Significance of STAT3 in Immune Infiltration and Drug Response in Cancer
Abstract
:1. Introduction
2. Materials and Methods
2.1. TIMER Database
2.2. UALCAN Database
2.3. The Human Protein Altas Database
2.4. Drug Response
3. Results
3.1. The mRNA Expression of STAT3 and Correlation to Pathological Stage in Cancer
3.2. The Protein Expression of STAT3 in Cancer
3.3. STAT3 Expression was Correlated with Immune Infiltration
3.4. Correlation Analysis between STAT3 Expression and Immune Marker Genes
3.5. STAT3 Expression and Drug Response
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Abbreviations
AUC | area under the curve |
BLCA | bladder urothelial carcinoma |
BRCA | breast invasive carcinoma |
CCL5 | C-C motif chemokine ligand 5 |
CCLE | Cancer Cell Line Encyclopedia |
CCR7 | C-C motif chemokine receptor 7 |
CESC | cervical squamous cell carcinoma and endocervical adenocarcinoma |
CHOL | cholangiocarcinoma |
COAD | colon adenocarcinoma |
COX2 | cytochrome c oxidase subunit II |
CTLA4 | cytotoxic T-lymphocyte associated protein 4 |
CTRP | Cancer Therapeutics Response Portal |
CXCL10 | C-X-C motif chemokine ligand 10 |
DC | dendritic cell |
ESCA | esophageal carcinoma |
FOXP3 | forkhead box P3 |
HLA-DPA1 | major histocompatibility complex, class II, DP alpha 1 |
HLA-DPB1 | major histocompatibility complex, class II, DP beta 1 |
HLA-DQB1 | major histocompatibility complex, class II, DQ beta 1 |
HLA-DRA | major histocompatibility complex, class II, DR alpha |
HNSC | head and neck squamous cell carcinoma |
HPA | Human Protein Atlas |
IFNγ | interferon γ |
IL-12 | interleukin 12 |
IL21 | interleukin 21 |
IL-6 | interleukin 6 |
INOS | inducible nitric oxide synthase |
IRF5 | interferon regulator factor 5 |
JAK | Janus kinaseKICH, kidney chromophobe |
KIRC | kidney renal clear cell carcinoma |
KIRP | kidney renal papillary cell carcinoma |
LIHC | liver hepatocellular carcinoma |
LUAD | lung adenocarcinoma |
LUSC | lung squamous cell carcinoma |
MS4A4A | membrane spanning 4-domains A4A |
PD-1 | programmed cell death protein 1 |
PD-L1 | programmed cell death ligand 1 |
PRAD | prostate adenocarcinoma |
READ | rectum adenocarcinoma |
STAT1 | signal transducer and activator of transcription 1 |
STAT3 | Signal transducer and activator of transcription 3 |
STAT4 | signal transducer and activator of transcription 4 |
STAT5B | signal transducer and activator of transcription 5B |
TAM | tumor-associated macrophage |
TCGA | The Cancer Genome Atlas |
Th1 | T-helper 1 |
TIICs | tumor-infiltrating immune cells |
TIMER | Tumor Immune Estimation Resource |
TNF-α | tumor necrosis factor alpha-like |
Treg | follicular helper T |
VEGF | vascular endothelial growth factor |
VSIG4 | V-set and immunoglobulin domain containing 4 |
References
- Qin, J.J.; Yan, L.; Zhang, J.; Zhang, W.D. STAT3 as a potential therapeutic target in triple negative breast cancer: A systematic review. J. Exp. Clin. Cancer Res. Cr 2019, 38, 195. [Google Scholar] [CrossRef]
