakkar, V.V. Friend Turns Foe: Transformation of Anti-Inflammatory HDL to Proinflammatory HDL during Acute-Phase Response. Cholesterol 2010, 2011, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Skerka, C.; Hellwage, J.; Weber, W.; Tilkorn, A.; Buck, F.; Marti, T.; Kampen, E.; Beisiegel, U.; Zipfel, P.F. The human factor H-related protein 4 (FHR-4). A novel short consensus repeat-containing protein is associated with human triglyceride-rich lipoproteins. J. Boil. Chem. 1997, 272, 5627–5634. [Google Scholar] [CrossRef] [Green Version]
- McRae, J.L.; Duthy, T.G.; Griggs, K.M.; Ormsby, R.J.; Cowan, P.J.; Cromer, B.A.; McKinstry, W.; Parker, M.W.; Murphy, B.F.; Gordon, D.L. Human factor H-related protein 5 has cofactor activity, inhibits C3 convertase activity, binds heparin and C-reactive protein, and associates with lipoprotein. J. Immunol. 2005, 174, 6250–6256. [Google Scholar] [CrossRef] [Green Version]
- Rosenfeld, S.I.; Packman, C.H.; Leddy, J.P. Inhibition of the Lytic Action of Cell-bound Terminal Complement Components by Human High Density Lipoproteins and Apoproteins. J. Clin. Investig. 1983, 71, 795–808. [Google Scholar] [CrossRef] [Green Version]
- Tschopp, J.; Chonn, A.; Hertig, S.; French, L. Clusterin, the human apolipoprotein and complement inhibitor, binds to complement C7, C8 beta, and the b domain of C9. J. Immunol. 1993, 151, 2159–2165. [Google Scholar] [PubMed]
- Wang, D.; Zhou, J.; Hou, X.; Nguyen, D.H.; Cao, G.; Li, G.; Qiu, G.; Zhang, K.; Zhang, M.; Su, Z. CETP Gene may be Associated with Advanced Age-Related Macular Degeneration in the Chinese Population. Ophthalmic Genet. 2014, 36, 303–308. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.-F.; Han, Y.; Zhang, R.; Qin, L.; Wang, M.-X.; Ma, L. CETP/LPL/LIPC gene polymorphisms and susceptibility to age-related macular degeneration. Sci. Rep. 2015, 5, 15711. [Google Scholar] [CrossRef] [PubMed]
- Neale, B.M.; Fagerness, J.; Reynolds, R.; Sobrin, L.; Parker, M.; Raychaudhuri, S.; Tan, P.L.; Oh, E.C.; Merriam, J.E.; Souied, E.; et al. Genome-wide association study of advanced age-related macular degeneration identifies a role of the hepatic lipase gene (LIPC). Proc. Natl. Acad. Sci. USA 2010, 107, 7395–7400. [Google Scholar] [CrossRef] [Green Version]
- Tserentsoodol, N.; Gordiyenko, N.V.; Pascual, I.; Lee, J.W.; Fliesler, S.J.; Rodriguez, I. Intraretinal lipid transport is dependent on high density lipoprotein-like particles and class B scavenger receptors. Mol. Vis. 2006, 12, 1319–1333. [Google Scholar]
- Johnson, L.V.; Forest, D.L.; Banna, C.D.; Radeke, C.M.; Maloney, M.A.; Hu, J.; Spencer, C.N.; Walker, A.M.; Tsie, M.S.; Bok, D.; et al. Cell culture model that mimics drusen formation and triggers complement activation associated with age-related macular degeneration. Proc. Natl. Acad. Sci. USA 2011, 108, 18277–18282. [Google Scholar] [CrossRef] [Green Version]
- Curcio, C.A.; Johnson, M.; Rudolf, M.; Huang, J.-D. The oil spill in ageing Bruch membrane. Br. J. Ophthalmol. 2011, 95, 1638–1645. [Google Scholar] [CrossRef]
- Klein, B.E.; Klein, A.P.; Linton, K.L. Prevalence of Age-related Lens Opacities in a Population. Ophthalmology 1992, 99, 546–552. [Google Scholar] [CrossRef]
- Tang, Y.; Wang, X.; Wang, J.; Huang, W.; Gao, Y.; Luo, Y.; Yang, J.; Lu, Y. Prevalence of Age-Related Cataract and Cataract Surgery in a Chinese Adult Population: The Taizhou Eye Study. Investig. Opthalmol. Vis. Sci. 2016, 57, 1193–1200. [Google Scholar] [CrossRef] [Green Version]
- Sabanayagam, C.; Wang, J.J.; Mitchell, P.; Tan, A.G.; Tai, E.S.; Aung, T.; Saw, S.M.; Wong, T.Y. Metabolic syndrome components and age-related cataract: The Singapore Malay eye study. Investig. Ophthalmol. Vis. Sci. 2011, 52, 2397–2404. [Google Scholar] [CrossRef] [Green Version]
- Jacques, P.F.; Moeller, S.M.; E Hankinson, S.; Chylack, L.T.; Rogers, G.; Tung, W.; Wolfe, J.K.; Willett, W.C.; Taylor, A. Weight status, abdominal adiposity, diabetes, and early age-related lens opacities. Am. J. Clin. Nutr. 2003, 78, 400–405. [Google Scholar] [CrossRef]
- Hennis, A.; Wu, S.-Y.; Nemesure, B.; Leske, M.C. Risk Factors for Incident Cortical and Posterior Subcapsular Lens Opacitiesin the Barbados Eye Studies. Arch. Ophthalmol. 2004, 122, 525–530. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maralani, H.G.; Tai, B.C.; Wong, T.Y.; Tai, E.S.; Li, J.; Wang, J.J.; Mitchell, P. Metabolic Syndrome and Risk of Age-Related Cataract over Time: An Analysis of Interval-Censored Data Using a Random-Effects Model. Investig. Opthalmol. Vis. Sci. 2013, 54, 641–646. [Google Scholar] [CrossRef] [PubMed]
- Klein, B.E.; Klein, A.P.; Lee, K.E. Cardiovascular Disease, Selected Cardiovascular Disease Risk Factors, and Age-related Cataracts: The Beaver Dam Eye Study. Am. J. Ophthalmol. 1997, 123, 338–346. [Google Scholar] [CrossRef]
- Drinkwater, J.J.; Davis, T.M.E.; Turner, A.W.; Bruce, D.G.; Davis, W.A. Incidence and Determinants of Intraocular Lens Implantation in Type 2 Diabetes: The Fremantle Diabetes Study Phase II. Diabetes Care 2018, 42, 288–296. [Google Scholar] [CrossRef] [Green Version]
- Meyer, D.; Parkin, D.; Maritz, F.J.; Liebenberg, P.H. Abnormal serum lipoprotein levels as a risk factor for the development of human lenticular opacities. Cardiovasc. J. South Afr. Off. J. South. Afr. Card. Soc. South Afr. Soc. Card. Prac. 2003, 14, 60–64. [Google Scholar]
