Brazilian Red Propolis: Extracts Production, Physicochemical Characterization, and Cytotoxicity Profile for Antitumor Activity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collection and Processing of Red Propolis
2.2. Extraction by Pressurized Liquids
2.3. Full 23 Factorial Design Experiments
2.4. Yield of Production
2.5. Gas Chromatography Coupled with Mass Spectrometry (GC/MS)
2.6. In Vitro Cytotoxicity Analysis
2.7. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Laryionava, K.; Winkler, E.C. Patients’ preferences in non-curable cancer disease. J. Oncol. Res. Treat. 2019, 42, 31–34. [Google Scholar] [CrossRef] [PubMed]
- Zaidi, S.A. Molecular imprinting prevents environmental contamination and body toxicity from anticancer drugs: An update. J. Crit. Rev. Anal. Chem. 2019, 49, 324–335. [Google Scholar] [CrossRef] [PubMed]
- Schildmann, J. Value and values in cancer care. Assessing the benefit of treatment in patients with advanced cancer. J. Oncol. Res. Treat. 2019, 42, 35–40. [Google Scholar] [CrossRef] [PubMed]
- Van Eenbergen, M.C.; van den Hurk, C.; Mols, F.; van de Poll-Franse, L.V. Usability of an online application for reporting the burden of side effects in cancer patients. J. Supportive Care Cancer 2019, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Chen, N.H.; Li, W.; Zhong, Y.L.; Niu, Q.W.; Li, Y.Y.; Zhang, Y.B.; Li, M.M.; Li, Y.L.; Wang, G.C. New Acetophenone Derivatives from Acronychia oligophlebia and Their Anti-inflammatory and Antioxidant Activities. J. Chem. Biodivers. 2018, 15, e18000080. [Google Scholar] [CrossRef]
- Devequi-Nunes, D.; Machado, B.A.S.; Barreto, G.A.; Reboucas Silva, J.; da Silva, D.F.; da Rocha, J.L.C.; Brandao, H.N.; Borges, V.M.; Umsza-Guez, M.A. Chemical characterization and biological activity of six different extracts of propolis through conventional methods and supercritical extraction. PLoS ONE 2018, 13, e0207676. [Google Scholar] [CrossRef]
- Rufatto, L.C.; Luchtenberg, P.; Garcia, C.; Thomassigny, C.; Bouttier, S.; Henriques, J.A.P.; Roesch-Ely, M.; Dumas, F.; Moura, S. Brazilian red propolis: Chemical composition and antibacterial activity determined using bioguided fractionation. J. Microbiol. Res. 2018, 214, 74–82. [Google Scholar] [CrossRef]
- Frozza, C.; Santos, D.A.; Rufatto, L.C.; Minetto, L.; Scariot, F.J.; Echeverrigaray, S.; Pich, C.T.; Moura, S.; Padilha, F.F.; Borsuk, S.; et al. Antitumor activity of Brazilian red propolis fractions against Hep-2 cancer cell line. Biomed. Pharmacother. Biomed. Pharmacother. 2017, 91, 951–963. [Google Scholar] [CrossRef]
- Silva, F.R.G.; Matias, T.M.S.; Souza, L.I.O.; Matos-Rocha, T.J.; Fonseca, S.A.; Mousinho, K.C.; Santos, A.F. Phytochemical screening and in vitro antibacterial, antifungal, antioxidant and antitumor activities of the red propolis Alagoas. Braz. J. Biol. Rev. Brasleira De Biol. 2019, 79, 452–459. [Google Scholar] [CrossRef]
- Pinheiro, K.S.; Ribeiro, D.R.; Alves, A.V.; Pereira-Filho, R.N.; Oliveira, C.R.; Lima, S.O.; Reis, F.P.; Cardoso, J.C.; Albuquerque-Junior, R.L. Modulatory activity of Brazilian red propolis on chemically induced dermal carcinogenesis. Acta Cir Bras 2014, 29, 111–117. [Google Scholar] [CrossRef]