- He, W.; Wu, J.; Shi, J.; Huo, Y.M.; Dai, W.; Geng, J.; Lu, P.; Yang, M.W.; Fang, Y.; Wang, W.; et al. IL22RA1/STAT3 Signaling Promotes Stemness and Tumorigenicity in Pancreatic Cancer. Cancer Res 2018, 78, 3293–3305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, J.; Tang, Y.; Cheng, Y.; Zhang, G.; Yip, A.; Martinka, M.; Dong, Z.; Zhou, J.; Li, G. ING4 regulates JWA in angiogenesis and their prognostic value in melanoma patients. Br. J. Cancer 2013, 109, 2842–2852. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnson, D.E.; O’Keefe, R.A.; Grandis, J.R. Targeting the IL-6/JAK/STAT3 signalling axis in cancer. Nat. Rev. Clin. Oncol. 2018, 15, 234–248. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Huo, X.; Yang, X.R.; He, J.; Cheng, L.; Wang, N.; Deng, X.; Jin, H.; Wang, N.; Wang, C.; et al. STAT3-mediated upregulation of lncRNA HOXD-AS1 as a ceRNA facilitates liver cancer metastasis by regulating SOX4. Mol. Cancer 2017, 16, 136. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Jin, G.; Liu, H.; Liu, K.; Zhao, J.; Chen, X.; Wang, D.; Bai, R.; Li, X.; Jang, Y.; et al. Metformin inhibits esophageal squamous cell carcinoma-induced angiogenesis by suppressing JAK/STAT3 signaling pathway. Oncotarget 2017, 8, 74673–74687. [Google Scholar] [CrossRef] [Green Version]
- Won, C.; Kim, B.H.; Yi, E.H.; Choi, K.J.; Kim, E.K.; Jeong, J.M.; Lee, J.H.; Jang, J.J.; Yoon, J.H.; Jeong, W.I.; et al. Signal transducer and activator of transcription 3-mediated CD133 up-regulation contributes to promotion of hepatocellular carcinoma. Hepatology 2015, 62, 1160–1173. [Google Scholar] [CrossRef] [Green Version]
- Yuan, Y.; Jiang, Y.C.; Sun, C.K.; Chen, Q.M. Role of the tumor microenvironment in tumor progression and the clinical applications (Review). Oncol. Rep. 2016, 35, 2499–2515. [Google Scholar] [CrossRef] [Green Version]
- Giraldo, N.A.; Sanchez-Salas, R.; Peske, J.D.; Vano, Y.; Becht, E.; Petitprez, F.; Validire, P.; Ingels, A.; Cathelineau, X.; Fridman, W.H.; et al. The clinical role of the TME in solid cancer. Br. J. Cancer 2019, 120, 45–53. [Google Scholar] [CrossRef]
- Hossain, D.M.; Pal, S.K.; Moreira, D.; Duttagupta, P.; Zhang, Q.; Won, H.; Jones, J.; D’Apuzzo, M.; Forman, S.; Kortylewski, M. TLR9-Targeted STAT3 Silencing Abrogates Immunosuppressive Activity of Myeloid-Derived Suppressor Cells from Prostate Cancer Patients. Clin. Cancer Res. 2015, 21, 3771–3782. [Google Scholar] [CrossRef] [Green Version]
- Huang, Q.; Zhong, Y.; Dong, H.; Zheng, Q.; Shi, S.; Zhu, K.; Qu, X.; Hu, W.; Zhang, X.; Wang, Y. Revisiting signal transducer and activator of transcription 3 (STAT3) as an anticancer target and its inhibitor discovery: Where are we and where should we go? Eur. J. Med. Chem. 2020, 187, 111922. [Google Scholar] [CrossRef]
- Yue, C.; Shen, S.; Deng, J.; Priceman, S.J.; Li, W.; Huang, A.; Yu, H. STAT3 in CD8+ T Cells Inhibits Their Tumor Accumulation by Downregulating CXCR3/CXCL10 Axis. Cancer Immunol. Res. 2015, 3, 864–870. [Google Scholar] [CrossRef] [Green Version]
- De Martino, M.; Tkach, M.; Bruni, S.; Rocha, D.; Mercogliano, M.F.; Cenciarini, M.E.; Chervo, M.F.; Proietti, C.J.; Dingli, F.; Loew, D.; et al. Blockade of Stat3 oncogene addiction induces cellular senescence and reveals a cell-nonautonomous activity suitable for cancer immunotherapy. Oncoimmunology 2020, 9, 1715767. [Google Scholar] [CrossRef] [Green Version]
- Constantino, J.; Gomes, C.; Falcao, A.; Neves, B.M.; Cruz, M.T. Dendritic cell-based immunotherapy: A basic review and recent advances. Immunol. Res. 2017, 65, 798–810. [Google Scholar] [CrossRef] [PubMed]