- Hiller, R.; Sperduto, R.D.; Reed, G.F.; D’Agostino, R.B.; Wilson, P.W.F. Serum lipids and age-related lens opacities: A longitudinal investigation. Ophthalmology 2003, 110, 578–583. [Google Scholar] [CrossRef]
- Paunksnis, A.; Bojarskiene, F.; Cimbalas, A.; Cerniauskiene, L.; Luksiene, D.; Tamosiunas, A. Relation between cataract and metabolic syndrome and its components. Eur. J. Ophthalmol. 2007, 17, 605–614. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.-H.; Shin, J.A.; Han, K.; Yim, H.W.; Lee, W.-C.; Park, Y.-M. Gender Difference in the Association of Metabolic Syndrome and Its Components with Age-Related Cataract: The Korea National Health and Nutrition Examination Survey 2008–2010. PLoS ONE 2014, 9, e85068. [Google Scholar] [CrossRef]
- Park, S.; Lee, E.-H. Association between metabolic syndrome and age-related cataract. Int. J. Ophthalmol. 2015, 8, 804–811. [Google Scholar] [PubMed]
- A Kahn, H.; Leibowitz, H.M.; Ganley, J.P.; Kini, M.M.; Colton, T.; Nickerson, R.S.; Dawber, T.R. The Framingham Eye Study. I. Outline and major prevalence findings. Am. J. Epidemiol. 1977, 106, 17–32. [Google Scholar] [PubMed]
- Li, S.; Li, D.; Zhang, Y.; Teng, J.; Shao, M.; Cao, W. Association between serum lipids concentration and patients with age-related cataract in China: A cross-sectional, case–control study. BMJ Open 2018, 8, e021496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Von Eckardstein, A.; Hersberger, M.; Rohrer, L. Current understanding of the metabolism and biological actions of HDL. Curr. Opin. Clin. Nutr. Metab. Care 2005, 8, 147–152. [Google Scholar] [CrossRef] [PubMed]
- Tsutsumi, K.; Inoue, Y.; Yoshida, C. Acceleration of Development of Diabetic Cataract by Hyperlipidemia and Low High-Density Lipoprotein in Rats. Boil. Pharm. Bull. 1999, 22, 37–41. [Google Scholar] [CrossRef] [Green Version]
- Quigley, H.A.; Broman, A.T. The number of people with glaucoma worldwide in 2010 and 2020. Br. J. Ophthalmol. 2006, 90, 262–267. [Google Scholar] [CrossRef] [Green Version]
- E Pillunat, L.; Erb, C.; Jünemann, A.G.; Kimmich, F. Micro-invasive glaucoma surgery (MIGS): A review of surgical procedures using stents. Clin. Ophthalmol. 2017, 11, 1583–1600. [Google Scholar] [CrossRef] [Green Version]
- Ritch, R. Exfoliation Syndrome—The Most Common Identifiable Cause of Open-Angle Glaucoma. J. Glaucoma 1994, 3, 176–177. [Google Scholar] [CrossRef]
- Kurtul, B.E.; Kurtul, A.; Ozer, P.A.; Kabataş, E.U.; Ertugrul, G.T. Serum Lipid Levels in Pseudoexfoliation Syndrome. Semin. Ophthalmol. 2015, 32, 1–4. [Google Scholar] [CrossRef]
- Shon, K.; Sung, K.R. Dyslipidemia, Dyslipidemia Treatment, and Open-angle Glaucoma in the Korean National Health and Nutrition Examination Survey. J. Glaucoma 2019, 28, 550–556. [Google Scholar] [CrossRef]
- Wang, S.; Xu, L.; Jonas, J.B.; Wang, Y.X.; You, Q.S.; Yang, H. Dyslipidemia and Eye Diseases in the Adult Chinese Population: The Beijing Eye Study. PLoS ONE 2012, 7, e26871. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.-H.; Jung, S.W.; Nam, G.-E.; Han, K.D.; Bok, A.R.; Baek, S.J.; Cho, K.-H.; Choi, Y.S.; Kim, S.M.; Ju, S.Y.; et al. High intraocular pressure is associated with cardiometabolic risk factors in South Korean men: Korean National Health and Nutrition Examination Survey, 2008–2010. Eye 2014, 28, 672–679. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.-X.; Tao, J.-X.; Yao, Y. The association of intraocular pressure with metabolic syndrome and its components: A Meta-analysis and systematic review. Int. J. Ophthalmol. 2019, 12, 510–516. [Google Scholar] [CrossRef]
- Kim, M.J.; Kim, M.J.; Kim, H.S.; Jeoung, J.W.; Park, K.H. Risk factors for open-angle glaucoma with normal baseline intraocular pressure in a young population: The Korea National Health and Nutrition Examination Survey. Clin. Exp. Ophthalmol. 2014, 42, 825–832. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Yang, X.; Zhang, G.; Guo, H.; Zhang, M.; Zhang, L.; Zeng, J.; Liu, Q.; Zhang, L.; Meng, Q. Intraocular Pressure in General and Diabetic Populations from Southern China: The Dongguan Eye Study. Investig. Opthalmol. Vis. Sci. 2019, 60, 761–769. [Google Scholar] [CrossRef] [PubMed]
- Yokomichi, H.; Kashiwagi, K.; Kitamura, K.; Yoda, Y.; Tsuji, M.; Mochizuki, M.; Sato, M.; Shinohara, R.; Mizorogi, S.; Suzuki, K.; et al. Evaluation of the associations between changes in intraocular pressure and metabolic syndrome parameters: A retrospective cohort study in Japan. BMJ Open 2016, 6, e010360. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.J.; Chun, Y.S.; Lee, M.Y.; Kim, J.M.; Shim, S.H.; Yoo, C.; Bae, J.H.; Park, K.H. Association of IOP with Systemic Factors in a Korean Cohort. Optom. Vis. Sci. 2015, 92, 1–1188. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Ren, Y.-L.; Zhai, J.; Zhou, X.-Y.; Wu, J. Down-regulated LAMA4 inhibits oxidative stress-induced apoptosis of retinal ganglion cells through the MAPK signaling pathway in rats with glaucoma. Cell Cycle 2019, 18, 932–948. [Google Scholar] [CrossRef] [PubMed]
- Izzotti, A.; Bagnis, A.; Sacca, S. The role of oxidative stress in glaucoma. Mutat. Res. 2006, 612, 105–114. [Google Scholar] [CrossRef]