- Ribeiro, D.R.; Alves, A.V.; dos Santos, E.P.; Padilha, F.F.; Gomes, M.Z.; Rabelo, A.S.; Cardoso, J.C.; Massarioli, A.P.; de Alencar, S.M.; de Albuquerque-Junior, R.L. Inhibition of DMBA-induced Oral Squamous Cells Carcinoma Growth by Brazilian Red Propolis in Rodent Model. Basic Clin. Pharm. Toxicol. 2015, 117, 85–95. [Google Scholar] [CrossRef] [PubMed]
- Lucarini, M.; Durazzo, A.; Kiefer, J.; Santini, A.; Lombardi-Boccia, G.; Souto, E.B.; Romani, A.; Lampe, A.; Ferrari Nicoli, S.; Gabrielli, P.; et al. Grape Seeds: Chromatographic Profile of Fatty Acids and Phenolic Compounds and Qualitative Analysis by FTIR-ATR Spectroscopy. Foods 2019, 9, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Durazzo, A.; Lucarini, M.; Novellino, E.; Souto, E.B.; Daliu, P.; Santini, A. Abelmoschus esculentus (L.): Bioactive Components’ Beneficial Properties-Focused on Antidiabetic Role-For Sustainable Health Applications. Molecules 2018, 24, 38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cefali, L.C.; Ataide, J.A.; Fernandes, A.R.; Sousa, I.M.O.; Goncalves, F.; Eberlin, S.; Davila, J.L.; Jozala, A.F.; Chaud, M.V.; Sanchez-Lopez, E.; et al. Flavonoid-Enriched Plant-Extract-Loaded Emulsion: A Novel Phytocosmetic Sunscreen Formulation with Antioxidant Properties. Antioxidants 2019, 8, 443. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cefali, L.C.; Ataide, J.A.; Fernandes, A.R.; Sanchez-Lopez, E.; Sousa, I.M.O.; Figueiredo, M.C.; Ruiz, A.; Foglio, M.A.; Mazzola, P.G.; Souto, E.B. Evaluation of In Vitro Solar Protection Factor (SPF), Antioxidant Activity, and Cell Viability of Mixed Vegetable Extracts from Dirmophandra mollis Benth, Ginkgo biloba L., Ruta graveolens L., and Vitis vinifera L. Plants 2019, 8, 453. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sena-Lopes, A.; Bezerra, F.S.B.; das Neves, R.N.; de Pinho, R.B.; Silva, M.T.O.; Savegnago, L.; Collares, T.; Seixas, F.; Begnini, K.; Henriques, J.A.P.; et al. Chemical composition, immunostimulatory, cytotoxic and antiparasitic activities of the essential oil from Brazilian red propolis. PLoS ONE 2018, 13, e0191797. [Google Scholar] [CrossRef] [PubMed]
- Babaei, G.; Aliarab, A.; Abroon, S.; Rasmi, Y.; Aziz, S.G. Application of sesquiterpene lactone: A new promising way for cancer therapy based on anticancer activity. Biomed. Pharmacother. Biomed. Pharmacother. 2018, 106, 239–246. [Google Scholar] [CrossRef]
- Xu, D.D.; Yan, Y.; Jiang, C.X.; Liang, J.J.; Li, H.F.; Wu, Q.X.; Zhu, Y. Sesquiterpenes and diterpenes with cytotoxic activities from the aerial parts of Carpesium humile. Fitoterapia 2018, 128, 50–56. [Google Scholar] [CrossRef]
- Monroy, Y.M.; Rodrigues, R.A.; Rodrigues, M.V.; Cabral, F.A. Fractionation of ethanolic and hydroalcoholic extracts of green propolis using supercritical carbon dioxide as an anti-solvent to obtain artepillin rich-extract. J. Supercrit. Fluids 2018, 138, 167–173. [Google Scholar] [CrossRef]
- Biscaia, D.; Ferreira, S.R. Propolis extracts obtained by low pressure methods and supercritical fluid extraction. J. Supercrit. Fluids 2009, 51, 17–23. [Google Scholar] [CrossRef]