- Jin, G.; Zhao, J.; Yang, Y.I.; Liu, K.; Jiang, Y.; Zhang, X.; Zhang, Y.; Huang, Y.; Lu, J.; Dong, Z. JAK/STAT3 signaling pathway mediates endothelial-like differentiation of immature dendritic cells. Oncol. Lett. 2015, 10, 3471–3477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robert, C.; Long, G.V.; Brady, B.; Dutriaux, C.; Maio, M.; Mortier, L.; Hassel, J.C.; Rutkowski, P.; McNeil, C.; Kalinka-Warzocha, E.; et al. Nivolumab in previously untreated melanoma without BRAF mutation. N. Engl. J. Med. 2015, 372, 320–330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosenberg, J.E.; Hoffman-Censits, J.; Powles, T.; van der Heijden, M.S.; Balar, A.V.; Necchi, A.; Dawson, N.; O’Donnell, P.H.; Balmanoukian, A.; Loriot, Y.; et al. Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinum-based chemotherapy: A single-arm, multicentre, phase 2 trial. Lancet 2016, 387, 1909–1920. [Google Scholar] [CrossRef] [Green Version]
- Atsaves, V.; Tsesmetzis, N.; Chioureas, D.; Kis, L.; Leventaki, V.; Drakos, E.; Panaretakis, T.; Grander, D.; Medeiros, L.J.; Young, K.H.; et al. PD-L1 is commonly expressed and transcriptionally regulated by STAT3 and MYC in ALK-negative anaplastic large-cell lymphoma. Leukemia 2017, 31, 1633–1637. [Google Scholar] [CrossRef]
- Song, T.L.; Nairismagi, M.L.; Laurensia, Y.; Lim, J.Q.; Tan, J.; Li, Z.M.; Pang, W.L.; Kizhakeyil, A.; Wijaya, G.C.; Huang, D.C.; et al. Oncogenic activation of the STAT3 pathway drives PD-L1 expression in natural killer/T-cell lymphoma. Blood 2018, 132, 1146–1158. [Google Scholar] [CrossRef] [Green Version]
- Bu, L.L.; Yu, G.T.; Wu, L.; Mao, L.; Deng, W.W.; Liu, J.F.; Kulkarni, A.B.; Zhang, W.F.; Zhang, L.; Sun, Z.J. STAT3 Induces Immunosuppression by Upregulating PD-1/PD-L1 in HNSCC. J. Dent. Res. 2017, 96, 1027–1034. [Google Scholar] [CrossRef] [PubMed]
- Zerdes, I.; Wallerius, M.; Sifakis, E.G.; Wallmann, T.; Betts, S.; Bartish, M.; Tsesmetzis, N.; Tobin, N.P.; Coucoravas, C.; Bergh, J.; et al. STAT3 Activity Promotes Programmed-Death Ligand 1 Expression and Suppresses Immune Responses in Breast Cancer. Cancers (Basel) 2019, 11, 1479. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laudisi, F.; Cherubini, F.; Monteleone, G.; Stolfi, C. STAT3 Interactors as Potential Therapeutic Targets for Cancer Treatment. Int. J. Mol. Sci. 2018, 19, 1787. [Google Scholar] [CrossRef] [Green Version]
- Guo, H.; Liu, J.; Ben, Q.; Qu, Y.; Li, M.; Wang, Y.; Chen, W.; Zhang, J. The aspirin-induced long non-coding RNA OLA1P2 blocks phosphorylated STAT3 homodimer formation. Genome Biol. 2016, 17, 24. [Google Scholar] [CrossRef] [Green Version]
- Furtek, S.L.; Backos, D.S.; Matheson, C.J.; Reigan, P. Strategies and Approaches of Targeting STAT3 for Cancer Treatment. Acs Chem. Biol. 2016, 11, 308–318. [Google Scholar] [CrossRef]
- Zhao, M.; Jiang, B.; Gao, F.H. Small molecule inhibitors of STAT3 for cancer therapy. Curr. Med. Chem. 2011, 18, 4012–4018. [Google Scholar] [CrossRef]
- Li, B.; Severson, E.; Pignon, J.C.; Zhao, H.; Li, T.; Novak, J.; Jiang, P.; Shen, H.; Aster, J.C.; Rodig, S.; et al. Comprehensive analyses of tumor immunity: Implications for cancer immunotherapy. Genome Biol. 2016, 17, 174. [Google Scholar] [CrossRef] [Green Version]