- Ciotu, I.M.; Stoian, I.; Gaman, L.; Popescu, M.V.; Atanasiu, V. Biochemical changes and treatment in glaucoma. J. Med. Life 2015, 8, 28–31. [Google Scholar]
- Yilmaz, N.; Coban, D.T.; Bayindir, A.; Erol, M.K.; Ellidag, H.Y.; Giray, Özlem; Sayrac, S.; Tekeli, S.O.; Eren, E. Higher serum lipids and oxidative stress in patients with normal tension glaucoma, but not pseudoexfoliative glaucoma. Bosn. J. Basic Med Sci. 2015, 16, 21–27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sacca, S.; Pascotto, A.; Camicione, P.; Capris, P.; Izzotti, A. Oxidative DNA Damage in the Human Trabecular Meshwork. Arch. Ophthalmol. 2005, 123, 458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brites, F.; Martin, M.; Guillas, I.; Kontush, A. Antioxidative activity of high-density lipoprotein (HDL): Mechanistic insights into potential clinical benefit. BBA Clin. 2017, 8, 66–77. [Google Scholar] [CrossRef]
- Yilmaz, N. Relationship between paraoxonase and homocysteine: Crossroads of oxidative diseases. Arch. Med Sci. 2012, 8, 138–153. [Google Scholar] [CrossRef]
- Mackness, M.; Mackness, B. Human paraoxonase-1 (PON1): Gene structure and expression, promiscuous activities and multiple physiological roles. Gene 2015, 567, 12–21. [Google Scholar] [CrossRef] [Green Version]
- Eren, E.; Ellidag, H.Y.; Aydin, O.; Yilmaz, N. HDL functionality and crystal-based sterile inflammation in atherosclerosis. Clin. Chim. Acta 2015, 439, 18–23. [Google Scholar] [CrossRef]
- Eren, E.; Yılmaz, N.; Aydin, O.; Ellidağ, H.Y. Anticipatory Role of High Density Lipoprotein and Endothelial Dysfunction: An Overview. Open Biochem. J. 2014, 8, 100–106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eren, E.; Ellidag, H.Y.; Aydin, O.; Yılmaz, N. Homocysteine, Paraoxonase-1 and Vascular Endothelial Dysfunction: Omnibus viis Romam Pervenitur. J. Clin. Diagn. Res. 2014, 8, CE01–CE04. [Google Scholar] [CrossRef]
- M, A.; Hardak, E.; Vaya, J.; Mahmood, S.; Milo, S.; Hoffman, A.; Billicke, S.; Draganov, D.; Rosenblat, M. Human serum paraoxonases (PON1) Q and R selectively decrease lipid peroxides in human coronary and carotid atherosclerotic lesions: PON1 esterase and peroxidase-like activities. Circulation 2000, 101, 2510–2517. [Google Scholar]
- Stein, J.D.; Newman-Casey, P.A.; Talwar, N.; Nan, B.; Richards, J.E.; Musch, D.C. The relationship between statin use and open-angle glaucoma. Ophthalmology 2012, 119, 2074–2081. [Google Scholar] [CrossRef] [Green Version]
- De Castro, D.K.; Punjabi, O.S.; Bostrom, A.G.; Stamper, R.L.; Lietman, T.M.; Ray, K.; Lin, S.C. Effect of statin drugs and aspirin on progression in open-angle glaucoma suspects using confocal scanning laser ophthalmoscopy. Clin. Exp. Ophthalmol. 2007, 35, 506–513. [Google Scholar] [CrossRef] [PubMed]
- McGwin, G., Jr.; McNeal, S.; Owsley, C.; Girkin, C.; Epstein, D.; Lee, P.P. Statins and other cholesterol-lowering medications and the presence of glaucoma. Arch Ophthalmol. 2004, 122, 822–826. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marcus, M.W.; Müskens, R.P.H.M.; Ramdas, W.D.; Wolfs, R.C.W.; De Jong, P.T.V.M.; Vingerling, J.R.; Hofman, A.; Stricker, B.H.; Jansonius, N.M. Cholesterol-Lowering Drugs and Incident Open-Angle Glaucoma: A Population-Based Cohort Study. PLoS ONE 2012, 7, e29724. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seeree, P.; Janvilisri, T.; Kangsamaksin, T.; Tohtong, R.; Kumkate, S. Downregulation of ABCA1 and ABCG1 transporters by simvastatin in cholangiocarcinoma cells. Oncol. Lett. 2019, 18, 5173–5184. [Google Scholar] [CrossRef] [Green Version]
- Wong, J.; Quinn, C.M.; Gelissen, I.C.; Jessup, W.; Brown, A.J. The effect of statins on ABCA1 and ABCG1 expression in human macrophages is influenced by cellular cholesterol levels and extent of differentiation. Atherosclerosis 2008, 196, 180–189. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Lin, Y.; Vithana, E.N.; Jia, L.; Zuo, X.; Wong, T.Y.; Chen, L.J.; Zhu, X.; Tam, P.O.S.; Gong, B.; et al. Common variants near ABCA1 and in PMM2 are associated with primary open-angle glaucoma. Nat. Genet. 2014, 46, 1115–1119. [Google Scholar] [CrossRef]
- Wellcome Trust Case Control Consortium 2; Gharahkhani, P.; Burdon, K.P.; Fogarty, R.; Sharma, S.; Hewitt, A.W.; Martin, S.; Law, M.H.; Cremin, K.; Bailey, J.N.C.; et al. Common variants near ABCA1, AFAP1 and GMDS confer risk of primary open-angle glaucoma. Nat. Genet. 2014, 46, 1120–1125. [Google Scholar] [CrossRef]
- Luo, H.; Chen, Y.; Ye, Z.; Sun, X.; Shi, Y.; Luo, Q.; Gong, B.; Shuai, P.; Yang, J.; Zhou, Y.; et al. Evaluation of the Association Between Common Genetic Variants Near theABCA1Gene and Primary Angle Closure Glaucoma in a Han Chinese Population. Investig. Opthalmol. Vis. Sci. 2015, 56, 6248–6254. [Google Scholar] [CrossRef] [Green Version]
- Resnikoff, S.; Pascolini, D.; Etya’Ale, D.; Kocur, I.; Pararajasegaram, R.; Pokharel, G.P.; Mariotti, S.P. Global data on visual impairment in the year 2002. Bull. World Heal. Organ. 2004, 82, 844–851. [Google Scholar]
- Yau, J.W.; Rogers, S.L.; Kawasaki, R.; Lamoureux, E.L.; Kowalski, J.W.; Bek, T.; Chen, S.-J.; Dekker, J.M.; Fletcher, A.; Grauslund, J.; et al. Global Prevalence and Major Risk Factors of Diabetic Retinopathy. Diabetes Care 2012, 35, 556–564. [Google Scholar] [CrossRef] [Green Version]