- Saito, É.; Sacoda, P.; Paviani, L.C.; Paula, J.T.; Cabral, F.A. Conventional and supercritical extraction of phenolic compounds from Brazilian red and green propolis. Sep. Sci. Technol. 2020, 1–8. [Google Scholar] [CrossRef]
- Barbosa, T.C.; Nascimento, L.E.D.; Bani, C.; Almeida, T.; Nery, M.; Santos, R.S.; Menezes, L.R.O.; Zielinska, A.; Fernandes, A.R.; Cardoso, J.C.; et al. Development, Cytotoxicity and Eye Irritation Profile of a New Sunscreen Formulation Based on Benzophenone-3-poly(epsilon-caprolactone) Nanocapsules. Toxics 2019, 7, 51. [Google Scholar] [CrossRef] [Green Version]
- Idrus, N.F.M.; Yian, L.N.; Idham, Z.; Aris, N.A.; Putra, N.R.; Aziz, A.H.A.; Yunus, M.A.C. Mini review: Application of supercritical carbon dioxide in extraction of propolis extract. J. Malays. J. Fundam. Appl. Sci. 2018, 14, 387–396. [Google Scholar] [CrossRef]
- Mullane, K.; Curtis, M.J.; Williams, M. Experimental planning and execution. In Research in the Biomedical Sciences; Elsevier: Amsterdam, The Netherlands, 2018; pp. 67–106. [Google Scholar]
- Campos, J.R.; Fernandes, A.R.; Sousa, R.; Fangueiro, J.F.; Boonme, P.; Garcia, M.L.; Silva, A.M.; Naveros, B.C.; Souto, E.B. Optimization of nimesulide-loaded solid lipid nanoparticles (SLN) by factorial design, release profile and cytotoxicity in human Colon adenocarcinoma cell line. Pharm. Dev. Technol. 2019, 24, 616–622. [Google Scholar] [CrossRef] [PubMed]
- Rigon, R.B.; Goncalez, M.L.; Severino, P.; Alves, D.A.; Santana, M.H.A.; Souto, E.B.; Chorilli, M. Solid lipid nanoparticles optimized by 2(2) factorial design for skin administration: Cytotoxicity in NIH3T3 fibroblasts. Colloids Surf. B Biointerfaces 2018, 171, 501–505. [Google Scholar] [CrossRef] [Green Version]
- Severino, P.; Santana, M.H.; Souto, E.B. Optimizing SLN and NLC by 2(2) full factorial design: Effect of homogenization technique. Mater. Sci. Eng. C Mater. Biol. Appl. 2012, 32, 1375–1379. [Google Scholar] [CrossRef]
- Zielinska, A.; Ferreira, N.R.; Durazzo, A.; Lucarini, M.; Cicero, N.; Mamouni, S.E.; Silva, A.M.; Nowak, I.; Santini, A.; Souto, E.B. Development and Optimization of Alpha-Pinene-Loaded Solid Lipid Nanoparticles (SLN) Using Experimental Factorial Design and Dispersion Analysis. Molecules 2019, 24, 2683. [Google Scholar] [CrossRef] [Green Version]
- Yahyaoui, M.; Ghazouani, N.; Saoudi, S.; Sifaoui, I.; Chammem, N.; Abderrabba, M. Experimental design methodologyapplication in the optimization of phytochemical compoundsextraction and antioxidant activity of Thymelaea hirsuta L. extracts. J. Mater. Environ. Sci. 2018, 9, 1551–1561. [Google Scholar]
- Jiang, Z.; Kempinski, C.; Chappell, J. Extraction and Analysis of Terpenes/Terpenoids. Curr. Protoc. Plant Biol. 2016, 1, 345–358. [Google Scholar] [CrossRef] [Green Version]
- De Almeida, M.F., Mel, Instrução Normativa Nº11, Ministerio da Agricultura e Abastecimento do Brasil, de 20 de Outubro de 2000. Available online: https://bibliodigital.unijui.edu.br:8443/xmlui/handle/123456789/5029 (accessed on 8 October 2019).