- Li, T.; Fan, J.; Wang, B.; Traugh, N.; Chen, Q.; Liu, J.S.; Li, B.; Liu, X.S. TIMER: A Web Server for Comprehensive Analysis of Tumor-Infiltrating Immune Cells. Cancer Res 2017, 77, e108–e110. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Ding, G.; Zhou, Z.; Feng, C. beta-Catenin-driven adrenocortical carcinoma is characterized with immune exclusion. Oncotargets Ther. 2018, 11, 2029–2036. [Google Scholar] [CrossRef] [Green Version]
- Danaher, P.; Warren, S.; Dennis, L.; D’Amico, L.; White, A.; Disis, M.L.; Geller, M.A.; Odunsi, K.; Beechem, J.; Fling, S.P. Gene expression markers of Tumor Infiltrating Leukocytes. J. Immunother. Cancer 2017, 5, 18. [Google Scholar] [CrossRef] [Green Version]
- Gu, Y.; Li, X.; Bi, Y.; Zheng, Y.; Wang, J.; Li, X.; Huang, Z.; Chen, L.; Huang, Y.; Huang, Y. CCL14 is a prognostic biomarker and correlates with immune infiltrates in hepatocellular carcinoma. Aging 2020, 12, 784–807. [Google Scholar] [CrossRef]
- Chandrashekar, D.S.; Bashel, B.; Balasubramanya, S.A.H.; Creighton, C.J.; Ponce-Rodriguez, I.; Chakravarthi, B.; Varambally, S. UALCAN: A Portal for Facilitating Tumor Subgroup Gene Expression and Survival Analyses. Neoplasia 2017, 19, 649–658. [Google Scholar] [CrossRef]
- Uhlen, M.; Fagerberg, L.; Hallstrom, B.M.; Lindskog, C.; Oksvold, P.; Mardinoglu, A.; Sivertsson, A.; Kampf, C.; Sjostedt, E.; Asplund, A.; et al. Proteomics. Tissue-based map of the human proteome. Science 2015, 347, 1260419. [Google Scholar] [CrossRef]
- Zhou, H.; Yang, Z.; Yue, J.; Chen, Y.; Chen, T.; Mu, T.; Liu, H.; Bi, X. Identification of potential hub genes via bioinformatics analysis combined with experimental verification in colorectal cancer. Mol. Carcinog. 2020, 59, 425–438. [Google Scholar] [CrossRef]
- Seashore-Ludlow, B.; Rees, M.G.; Cheah, J.H.; Cokol, M.; Price, E.V.; Coletti, M.E.; Jones, V.; Bodycombe, N.E.; Soule, C.K.; Gould, J.; et al. Harnessing Connectivity in a Large-Scale Small-Molecule Sensitivity Dataset. Cancer Discov. 2015, 5, 1210–1223. [Google Scholar] [CrossRef] [Green Version]
- Rees, M.G.; Seashore-Ludlow, B.; Cheah, J.H.; Adams, D.J.; Price, E.V.; Gill, S.; Javaid, S.; Coletti, M.E.; Jones, V.L.; Bodycombe, N.E.; et al. Correlating chemical sensitivity and basal gene expression reveals mechanism of action. Nat. Chem. Biol. 2016, 12, 109–116. [Google Scholar] [CrossRef]
- Paolino, M.; Penninger, J.M. The Role of TAM Family Receptors in Immune Cell Function: Implications for Cancer Therapy. Cancers (Basel) 2016, 8, 97. [Google Scholar] [CrossRef] [Green Version]
- Yang, W.; Soares, J.; Greninger, P.; Edelman, E.J.; Lightfoot, H.; Forbes, S.; Bindal, N.; Beare, D.; Smith, J.A.; Thompson, I.R.; et al. Genomics of Drug Sensitivity in Cancer (GDSC): A resource for therapeutic biomarker discovery in cancer cells. Nucleic Acids Res. 2013, 41, D955–D961. [Google Scholar] [CrossRef] [Green Version]
- Pezzani, R.; Rubin, B.; Bertazza, L.; Redaelli, M.; Barollo, S.; Monticelli, H.; Baldini, E.; Mian, C.; Mucignat, C.; Scaroni, C.; et al. The aurora kinase inhibitor VX-680 shows anti-cancer effects in primary metastatic cells and the SW13 cell line. Investig. New Drugs 2016, 34, 531–540. [Google Scholar] [CrossRef]