- Bruno, G.; Bonora, E.; Miccoli, R.; Vaccaro, O.; Rossi, E.; Bernardi, D.; De Rosa, M.; Marchesini, G. Quality of Diabetes Care in Italy: Information From a Large Population-Based Multiregional Observatory (ARNO Diabetes). Diabetes Care 2012, 35, e64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Semeraro, F.; Cancarini, A.; Dell’Omo, R.; Rezzola, S.; Romano, M.R.; Costagliola, C. Diabetic Retinopathy: Vascular and Inflammatory Disease. J. Diabetes Res. 2015, 2015, 1–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wong, T.Y.; Cheung, C.M.G.; Larsen, M.; Sharma, S.; Simó, R. Diabetic retinopathy. Nat. Rev. Dis. Prim. 2016, 2, 16013. [Google Scholar] [CrossRef] [PubMed]
- El Hindy, N.; Ong, J.M. Asymmetric diabetic retinopathy. J. Diabetes 2010, 2, 125–126. [Google Scholar] [CrossRef]
- Klein, A.P. Overview of Epidemiologic Studies of Diabetic Retinopathy. Ophthalmic Epidemiol. 2007, 14, 179–183. [Google Scholar] [CrossRef]
- Stratton, I.; Kohner, E.M.; Aldington, S.; Turner, R.C.; Holman, R.R.; Manley, S.E.; Matthews, D.R. UKPDS 50: Risk factors for incidence and progression of retinopathy in Type II diabetes over 6 years from diagnosis. Diabetologia 2001, 44, 156–163. [Google Scholar] [CrossRef] [Green Version]
- Chew, E.Y.; Klein, M.L.; Ferris, F.L.; A Remaley, N.; Murphy, R.P.; Chantry, K.; Hoogwerf, B.J.; Miller, D. Association of elevated serum lipid levels with retinal hard exudate in diabetic retinopathy. Early Treatment Diabetic Retinopathy Study (ETDRS) Report 22. Arch. Ophthalmol. 1996, 114, 1079–1084. [Google Scholar] [CrossRef]
- Davis, M.D.; Fisher, M.R.; E Gangnon, R.; Barton, F.; Aiello, L.M.; Chew, E.Y.; Ferris, F.L.; Knatterud, G.L. Risk factors for high-risk proliferative diabetic retinopathy and severe visual loss: Early Treatment Diabetic Retinopathy Study Report #18. Investig. Ophthalmol. Vis. Sci. 1998, 39, 233–252. [Google Scholar]
- Sun, J.K.; Jampol, L.M. The Diabetic Retinopathy Clinical Research Network (DRCR.net) and Its Contributions to the Treatment of Diabetic Retinopathy. Ophthalmic Res. 2019, 62, 225–230. [Google Scholar] [CrossRef]
- Cikamatana, L.; Mitchell, P.; Rochtchina, E.; Foran, S.; Wang, J.J. Five-year incidence and progression of diabetic retinopathy in a defined older population: The Blue Mountains Eye Study. Eye 2007, 21, 465–471. [Google Scholar] [CrossRef]
- Tan, G.S.; Gan, A.; Charumathi, S.; Tham, Y.C.; Neelam, K.; Mitchell, P.; Wang, J.J.; Lamoureux, E.L.; Cheng, C.-Y.; Wong, T.Y. Ethnic Differences in the Prevalence and Risk Factors of Diabetic Retinopathy. Ophthalmology 2018, 125, 529–536. [Google Scholar] [CrossRef] [PubMed]
- ACCORD Study Group; ACCORD Eye Study Group; Chew, E.Y.; Ambrosius, W.T.; Davis, M.D.; Danis, R.P.; Gangaputra, S.; Greven, C.M.; Hubbard, L.; A Esser, B.; et al. Effects of medical therapies on retinopathy progression in type 2 diabetes. New Engl. J. Med. 2010, 363, 233–244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- ACCORD Study Group; Cushman, W.C.; Evans, G.W.; Byington, R.P.; Goff, D.C.; Grimm, R.H.; Cutler, J.A.; Simons-Morton, D.G.; Basile, J.N.; Corson, M.A.; et al. Effects of intensive blood-pressure control in type 2 diabetes mellitus. New Engl. J. Med. 2010, 362, 1575–1585. [Google Scholar] [CrossRef] [Green Version]
- Boussageon, R.; Bejan-Angoulvant, T.; Saadatian-Elahi, M.; Lafont, S.; Bergeonneau, C.; Kassai, B.; Erpeldinger, S.; Wright, J.M.; Gueyffier, F.; Cornu, C. Effect of intensive glucose lowering treatment on all cause mortality, cardiovascular death, and microvascular events in type 2 diabetes: Meta-analysis of randomised controlled trials. BMJ 2011, 343, d4169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hemmingsen, B.; Lund, S.S.; Gluud, C.; Vaag, A.; Almdal, T.; Hemmingsen, C.; Wetterslev, J. Intensive glycaemic control for patients with type 2 diabetes: Systematic review with meta-analysis and trial sequential analysis of randomised clinical trials. BMJ 2011, 343, d6898. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sacks, F.M.; Hermans, M.P.; Fioretto, P.; Valensi, P.; Davis, T.; Horton, E.; Wanner, C.; Al-Rubeaan, K.; Aronson, R.; Barzon, I.; et al. Association Between Plasma Triglycerides and High-Density Lipoprotein Cholesterol and Microvascular Kidney Disease and Retinopathy in Type 2 Diabetes Mellitus: A Global Case-Control Study in 13 Countries. Circulation 2013, 129, 999–1008. [Google Scholar] [CrossRef]
- Benarous, R.; Sasongko, M.B.; Qureshi, S.; Fenwick, E.; Dirani, M.; Wong, T.Y.; Lamoureux, E.L. Differential Association of Serum Lipids with Diabetic Retinopathy and Diabetic Macular Edema. Investig. Opthalmol. Vis. Sci. 2011, 52, 7464–7469. [Google Scholar] [CrossRef]
- Klein, B.E.; Moss, S.E.; Klein, R.; Surawicz, T.S. The Wisconsin Epidemiologic Study of Diabetic Retinopathy. XIII. Relationship of serum cholesterol to retinopathy and hard exudate. Ophthalmology 1991, 98, 1261–1265. [Google Scholar] [CrossRef]
- Miljanovic, B.; Glynn, R.J.; Nathan, D.M.; Manson, J.E.; Schaumberg, D.A. A prospective study of serum lipids and risk of diabetic macular edema in type 1 diabetes. Diabetes 2004, 53, 2883–2892. [Google Scholar] [CrossRef] [Green Version]