- De Zordi, N.; Cortesi, A.; Kikic, I.; Moneghini, M.; Solinas, D.; Innocenti, G.; Portolan, A.; Baratto, G.; Dall’Acqua, S. The supercritical carbon dioxide extraction of polyphenols from propolis: A central composite design approach. J. Supercrit. Fluids 2014, 95, 491–498. [Google Scholar] [CrossRef]
- Machado, B.A.; Silva, R.P.; Barreto Gde, A.; Costa, S.S.; Silva, D.F.; Brandao, H.N.; Rocha, J.L.; Dellagostin, O.A.; Henriques, J.A.; Umsza-Guez, M.A.; et al. Chemical Composition and Biological Activity of Extracts Obtained by Supercritical Extraction and Ethanolic Extraction of Brown, Green and Red Propolis Derived from Different Geographic Regions in Brazil. PLoS ONE 2016, 11, e0145954. [Google Scholar] [CrossRef] [PubMed]
- Kubiliene, L.; Laugaliene, V.; Pavilonis, A.; Maruska, A.; Majiene, D.; Barcauskaite, K.; Kubilius, R.; Kasparaviciene, G.; Savickas, A. Alternative preparation of propolis extracts: Comparison of their composition and biological activities. BMC Compl. Altern. Med. 2015, 15, 156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herrero, M.; Martín-Álvarez, P.J.; Señoráns, F.J.; Cifuentes, A.; Ibáñez, E. Optimization of accelerated solvent extraction of antioxidants from Spirulina platensis microalga. Food Chem. 2005, 93, 417–423. [Google Scholar] [CrossRef] [Green Version]
- Pellati, F.; Prencipe, F.P.; Benvenuti, S. Headspace solid-phase microextraction-gas chromatography-mass spectrometry characterization of propolis volatile compounds. J. Pharm. Biomed. Anal. 2013, 84, 103–111. [Google Scholar] [CrossRef] [PubMed]
- Mosaed, H.P.; Sobhanardakani, S.; Merrikhpour, H.; Farmany, A.; Cheraghi, M.; Ashorlo, S. The effect of urban fuel stations on soil contamination with petroleum hydrocarbons. Iranian J. Toxicol. 2015, 9. [Google Scholar]
- Alcarde, A.R.; Souza, P.A.d.; Belluco, A.E.d.S. Chemical profile of sugarcane spirits produced by double distillation methodologies in rectifying still. J. Food Sci. Technol. 2011, 31, 355–360. [Google Scholar] [CrossRef] [Green Version]
- Favier, L.; Tonn, C.; Guerreiro, E.; Rotelli, A.; Pelzer, L. Anti-inflammatory activity of acetophenones from Ophryosporus axilliflorus. Planta Med. 1998, 64, 657–659. [Google Scholar] [CrossRef]
- Setzer, W.N.; Setzer, M.C. Plant-derived triterpenoids as potential antineoplastic agents. Mini Rev. Med. Chem. 2003, 3, 540–556. [Google Scholar] [CrossRef]
- Gallo, M.B.C.; Sarachine, J. Biological activities of lupeol. Int. J. Res. Pharm. Biomed. Sci. 2009, 3, 46–66. [Google Scholar]
- Saleem, M.; Afaq, F.; Adhami, V.M.; Mukhtar, H. Lupeol modulates NF-kappaB and PI3K/Akt pathways and inhibits skin cancer in CD-1 mice. Oncogene 2004, 23, 5203–5214. [Google Scholar] [CrossRef] [Green Version]