- Hong, B.J.; Park, W.Y.; Kim, H.R.; Moon, J.W.; Lee, H.Y.; Park, J.H.; Kim, S.K.; Oh, Y.; Roe, J.S.; Kim, M.Y. Oncogenic KRAS Sensitizes Lung Adenocarcinoma to GSK-J4-Induced Metabolic and Oxidative Stress. Cancer Res 2019, 79, 5849–5859. [Google Scholar] [CrossRef] [Green Version]
- Gerratana, L.; Basile, D.; Buono, G.; De Placido, S.; Giuliano, M.; Minichillo, S.; Coinu, A.; Martorana, F.; De Santo, I.; Del Mastro, L.; et al. Androgen receptor in triple negative breast cancer: A potential target for the targetless subtype. Cancer Treat. Rev. 2018, 68, 102–110. [Google Scholar] [CrossRef]
- Gucalp, A.; Traina, T.A. Targeting the androgen receptor in triple-negative breast cancer. Curr. Probl. Cancer 2016, 40, 141–150. [Google Scholar] [CrossRef] [Green Version]
- Lu, X.; Chen, L.; Chen, Y.; Shao, Q.; Qin, W. Bafilomycin A1 inhibits the growth and metastatic potential of the BEL-7402 liver cancer and HO-8910 ovarian cancer cell lines and induces alterations in their microRNA expression. Exp. Ther. Med. 2015, 10, 1829–1834. [Google Scholar] [CrossRef] [Green Version]
- Yuan, N.; Song, L.; Zhang, S.; Lin, W.; Cao, Y.; Xu, F.; Fang, Y.; Wang, Z.; Zhang, H.; Li, X.; et al. Bafilomycin A1 targets both autophagy and apoptosis pathways in pediatric B-cell acute lymphoblastic leukemia. Haematologica 2015, 100, 345–356. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; He, Z.; Simon, H.U. Targeting autophagy as a potential therapeutic approach for melanoma therapy. Semin. Cancer Biol. 2013, 23, 352–360. [Google Scholar] [CrossRef] [Green Version]
- Waaler, J.; Machon, O.; Tumova, L.; Dinh, H.; Korinek, V.; Wilson, S.R.; Paulsen, J.E.; Pedersen, N.M.; Eide, T.J.; Machonova, O.; et al. A novel tankyrase inhibitor decreases canonical Wnt signaling in colon carcinoma cells and reduces tumor growth in conditional APC mutant mice. Cancer Res 2012, 72, 2822–2832. [Google Scholar] [CrossRef] [Green Version]
- Feng, F.; Chen, A.; Huang, J.; Xia, Q.; Chen, Y.; Jin, X. Long noncoding RNA SNHG16 contributes to the development of bladder cancer via regulating miR-98/STAT3/Wnt/beta-catenin pathway axis. J. Cell. Biochem. 2018, 119, 9408–9418. [Google Scholar] [CrossRef]
- Stoiber, K.; Naglo, O.; Pernpeintner, C.; Zhang, S.; Koeberle, A.; Ulrich, M.; Werz, O.; Muller, R.; Zahler, S.; Lohmuller, T.; et al. Targeting de novo lipogenesis as a novel approach in anti-cancer therapy. Br. J. Cancer 2018, 118, 43–51. [Google Scholar] [CrossRef] [Green Version]
- Vogt, P.K.; Hart, J.R. PI3K and STAT3: A new alliance. Cancer Discov. 2011, 1, 481–486. [Google Scholar] [CrossRef] [Green Version]
- Gao, Y.; Ma, Q.; Ma, Y.B.; Ding, L.; Xu, X.L.; Wei, D.F.; Wei, L.; Zhang, J.W. Betulinic acid induces apoptosis and ultrastructural changes in MDA-MB-231 breast cancer cells. Ultrastruct. Pathol. 2018, 42, 49–54. [Google Scholar] [CrossRef]
- Zheng, Y.; Liu, P.; Wang, N.; Wang, S.; Yang, B.; Li, M.; Chen, J.; Situ, H.; Xie, M.; Lin, Y.; et al. Betulinic Acid Suppresses Breast Cancer Metastasis by Targeting GRP78-Mediated Glycolysis and ER Stress Apoptotic Pathway. Oxidative Med. Cell. Longev. 2019, 2019, 8781690. [Google Scholar] [CrossRef]