- Raman, R.; Rani, P.K.; Kulothungan, V.; Rachepalle, S.R.; Kumaramanickavel, G.; Sharma, T. Influence of Serum Lipids on Clinically Significant versus Nonclinically Significant Macular Edema. Ophthalmology 2010, 117, 766–772. [Google Scholar] [CrossRef]
- Rema, M.; Srivastava, B.K.; Anitha, B.; Deepa, R.; Mohan, V. Association of serum lipids with diabetic retinopathy in urban South Indians—The Chennai Urban Rural Epidemiology Study (CURES) Eye Study—2. Diabet. Med. 2006, 23, 1029–1036. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wong, T.Y.; Cheung, N.; Tay, W.T.; Wang, J.J.; Aung, T.; Saw, S.M.; Lim, S.C.; Tai, E.S.; Mitchell, P. Prevalence and Risk Factors for Diabetic Retinopathy. Ophthalmology 2008, 115, 1869–1875. [Google Scholar] [CrossRef] [PubMed]
- Sachdev, N.; Sahni, A. Association of systemic risk factors with the severity of retinal hard exudates in a north Indian population with type 2 diabetes. J. Postgrad. Med. 2010, 56, 3. [Google Scholar] [CrossRef] [PubMed]
- Lyons, T.J.; Jenkins, A.J.; Zheng, D.; Lackland, D.T.; McGee, D.; Garvey, W.T.; Klein, R.L. Diabetic retinopathy and serum lipoprotein subclasses in the DCCT/EDIC cohort. Investig. Opthalmol. Vis. Sci. 2004, 45, 910–918. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cezario, S.M.; Calastri, M.C.J.; Oliveira, C.I.F.; Carmo, T.S.D.; Pinhel, M.A.D.S.; De Godoy, M.F.; Jorge, R.; Cotrim, C.C.; Souza, D.R.S.; Siqueira, R.C. Association of high-density lipoprotein and apolipoprotein E genetic variants with age-related macular degeneration. Arq. Bras. Oftalmol. 2015, 78, 85–88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Misra, A.; Kumar, S.; Vikram, N.K.; Kumar, A. The role of lipids in the development of diabetic microvascular complications: Implications for therapy. Am. J. Cardiovasc. Drugs 2003, 3, 325–338. [Google Scholar] [CrossRef]
- Sasso, F.C.; Pafundi, P.C.; Gelso, A.; Bono, V.; Costagliola, C.; Marfella, R.; Sardu, C.; Rinaldi, L.; Galiero, R.; Acierno, C.; et al. High HDL cholesterol: A risk factor for diabetic retinopathy? Findings from NO BLIND study. Diabetes Res. Clin. Pract. 2019, 150, 236–244. [Google Scholar] [CrossRef]
- Das, R.; Kerr, R.; Chakravarthy, U.; Hogg, R.E. Dyslipidemia and Diabetic Macular Edema. Ophthalmology 2015, 122, 1820–1827. [Google Scholar] [CrossRef]
- Morton, J.; Zoungas, S.; Li, Q.; Patel, A.A.; Chalmers, J.; Woodward, M.; Celermajer, D.; Beulens, J.W.; Stolk, R.P.; Glasziou, P.; et al. Low HDL Cholesterol and the Risk of Diabetic Nephropathy and Retinopathy. Diabetes Care 2012, 35, 2201–2206. [Google Scholar] [CrossRef] [Green Version]
- Madsen, C.M.; Varbo, A.; Nordestgaard, B.G. Extreme high high-density lipoprotein cholesterol is paradoxically associated with high mortality in men and women: Two prospective cohort studies. Eur. Heart J. 2017, 38, 2478–2486. [Google Scholar] [CrossRef] [Green Version]
- Allard-Ratick, M.; Khambhati, J.; Topel, M.; Sandesara, P.; Sperling, L.; Quyyumi, A. 50Elevated HDL-C is associated with adverse cardiovascular outcomes. Eur. Hear. J. 2018, 39, 564–50. [Google Scholar] [CrossRef]
- Hirata, A.; Sugiyama, D.; Watanabe, M.; Kotani, K.; Ueshima, H.; Imai, Y.; Ohkubo, T.; Irie, F.; Iso, H.; Kitamura, A.; et al. Association of extremely high levels of high-density lipoprotein cholesterol with cardiovascular mortality in a pooled analysis of 9 cohort studies including 43,407 individuals: The EPOCH–JAPAN study. J. Clin. Lipidol. 2018, 12, 674–684. [Google Scholar] [CrossRef] [PubMed]
- Ko, D.T.; Alter, D.A.; Guo, H.; Koh, M.; Lau, G.; Austin, P.C.; Booth, G.L.; Hogg, W.; Jackevicius, C.A.; Lee, D.S.; et al. High-Density Lipoprotein Cholesterol and Cause-Specific Mortality in Individuals Without Previous Cardiovascular Conditions. J. Am. Coll. Cardiol. 2016, 68, 2073–2083. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sobrin, L.; Chong, Y.H.; Fan, Q.; Gan, A.; Stanwyck, L.K.; Kaidonis, G.; Craig, J.E.; Kim, J.; Liao, W.-L.; Huang, Y.-C.; et al. Genetically Determined Plasma Lipid Levels and Risk of Diabetic Retinopathy: A Mendelian Randomization Study. Diabetes 2017, 66, 3130–3141. [Google Scholar] [CrossRef] [Green Version]
- Sasongko, M.B.; Wong, T.Y.; Nguyen, T.T.; Kawasaki, R.; Jenkins, A.J.; Shaw, J.; Wang, J.J. Serum Apolipoprotein AI and B Are Stronger Biomarkers of Diabetic Retinopathy Than Traditional Lipids. Diabetes Care 2011, 34, 474–479. [Google Scholar] [CrossRef] [Green Version]
- Simó, R.; Garcia-Ramírez, M.; Higuera, M.; Hernández, C. Apolipoprotein A1 Is Overexpressed in the Retina of Diabetic Patients. Am. J. Ophthalmol. 2009, 147, 319–325. [Google Scholar] [CrossRef]
- Davidson, M.H. Apolipoprotein Measurements: Is More Widespread Use Clinically Indicated? Clin. Cardiol. 2009, 32, 482–486. [Google Scholar] [CrossRef]
- Walldius, G.; Jungner, I. The apoB/apoA-I ratio: A strong, new risk factor for cardiovascular disease and a target for lipid-lowering therapy—A review of the evidence. J. Intern. Med. 2006, 259, 493–519. [Google Scholar] [CrossRef]
Author (Year) | Study Design | Study Population | Results/Findings |
---|---|---|---|
Colijn et al. (2019) [31] | Pooled analysis of cross-sectional data | n = 32,483 | Serum HDL was associated with increased odds of AMD (OR = 1.21 per 1-mmol/l increase; 95% CI = 1.14–1.29, p-value = 1.35 × 10−9). |