- Nigam, N.; Prasad, S.; Shukla, Y. Preventive effects of lupeol on DMBA induced DNA alkylation damage in mouse skin. Food Chem. Toxicol. 2007, 45, 2331–2335. [Google Scholar] [CrossRef] [PubMed]
- Culp, M.B.; Soerjomataram, I.; Efstathiou, J.A.; Bray, F.; Jemal, A. Recent Global Patterns in Prostate Cancer Incidence and Mortality Rates. Eur. Urol. 2020, 77, 38–52. [Google Scholar] [CrossRef] [PubMed]
- Chudzik, M.; Korzonek-Szlacheta, I.; Krol, W. Triterpenes as potentially cytotoxic compounds. Molecules 2015, 20, 1610–1625. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bastos, I.; Oliveira, T.B.; Rodrigues, M.D.; Militao, G.C.G.; Silva, T.G.D.; Turatti, I.C.C.; Lopes, N.P.; Melo, S.J. Use of GC/MS to identify chemical constituents and cytotoxic activity of the leaves of Phoradendron mucronatum and Phoradendron microphyllum (Viscaceae). An. Da Acad. Bras. De Cienc. 2017, 89, 991–1001. [Google Scholar] [CrossRef] [Green Version]
- Pitchai, D.; Roy, A.; Ignatius, C. In vitro evaluation of anticancer potentials of lupeol isolated from Elephantopus scaber L. on MCF-7 cell line. J. Adv. Pharm. Technol. Res. 2014, 5, 179–184. [Google Scholar] [CrossRef]
- Nyaboke, H.O.; Moraa, M.; Omosa, L.K.; Mbaveng, A.T.; Vaderament-Alexe, N.-N.; Masila, V.; Okemwa, E.; Heydenreich, M.; Efferth, T.; Kuete, V. Cytotoxicity of lupeol from the stem bark of Zanthoxylum gilletii against multi-factorial drug resistant cancer cell lines. Invest. Med.l Chem. Pharmacol. 2018, 1, 10. [Google Scholar]
- Mishra, T.; Arya, R.K.; Meena, S.; Joshi, P.; Pal, M.; Meena, B.; Upreti, D.K.; Rana, T.S.; Datta, D. Isolation, Characterization and Anticancer Potential of Cytotoxic Triterpenes from Betula utilis Bark. PLoS ONE 2016, 11, e0159430. [Google Scholar] [CrossRef]
- Ahmad, S.; Sukari, M.A.; Ismail, N.; Ismail, I.S.; Abdul, A.B.; Abu Bakar, M.F.; Kifli, N.; Ee, G.C. Phytochemicals from Mangifera pajang Kosterm and their biological activities. BMC Compl. Altern. Med. 2015, 15, 83. [Google Scholar] [CrossRef] [Green Version]
- Vucic, D.; Deshayes, K.; Ackerly, H.; Pisabarro, M.T.; Kadkhodayan, S.; Fairbrother, W.J.; Dixit, V.M. SMAC negatively regulates the anti-apoptotic activity of melanoma inhibitor of apoptosis (ML-IAP). J. Biol. Chem. 2002, 277, 12275–12279. [Google Scholar] [CrossRef] [Green Version]
- Hanafi, M.M.M.; Afzan, A.; Yaakob, H.; Aziz, R.; Sarmidi, M.R.; Wolfender, J.L.; Prieto, J.M. In Vitro Pro-apoptotic and Anti-migratory Effects of Ficus deltoidea L. Plant Extracts on the Human Prostate Cancer Cell Lines PC3. Front. Pharm. 2017, 8, 895. [Google Scholar] [CrossRef] [Green Version]