- Shen, H.; Liu, L.; Yang, Y.; Xun, W.; Wei, K.; Zeng, G. Betulinic Acid Inhibits Cell Proliferation in Human Oral Squamous Cell Carcinoma via Modulating ROS-Regulated p53 Signaling. Oncol. Res. 2017, 25, 1141–1152. [Google Scholar] [CrossRef]
- Wu, J.; Yang, C.; Liu, J.; Chen, J.; Huang, C.; Wang, J.; Liang, Z.; Wen, L.; Yi, J.E.; Yuan, Z. Betulinic Acid Attenuates T-2-Toxin-Induced Testis Oxidative Damage Through Regulation of the JAK2/STAT3 Signaling Pathway in Mice. Biomolecules 2019, 9, 787. [Google Scholar] [CrossRef] [Green Version]
- Choi, B.Y. Biochemical Basis of Anti-Cancer-Effects of Phloretin-A Natural Dihydrochalcone. Molecules 2019, 24, 278. [Google Scholar] [CrossRef] [Green Version]
- Banwait, J.K.; Bastola, D.R. Contribution of bioinformatics prediction in microRNA-based cancer therapeutics. Adv. Drug Deliv. Rev. 2015, 81, 94–103. [Google Scholar] [CrossRef] [Green Version]
- Gordziel, C.; Bratsch, J.; Moriggl, R.; Knosel, T.; Friedrich, K. Both STAT1 and STAT3 are favourable prognostic determinants in colorectal carcinoma. Br. J. Cancer 2013, 109, 138–146. [Google Scholar] [CrossRef]
- Lee, J.; Kim, J.C.; Lee, S.E.; Quinley, C.; Kim, H.; Herdman, S.; Corr, M.; Raz, E. Signal transducer and activator of transcription 3 (STAT3) protein suppresses adenoma-to-carcinoma transition in Apcmin/+ mice via regulation of Snail-1 (SNAI) protein stability. J. Biol. Chem. 2012, 287, 18182–18189. [Google Scholar] [CrossRef] [Green Version]
- Ernst, S.; Muller-Newen, G. Nucleocytoplasmic Shuttling of STATs. A Target for Intervention? Cancers (Basel) 2019, 11, 1815. [Google Scholar] [CrossRef] [Green Version]
- Quick, L.; Young, R.; Henrich, I.C.; Wang, X.; Asmann, Y.W.; Oliveira, A.M.; Chou, M.M. Jak1-STAT3 Signals Are Essential Effectors of the USP6/TRE17 Oncogene in Tumorigenesis. Cancer Res 2016, 76, 5337–5347. [Google Scholar] [CrossRef] [Green Version]
- Don-Doncow, N.; Marginean, F.; Coleman, I.; Nelson, P.S.; Ehrnstrom, R.; Krzyzanowska, A.; Morrissey, C.; Hellsten, R.; Bjartell, A. Expression of STAT3 in Prostate Cancer Metastases. Eur. Urol. 2017, 71, 313–316. [Google Scholar] [CrossRef] [Green Version]
- Park, J.H.; van Wyk, H.; McMillan, D.C.; Quinn, J.; Clark, J.; Roxburgh, C.S.; Horgan, P.G.; Edwards, J. Signal Transduction and Activator of Transcription-3 (STAT3) in Patients with Colorectal Cancer: Associations with the Phenotypic Features of the Tumor and Host. Clin Cancer Res 2017, 23, 1698–1709. [Google Scholar] [CrossRef] [Green Version]
- Yu, H.; Lee, H.; Herrmann, A.; Buettner, R.; Jove, R. Revisiting STAT3 signalling in cancer: New and unexpected biological functions. Nat. Rev. Cancer 2014, 14, 736–746. [Google Scholar] [CrossRef]
- Aran, D.; Sirota, M.; Butte, A.J. Systematic pan-cancer analysis of tumour purity. Nat. Commun. 2015, 6, 8971. [Google Scholar] [CrossRef] [Green Version]
- Jeong, H.; Hwang, I.; Kang, S.H.; Shin, H.C.; Kwon, S.Y. Tumor-Associated Macrophages as Potential Prognostic Biomarkers of Invasive Breast Cancer. J. Breast Cancer 2019, 22, 38–51. [Google Scholar] [CrossRef]
- Zheng, T.; Ma, G.; Tang, M.; Li, Z.; Xu, R. IL-8 Secreted from M2 Macrophages Promoted Prostate Tumorigenesis via STAT3/MALAT1 Pathway. Int. J. Mol. Sci. 2018, 20, 98. [Google Scholar] [CrossRef] [Green Version]