Saunier et al. (2018) [32] | Population Based Cohort | n = 963 Age ≥ 73 years Adults in Bordeaux, France | Incidence of early AMD was associated with high HDL-C levels (HR = 1.2; 95%CI = 1.0–1.4). |
Cheung et al (2017) [27] | Case Control study examining the association between lipoprotein profile and neovascular AMD | n = 193 Adults of Chinese Ethnicity | AMD is associated with increased HDL serum concentration. For each SD increase in serum HDL particles, a 26% increase in nAMD risk was observed (p = 0.039). In addition, the increase in HDL particles was mainly driven by an excess of medium-sized particles (8.2–8.8 nm) in participants with nAMD. |
Wang et al. (2016) [25] | Meta-Analysis | 19 studies n = 82,966 | Serum HDL increment of 1 mmol/L significantly increased AMD risk by 18% (RR = 1.18; 95% CI = 1.01–1.35; I2 = 53.8%; p-value = 0.007). |
Paun et al. (2015) [33] | Case Control Cohort | 1491 cases, 1579 controls Age ≥ 50 years | AMD patients had significantly higher (p-value = 4.4 × 10−5) HDL-C levels. Significant positive correlation between HDL-C and complement activation level (C3d/C3 ratio). (p-value < 1.9 × 10−9). |
Cho et al. (2014) [34] | Population Based Cross Sectional | n = 7899 Age ≥ 40 years Adults in South Korea | Upon multivariate analyses, serum HDL was a significant risk factor for the presence of any AMD type. (Unit of increment = 5 mg/dL (0.13 mmol/L); OR = 1.09; 95% CI 1.02–1.18; p-value = 0.019). No correlation with Late AMD |
Jonasson et al. (2014) [35] | Population Based Cohort | n = 2868 Adults in Reykjavik, Iceland | In multivariate models, incident AMD was significantly associated with HDL-C. (OR = 1.62 per mmol/L; 95% CI 1.19-2.22; p-value < 0.01). Covariates in regression models included age (in years), female sex (yes/no), current smoker (yes/no), former smoker (yes/no), use of cod liver oil (yes/no), hypertension (yes/no), diabetes mellitus (yes/no), body mass index (kg/m2), total cholesterol (mmol/L), HDL cholesterol (mmol/L) and hsCRP (mg/L). |
Klein et al. (2010) [30] | Cross-sectional | n = 2810 Age 21–84 years Beaver Dam Eye Study Adults in USA | Odds of early AMD decreased by approximately 10% per 5mg/dL (0.13 mmol/L) increase in HDL level. (OR = 0.91; 95% CI = 0.83–0.998). |
Tan et al. (2007) [29] | Population Based Cohort | n = 3654 Age ≥ 49 years Blue Mountain Eye Study Adults in Australia | Increasing HDL-C was inversely related to incident late AMD (RR per SD increase = 0.74; 95% CI = 0.56–0.99). Elevated total/HDL cholesterol ratio predicted late AMD (RR per SD increase = 1.35; 95% CI = 1.07–1.70) and Geographic atrophy (RR per SD = 1.63; 95% CI = 1.18–2.25). |
AMD, age-related macular degeneration; CI, confidence interval; HDL-C, high-density lipoprotein cholesterol; HR, hazard ratio; hsCRP, high sensitivity C-reactive protein; nAMD, neovascular age-related macular degeneration; OR, odds ratio; RR, relative risk; SD, standard deviation. |
Author (Year) | Study Design | Results/Findings |
---|---|---|
Burgess et al (2017) [26] | 2-sample Mendelian randomization to assess known lipid gene associations with AMD risk on 33,536 individuals | Reported that HDL-C is a causal risk factor for AMD (OR = 1.22; 95%CI = 1.03–1.44 per 1 SD increase in HDL-C. Variants in the CETP gene region associated with increased circulating HDL-C were also associated with AMD risk, although variants in the LIPC gene region that increase circulating HDL-C have an inverse association. Concluded that there is some genetic evidence that inhibiting CETP to increase HDL-C levels may increase AMD risk. The mechanism for an HDL-C/AMD association could be through the modulation of CETP. |
Haapasalo et al (2015) [36] | Experimental Study | Using affinity chromatography and mass spectrometry, it was found that CFH interacts with serum ApoE via FH5-7 domains. Binding of CFH to ApoE on HDL particles prevents excessive alternative pathway activation and protects HDL particles in plasma. HDL has a role in reducing alternative pathway activation, at least partially due to binding of complement regulators CFH and clusterin to HDL particles. |
Cheng et al. (2015) [37] | Genome-wide and exome-wide association study on 2119 patients with exudative AMD and 5691 controls | Reported a strong association between CETP Asp442Gly (rs2303790), an East Asian-specific mutation, and increased risk of AMD (OR = 1.70, p-value = 5.60 × 10−22). The AMD risk allele (442Gly) increases HDL cholesterol levels by 0.17 mmol/L (p-value = 5.82 × 10−21) in East Asians (n = 7102). |
Toomey et al (2015) [38] | Animal Study (mice). In vivo investigation of sub-RPE deposit formation in aged Cfh+/− and Cfh−/− mice | Complement factor H (CFH) is a major susceptibility gene for AMD. Decreased levels of CFH induce sub-retinal pigmented epithelium (sub-RPE) deposit formation, leading to complement activation, which contributes to RPE damage and visual function impairment. Mechanistically, deposits are due to CFH competition for lipoprotein binding sites in Bruch’s membrane. |
Ristau et al (2014) [39] | Analysis of genetic AMD risk polymorphisms and systemic complement activation | Variants in ARMS2 rs10490924, CFH rs1061170, C3 rs2230199, C3 rs6795735 and CETP rs2230199 were found to be associated with significantly higher risk for AMD. |