- Souto, E.B.; Zielinska, A.; Souto, S.B.; Durazzo, A.; Lucarini, M.; Santini, A.; Silva, A.M.; Atanasov, A.G.; Marques, C.; Andrade, L.N.; et al. (+)-Limonene 1,2-epoxide-loaded SLN: Evaluation of drug release, antioxidant activity and cytotoxicity in HaCaT cell line. Int. J. Mol. Sci. 2020, 21, 1449. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Souto, E.B.; Souto, S.B.; Zielinska, A.; Durazzo, A.; Lucarini, M.; Santini, A.; Horbańczuk, O.K.; Atanasov, A.G.; Marques, C.; Andrade, L.N.; et al. Perillaldehyde 1,2-epoxide loaded SLN-tailored mAb: Production, physicochemical characterization and in vitro cytotoxicity profile in MCF-7 cell lines. Pharmaceutics 2020, 12, 161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Souto, E.B.; Campos, J.R.; Da Ana, R.; Martins-Gomes, C.; Silva, A.M.; Souto, S.B.; Lucarini, M.; Durazzo, A.; Santini, A. Ocular Cell Lines and Genotoxicity Assessment. Int. J. Env. Res. Public Health 2020, 17, 46. [Google Scholar] [CrossRef] [Green Version]
- Doktorovova, S.; Silva, A.M.; Gaivao, I.; Souto, E.B.; Teixeira, J.P.; Martins-Lopes, P. Comet assay reveals no genotoxicity risk of cationic solid lipid nanoparticles. J. Appl. Toxicol. 2014, 34, 395–403. [Google Scholar] [CrossRef] [PubMed]
- Doktorovova, S.; Santos, D.L.; Costa, I.; Andreani, T.; Souto, E.B.; Silva, A.M. Cationic solid lipid nanoparticles interfere with the activity of antioxidant enzymes in hepatocellular carcinoma cells. Int. J. Pharm. 2014, 471, 18–27. [Google Scholar] [CrossRef] [PubMed]
- Scarpa, E.S.; Emanuelli, M.; Frati, A.; Pozzi, V.; Antonini, E.; Diamantini, G.; Di Ruscio, G.; Sartini, D.; Armeni, T.; Palma, F.; et al. Betacyanins enhance vitexin-2-O-xyloside mediated inhibition of proliferation of T24 bladder cancer cells. Food Funct. 2016, 7, 4772–4780. [Google Scholar] [CrossRef] [PubMed]
Factors | Levels | ||
---|---|---|---|
Minimum Value (−) | Central Point (0) | Maximum Value (+) | |
Number of cycles | 1 | 2 | 3 |
Extraction time (min) | 10 | 15 | 20 |
Temperature (°C) | 40 | 55 | 70 |
Assay | Number of cycles | Extraction time (min) | Temperature (°C) |
1 | −1 (1) | −1 (10) | −1 (40) |
2 | 1 (3) | −1 (10) | −1 (40) |
3 | −1 (1) | 1 (20) | −1 (40) |
4 | 1 (3) | 1 (20) | −1 (40) |
5 | −1 (1) | −1 (10) | 1 (70) |
6 | 1 (3) | −1 (10) | 1 (70) |
7 | −1 (1) | 1 (20) | 1 (70) |
8 | 1 (3) | 1 (20) | 1 (70) |
9 (PC) | 0 (2) | 0 (15) | 0 (55) |
10 (PC) | 0 (2) | 0 (15) | 0 (55) |
11 (PC) | 0 (2) | 0 (15) | 0 (55) |
Compounds | Samples | LTPRI | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | ||||
Aromatic Hydrocarbons | Area (%) | Theoretical | Calculated | Difference | ||||||||||