- Mu, X.; Shi, W.; Xu, Y.; Xu, C.; Zhao, T.; Geng, B.; Yang, J.; Pan, J.; Hu, S.; Zhang, C.; et al. Tumor-derived lactate induces M2 macrophage polarization via the activation of the ERK/STAT3 signaling pathway in breast cancer. Cell Cycle 2018, 17, 428–438. [Google Scholar] [CrossRef]
- Josefowicz, S.Z.; Lu, L.F.; Rudensky, A.Y. Regulatory T cells: Mechanisms of differentiation and function. Annu. Rev. Immunol. 2012, 30, 531–564. [Google Scholar] [CrossRef]
- Pei, J.; Zhang, Y.; Luo, Q.; Zheng, W.; Li, W.; Zeng, X.; Li, Q.; Quan, J. STAT3 inhibition enhances CDN-induced STING signaling and antitumor immunity. Cancer Lett. 2019, 450, 110–122. [Google Scholar] [CrossRef]
- Hossain, D.M.; Panda, A.K.; Manna, A.; Mohanty, S.; Bhattacharjee, P.; Bhattacharyya, S.; Saha, T.; Chakraborty, S.; Kar, R.K.; Das, T.; et al. FoxP3 acts as a cotranscription factor with STAT3 in tumor-induced regulatory T cells. Immunity 2013, 39, 1057–1069. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.H.; Zhu, C.; Kondo, Y.; Anderson, A.C.; Gandhi, A.; Russell, A.; Dougan, S.K.; Petersen, B.S.; Melum, E.; Pertel, T.; et al. CEACAM1 regulates TIM-3-mediated tolerance and exhaustion. Nature 2015, 517, 386–390. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Song, Y.; Yang, H.; Liu, Z.; Gao, L.; Liang, X.; Ma, C. Tumor cell-intrinsic Tim-3 promotes liver cancer via NF-kappaB/IL-6/STAT3 axis. Oncogene 2018, 37, 2456–2468. [Google Scholar] [CrossRef]
- Chen, L.; Han, X. Anti-PD-1/PD-L1 therapy of human cancer: Past, present, and future. J. Clin. Investig. 2015, 125, 3384–3391. [Google Scholar] [CrossRef] [Green Version]
- Woods, D.M.; Ramakrishnan, R.; Laino, A.S.; Berglund, A.; Walton, K.; Betts, B.C.; Weber, J.S. Decreased Suppression and Increased Phosphorylated STAT3 in Regulatory T Cells are Associated with Benefit from Adjuvant PD-1 Blockade in Resected Metastatic Melanoma. Clin Cancer Res 2018, 24, 6236–6247. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Qin, C.Y. VX-680 induces p53-mediated apoptosis in human cholangiocarcinoma cells. Anti Cancer Drugs 2018, 29, 1004–1010. [Google Scholar] [CrossRef]
- Wang, Q.; Chen, X.; Jiang, Y.; Liu, S.; Liu, H.; Sun, X.; Zhang, H.; Liu, Z.; Tao, Y.; Li, C.; et al. Elevating H3K27me3 level sensitizes colorectal cancer to oxaliplatin. J. Mol. Cell Biol. 2020, 12, 125–137. [Google Scholar] [CrossRef]
- Braig, S. Chemical genetics in tumor lipogenesis. Biotechnol. Adv. 2018, 36, 1724–1729. [Google Scholar] [CrossRef]
- Jin, G.; Yang, Y.; Liu, K.; Zhao, J.; Chen, X.; Liu, H.; Bai, R.; Li, X.; Jiang, Y.; Zhang, X.; et al. Combination curcumin and (-)-epigallocatechin-3-gallate inhibits colorectal carcinoma microenvironment-induced angiogenesis by JAK/STAT3/IL-8 pathway. Oncogenesis 2017, 6, e384. [Google Scholar] [CrossRef]
- Su, D.; Gao, Y.Q.; Dai, W.B.; Hu, Y.; Wu, Y.F.; Mei, Q.X. Helicteric Acid, Oleanic Acid, and Betulinic Acid, Three Triterpenes from Helicteres angustifolia L., Inhibit Proliferation and Induce Apoptosis in HT-29 Colorectal Cancer Cells via Suppressing NF-kappaB and STAT3 Signaling. Evid. Based Complement. Altern. Med. Ecam 2017, 2017, 5180707. [Google Scholar] [CrossRef]