Chen W et al (2010) [40] | Genome-wide association scan for AMD in 2157 cases and 1150 controls | Identified a susceptibility locus for AMD near TIMP3 (p-value = 1.1 × 10−11), a metalloproteinase involved in degradation of the extracellular matrix. Data revealed strong association signals with alleles at two loci (LIPC, p-value = 1.3 × 10−7; CETP, p-value = 7.4 × 10−7) that are associated with serum HDL-C levels. Furthermore, observed an association with AMD of HDL-C—associated alleles near LPL (p-value = 3.0 × 10−3) and ABCA1 (p-value = 5.6 × 10−4). |
Gordon et al (2010) [41] | Proteomic Analysis of HDL-C fractionated by Gel Filtration Chromatography | Identified 14 new phospholipid associated proteins that migrate with HDL. These include complement C1q subcomponent subunits B and C which function in activation of the classical pathway and ficolin-3, involved in complement activation via the lectin pathway. Complement C1s, C2, C5, factor B and plasma protease C1 inhibitor, were also found in HDL-C fractions. |
AMD, age-related macular degeneration; ApoE, apolipoprotein E; CI, confidence interval; CETP, cholesteryl ester transfer protein; CFH, complement factor H; HDL-C, high-density lipoprotein cholesterol; LIPC, lipase C; LPL, lipoprotein lipase; OR, odds ratio; RPE, retinal pigment epithelium; RR, relative risk; SD, standard deviation; TIMP3, tissue inhibitor of metalloproteinases 3. Selected studies are the most recent and relevant. |
Author (Year) | Study Design | Study Population | Results/Findings |
---|---|---|---|
Li S et al. (2018) [73] | Cross sectional case control | 219 cases 218 controls age ≥ 45 years Adults in China | HDL-C level did not differ significantly between the age-related cataract group and control group (p-value = 0.231). OR not calculated. |
Park et al. (2015) [71] | Population based cross-sectional | n = 2852 Age ≥ 40 years Adults in South Korea | Low HDL-C was not significantly associated with any type of cataract. |
Park et al. (2014) [70] | Population based cross-sectional | n = 11,076 Age ≥ 31 years Adults in South Korea | Reduced HDL-C levels were significantly associated with cataract in women (OR = 1.27; 95% CI = 1.07–1.50). Upon subgroup analysis, reduced HDL-C levels were significantly associated with nuclear cataract in women (OR = 1.25; 95%CI = 1.03–1.52). Such associations were not found in men. |
Ghaem Maralani et al. (2013) [64] | Population-based prospective cohort study10-year follow-up | n = 1997 Age > 48 years Adults in Australia | Low HDL-C was significantly associated with increased incidence of cortical cataract at 10-year follow-up (HR = 1.57; 95%CI = 1.10–2.24, p-value = 0.013). |
Sabanayagam et al. (2011) [61] | Population-based cross-sectional study | n = 2794 Age 40–80 years Singapore Malay Eye Study Malay Adults in Singapore | Insignificant association found between low-serum HDL-C and cataract. (Multivariate OR = 1.11; 95%CI = 0.88–1.40; p-value = 0.4) Low HDL defined as (< 1.0 and < 1.3 mmol/L in male and female, respectively). |
Paunksnis et al. (2007) [69] | Population based cross-sectional | n = 1282 Age 35–64 years Adults in Lithuania | Insignificant increase in odds of cataract among women with decreased serum HDL-C (OR = 1.24, 95%CI = 0.77-1.99, p-value = 0.426). |
Hiller et al. (2003) [68] | Case-control | n = 1684 Age ≥ 45 years Adults in USA | HDL-C < 35 mg/dl (< 0.9051 mmol/L) was significantly associated with decreased risk of Posterior subcapsular cataract in men (OR = 0.97; 95% CI = 0.94-0.99; p-value = 0.04). No significant associations noted between serum HDL-C and cortical or nuclear opacities. |
Meyer et al. (2003) [67] | Cross-sectional | n = 115 Adults in South Africa | Subjects with serum HDL-C < 1.5 have seven-fold odds of falling in the cataract subgroup compared to those with HDL-C levels ≥ 1.5 mmol/l (OR = 7.33; 95% CI = 2.06–26.10; p-value = 0.001). Odds of falling into the cataract subgroup if the individual’s LDL:HDL ratio exceeded 5 was also significantly higher. (OR = 2.35; 95% CI = 1.09–5.04; p-value = 0.014). |
CI, confidence interval; HDL-C, high-density lipoprotein cholesterol; HR, hazard ratio; LDL, low-density lipoprotein; OR, odds ratio; RR, relative risk; SD, standard deviation. Selected studies are the most recent and relevant. |
Author (Year) | Study Design | Study Population | Results/Findings |
---|---|---|---|
Cui et al. (2019) [85] | Population-based cross-sectional | n = 2112 Age ≥ 40 years Adults in Southern China | Multiple regression analysis revealed that higher IOP was significantly associated with lower HDL-C. (Mean IOP difference between low and high HDL-C group = −0.678; 95%CI = −0.993 to −0.363; p-value = < 0.001). |
Shon et al. (2019) [80] | Population-based cross-sectional | n = 16,939 Age ≥ 40 years Adults in South Korea | No significant difference in plasma HDL-C levels between the groups being treated and not being treated for glaucoma. |
Wang et al. (2018) [83] | Meta-analysis | 10 studies | Low serum HDL-C showed no significant relationship with IOP. (Pooled Z = −0.03; 95%CI = −0.06 to 0.01, p-value = 0.145, I2 = 91.5%). |