Toluene | 8.0 | 2.5 | 2.6 | 2.1 | 13.2 | 3.3 | 7.8 | 17.9 | - | 5.5 | 4.0 | 774 | 774 | 0 |
Benzene, 1,2,3-trimethyl- | 0.5 | 6.1 | 0.6 | 4.4 | - | 3.6 | 2.9 | 7.2 | - | - | 2.0 | 990 | 992 | 2 |
Benzene, 1,2,4-trimethyl- | 3.3 | 2.0 | 5.4 | 1.1 | 8.7 | 0.9 | 0.8 | 1.7 | 5.3 | 2.7 | 0.7 | 976 | 976 | 0 |
Indane | 0.6 | 0.3 | - | - | 0.4 | - | - | - | - | - | - | 1031 | 1032.4 | 1,4 |
Benzene, 1,2-diethyl- | 0.3 | - | - | - | - | - | - | - | - | - | - | 1046 | 1045 | −1 |
Benzene, 1-methyl-3-propyl- | 0.4 | 0.3 | - | - | 0.4 | - | - | - | - | - | - | 1048 | 1049 | 1 |
Benzene, 1,4-diethyl- | 0.4 | 0.5 | - | - | 0.5 | - | - | - | - | - | - | 1052 | 1053 | 1 |
Benzene, 1,3-diethyl- | - | - | - | - | 0.5 | - | - | - | - | - | - | 1054 | 1054 | 0 |
Benzene, 2-ethyl-1,4-dimethyl- | 0.6 | 0.2 | - | - | 0.4 | - | - | - | - | - | - | 1082 | 1085.2 | 4,3 |
Benzene, 4-ethyl-1,2-dimethyl- | - | - | - | - | 0.3 | - | - | - | - | - | - | 1083 | 1083 | 0 |
Benzene, 1,2,3-trimetoxy-5-(2-propenyl)- | - | - | 0.7 | 0.5 | 0.4 | 0.4 | 0.3 | - | - | - | - | 1554 | 1554 | 0 |
Saturated hydrocarbons | Area (%) | |||||||||||||
Tricosane | - | - | 4.0 | 2.4 | 2.0 | 3.0 | 0.2 | 3.0 | 4.0 | 3.5 | 0.4 | 2299 | 2300 | 1 |
Pentacosane | 15.1 | 10.5 | 14.5 | 8.4 | 6.1 | 7.9 | 0.6 | 10.5 | 11.1 | 10.3 | 0.8 | 2499 | 2500 | 1 |
Hexacosane | - | 0.4 | 1.4 | 0.9 | 1.0 | 0.8 | 0.8 | 0.2 | 1.5 | 0.6 | 0.4 | 2599 | 2600 | 1 |
Heptacosane | 0.2 | 24.6 | 25.0 | 19.1 | 19.9 | - | - | - | - | - | 1.2 | 2701 | 2700 | −1 |
Octacosane | 0.5 | 1.0 | 0.7 | 0.8 | 0.8 | 0.7 | 0.4 | 1.3 | 0.4 | 0.3 | 0.1 | 2799 | 2800 | 1 |
Nonacosane | 0.1 | 2.5 | 1.8 | 11.9 | 10.2 | 16.6 | 13.0 | 16.2 | 21.0 | 15.8 | 14.2 | 2899 | 2900 | 1 |
Triacontane | - | 1.5 | 20.4 | 0.9 | - | 0.9 | 0.7 | 0.7 | 1.1 | 1.0 | 1.0 | 2998 | 3000 | 2 |
Untriacontane | 0.2 | 23.0 | - | 17.6 | - | 18.5 | 20.0 | 22.4 | 31.0 | 21.3 | 19.9 | 3108 | 3100 | −8 |
Unsaturated Hydrocarbons | Area (%) | |||||||||||||
Heptacos-1-ene | - | - | - | - | 0.3 | 0.9 | 2.1 | 0.3 | 0.8 | 0.5 | 20.2 | 2674 | 2684.2 | 10.2 |
Nonacos-1-ene | - | - | 1.4 | 1.1 | - | - | - | - | - | - | - | 2875 | 2877 | 2 |
Alcohols | Area (%) | |||||||||||||
1-Pentanol, 2,3-dimethyl- | - | - | - | - | 0.4 | - | - | 0.7 | - | - | - | 809 | 827 | 18 |
2-Hexyn-1-ol | - | - | - | - | 2.4 | - | - | - | - | - | - | 846 | 847 | 1 |
1-Butanol, 3-methyl-, acetate | 3.2 | 1.0 | 1.6 | 0.9 | 5.0 | 1.0 | 2.4 | 4.2 | 2.7 | 1.5 | - | 872 | 872 | 0 |
Behenic alcohol | 2.1 | 0.6 | - | 0.3 | - | 0.4 | 7.2 | 0.4 | 0.5 | 0.3 | 8.6 | 2473 | 2470 | −3 |
Octacosanol | - | - | - | 3.7 | - | 4.8 | 3.8 | 2.7 | 1.1 | 3.7 | 5.1 | 3098 | 3110.6 | 12.6 |
1-Heptacosanol | - | - | - | 16.0 | - | - | 15.6 | 2.1 | - | 15.8 | - | 3297 | 3307 | −10 |
1-Triacontanol | - | - | - | - | - | 17.6 | - | - | - | - | - | 3306 | 3306 | 0 |
Ethers | Area (%) | |||||||||||||
Methyleugenol | - | - | 0.6 | 0.4 | 0.6 | 0.3 | 0.2 | - | - | - | - | 1401 | 1401 | 0 |
Isopropyl tetracosyl ether | - | - | - | - | 0.7 | - | - | - | - | - | - | 2998 | 3000 | 2 |
Ketones | Area (%) | |||||||||||||
Acetofenone | - | - | - | - | 0.5 | - | - | - | 3.0 | - | 0.8 | 1061 | 1061 | 0 |
2 (3H) -furanone, 5-dodecildi-hidro- | 1.2 | 3.6 | 5.1 | - | 2.0 | 5.4 | 2.7 | 3.6 | 5.4 | 6.2 | 4.6 | 2100 | 2104.3 | 4.3 |
Terpenes | Area (%) | |||||||||||||
Lupenone | - | - | - | - | - | - | - | - | 11.9 | 10.8 | 12.2 | 3384 | 3384.2 | 0,2 |
Lupeol | - | - | - | - | 20.3 | 6.6 | 8.8 | 0.1 | - | - | - | 3499 | 3500 | 1 |
Lupeol acetate | 16.4 | 17.5 | 10.6 | 6.1 | 3.0 | 3.4 | 3.7 | 0.2 | - | - | - | 3533 | 3525 | −8 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Carvalho, F.M.d.A.; Schneider, J.K.; de Jesus, C.V.F.; de Andrade, L.N.; Amaral, R.G.; David, J.M.; Krause, L.C.; Severino, P.; Soares, C.M.F.; Caramão Bastos, E.; et al. Brazilian Red Propolis: Extracts Production, Physicochemical Characterization, and Cytotoxicity Profile for Antitumor Activity. Biomolecules 2020, 10, 726. https://doi.org/10.3390/biom10050726
de Carvalho FMdA, Schneider JK, de Jesus CVF, de Andrade LN, Amaral RG, David JM, Krause LC, Severino P, Soares CMF, Caramão Bastos E, et al. Brazilian Red Propolis: Extracts Production, Physicochemical Characterization, and Cytotoxicity Profile for Antitumor Activity. Biomolecules. 2020; 10(5):726. https://doi.org/10.3390/biom10050726
Chicago/Turabian Stylede Carvalho, Felipe Mendes de Andrade, Jaderson Kleveston Schneider, Carla Viviane Freitas de Jesus, Luciana Nalone de Andrade, Ricardo Guimarães Amaral, Jorge Maurício David, Laíza Canielas Krause, Patrícia Severino, Cleide Mara Faria Soares, Elina Caramão Bastos, and et al. 2020. "Brazilian Red Propolis: Extracts Production, Physicochemical Characterization, and Cytotoxicity Profile for Antitumor Activity" Biomolecules 10, no. 5: 726. https://doi.org/10.3390/biom10050726
APA Stylede Carvalho, F. M. d. A., Schneider, J. K., de Jesus, C. V. F., de Andrade, L. N., Amaral, R. G., David, J. M., Krause, L. C., Severino, P., Soares, C. M. F., Caramão Bastos, E., Padilha, F. F., Gomes, S. V. F., Capasso, R., Santini, A., Souto, E. B., & de Albuquerque-Júnior, R. L. C. (2020). Brazilian Red Propolis: Extracts Production, Physicochemical Characterization, and Cytotoxicity Profile for Antitumor Activity. Biomolecules, 10(5), 726. https://doi.org/10.3390/biom10050726