Kurtul et al. (2017) [79] | Cross-sectional | n = 119 | Serum HDL-C levels did not differ significantly between groups of patients with and without pseudo-exfoliation glaucoma (control: 1.22 ± 0.39 mmol/L; glaucoma 1.14 ± 0.28 mmol/L; p-value = 0.42). |
Yokomichi et al. (2016) [86] | Cross-sectional and longitudinal arms | n = 20,007 (cross-sectional) n = 15,747 (longitudinal) Adults in Japan | Variable of HDL-C, +1 mmol/L was significantly associated with a +0.42 mm Hg IOP change (95% CI = 0.35–0.49, p-value < 0.0001). |
Kim et al. (2015) [87] | Retrospective cross-sectional | n = 155,198 Age ≥ 20 years Adults in South Korea | After multivariate analysis adjusting for age, sex and other variables, HDL-C and IOP are positively correlated. (Coefficient β (SE) = 0.002 (0.001), p-value = 0.001). |
Kim MJ et al. (2014) [84] | Retrospective population- based case control | n = 17,901 Age 19–39 years Adults in South Korea | Multivariate analysis found that low HDL-C was significantly associated with primary open angle glaucoma with normal baseline IOP (OR = 0.96, 95%CI = 0.94–0.99; p-value = 0.004). |
Kim YH et al. (2014) [82] | Population based cross-sectional | n = 4875 Age ≥ 20 years Adult Men in South Korea | No significant difference in IOP between the group with low HDL-C and the control group (p-value = 0.594). Other association estimates for HDL-C were not reported. |
CI, confidence interval; HDL-C, high-density lipoprotein cholesterol; HR, hazard ratio; IOP, intraocular pressure; OR, odds ratio; RR, relative risk; SD, standard deviation; SE, standard error. Selected studies are the most recent and relevant. |
Author (Year) | Study Design | Study Population | Results/Findings |
---|---|---|---|
Sasso et al. (2019) [137] | Cross-sectional | n = 2068 Age > 14 years Individuals in Italy with Type 2 DM | Diabetic retinopathy was independently associated with HDL-C (OR = 1.042; 95% CI = 1.012–1.109; p-value = 0.004). Adjusted for age, HbA1c and duration of diabetes as potential independent risk factors for DR. |
Das et al. (2015) [138] | Meta-analysis | 21 relevant articles | HDL-C levels were insignificantly higher in the presence of DME (mean difference between groups = 0.0582 mmol/L; 95%CI = −3.62 × 10−3 to 0.125, p-value = 0.07). |
Sacks et al. (2014) [126] | Case-control | n = 2535 Age ≥ 40 years 24 sites in 13 countries Adults with Type 2 DM | Odds ratio for retinopathy associated with a quintile increase of serum HDL-C (≈ 0.2 mmol/L) was insignificant (OR = 0.97; 95% CI = 0.90–1.05; p-value = 0.08). |
Morton et al. (2012) [139] | Population based prospective cohort | n = 11,140 Age ≥ 55 years Adults with Type 2 DM | No association between baseline HDL-C and the risk of diabetic retinopathy or any specific type of retinal event. |
Wong et al. (2008) [132] | Population based Cross-sectional | n = 3261 Age 40–80 years Adults with diabetes of Malay ethnicity in Singapore | Insignificant association between low serum HDL-C and retinopathy (OR = 1.18; 95%; CI = 0.62–2.26; p-value = 0.61). |
Rema et al. (2006) [131] | Population based Cross-sectional | n = 1736 Age ≥ 20 years Adults with Type 2 DM in Chennai, South India | No significant difference in serum HDL-C levels in Type 2 DM patients with retinopathy compared with those without retinopathy. |
Lyons et al. (2004) [134] | Population based Cross-sectional | n = 988 Age 13–39 years DCCT/EDIC Study Adults in USA | ETDRS scoring utilized. Measurement of lipoprotein subclass using nuclear magnetic resonance showed that more severe retinopathy was significantly associated with lower HDL-C levels. |
Miljanovic et al (2004) [129] | Population-based prospective study | n = 1441 Age 13–39 years DCCT/EDIC Study Adults in USA | Serum HDL-C was not significantly associated with development of CSME. However, higher total–to–HDL cholesterol ratio (RR = 3.84, 95%CI = 1.58–9.36, p-value = 0.03) was significantly associated with higher risk of CSME. |
CI, confidence interval; CSME, clinically significant macular edema; DCCT/EDIC, Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications; DM, Diabetes Mellitus; DME, diabetic macular edema; ETDRS, Early Treatment Diabetic Retinopathy Study; HDL-C, high-density lipoprotein cholesterol; HR, hazard ratio; OR, odds ratio; RR, relative risk; SD, standard deviation. Selected studies are the most recent and relevant. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Betzler, B.K.; Rim, T.H.; Sabanayagam, C.; Cheung, C.M.G.; Cheng, C.-Y. High-Density Lipoprotein Cholesterol in Age-Related Ocular Diseases. Biomolecules 2020, 10, 645. https://doi.org/10.3390/biom10040645
Betzler BK, Rim TH, Sabanayagam C, Cheung CMG, Cheng C-Y. High-Density Lipoprotein Cholesterol in Age-Related Ocular Diseases. Biomolecules. 2020; 10(4):645. https://doi.org/10.3390/biom10040645
Chicago/Turabian StyleBetzler, Bjorn Kaijun, Tyler Hyungtaek Rim, Charumathi Sabanayagam, Chui Ming Gemmy Cheung, and Ching-Yu Cheng. 2020. "High-Density Lipoprotein Cholesterol in Age-Related Ocular Diseases" Biomolecules 10, no. 4: 645. https://doi.org/10.3390/biom10040645
APA StyleBetzler, B. K., Rim, T. H., Sabanayagam, C., Cheung, C. M. G., & Cheng, C. -Y. (2020). High-Density Lipoprotein Cholesterol in Age-Related Ocular Diseases. Biomolecules, 10(4), 645. https://doi.org/10.3390/biom10040645