- Pandey, M.K.; Sung, B.; Aggarwal, B.B. Betulinic acid suppresses STAT3 activation pathway through induction of protein tyrosine phosphatase SHP-1 in human multiple myeloma cells. Int. J. Cancer 2010, 127, 282–292. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.C.; Chiu, M.H.; Nie, R.L.; Cordell, G.A.; Qiu, S.X. Cucurbitacins and cucurbitane glycosides: Structures and biological activities. Nat. Prod. Rep. 2005, 22, 386–399. [Google Scholar] [CrossRef]
- Liang, J.; Chen, D. Advances in research on the anticancer mechanism of the natural compound cucurbitacin from Cucurbitaceae plants: A review. Tradit Med Res 2019, 4, 68–81. [Google Scholar] [CrossRef]
- Ni, Y.; Wu, S.; Wang, X.; Zhu, G.; Chen, X.; Ding, Y.; Jiang, W. Cucurbitacin I induces pro-death autophagy in A549 cells via the ERK-mTOR-STAT3 signaling pathway. J. Cell. Biochem. 2018, 119, 6104–6112. [Google Scholar] [CrossRef]
- Guo, H.; Kuang, S.; Song, Q.L.; Liu, M.; Sun, X.X.; Yu, Q. Cucurbitacin I inhibits STAT3, but enhances STAT1 signaling in human cancer cells in vitro through disrupting actin filaments. Acta Pharmacol. Sin. 2018, 39, 425–437. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Primary Site | Compound | Correlation r | p-Value | Status | Gene Symbol of Protein Target | Target or Activity of Compound |
---|---|---|---|---|---|---|
Breast | ||||||
abiraterone | −0.969 | 0.031 | FDA | CYP17A1 | inhibitor of 17 alpha-hydroxylase and C17, 20 lyase | |
bafilomycin A1 | 0.762 | 0.046 | probe | ATP6V0A1 | inhibitor of the vacuolar-type H+-ATPase | |
BRD-K84807411 | −0.717 | 0.006 | GE-active | product of diversity-oriented synthesis | ||
BEC | −0.705 | 0.007 | probe | ARG1; ARG2 | inhibitor of arginase I and II | |
BRD-K30019337 | −0.595 | 0.032 | GE-active | product of diversity-oriented synthesis | ||
fulvestrant | 0.590 | 0.043 | FDA | ESR1; GPER1 | antagonist of the estrogen receptor | |
MLN2238 | −0.524 | 0.001 | clinical | PSMB5 | inhibitor of 20S proteasome at the chymotrypsin-like proteolytic (β−5) site | |
BRD-K42260513 | −0.524 | 0.026 | probe | EZH2 | inhibitor of enhancer of zeste polycomb repressive complex 2 subunit | |
SB-525334 | 0.523 | 0.001 | probe | TGFBR1 | inhibitor of the transforming growth factor beta type 1 receptor | |
sildenafil | 0.474 | 0.003 | FDA | PDE5 | inhibitor of phosphodiesterase type 5 | |
Central nervous system | ||||||
docetaxel | 0.654 | 0.006 | FDA | inhibitor of microtubule depolymerization | ||
myriocin | −0.612 | 0.012 | probe | SPTLC1; SPTLC2; SPTLC3 | inhibitor of serine-palmitoyl-transferase | |
GSK461364 | 0.604 | 0.000 | clinical | PLK1 | inhibitor of polo-like kinase 1 (PLK1) | |
sitagliptin | 0.591 | 0.016 | FDA | DPP4 | inhibitor of dipetidyl peptidase 4 | |
AT13387 | 0.564 | 0.006 | clinical | HSP90 | inhibitor of HSP90 | |
vincristine | 0.549 | 0.000 | FDA | inhibitor of microtubule assembly | ||
rigosertib | 0.538 | 0.000 | clinical | PIK3; PLK1 | inhibitor of polo-like kinase 1; inhibitor of PI3K catalytic subunits α and β | |
triazolothiadiazine | 0.529 | 0.000 | probe | PDE4A; PDE4B; PDE4D | inhibitor of phosphdiesterase 4A/B/D | |
BRD-K70511574 | 0.522 | 0.000 | probe | PLK1 | inhibitor of polo-like kinase 1 (PLK1) | |
CHM-1 | 0.522 | 0.000 | probe | inhibitor of tubulin polymerization | ||
Hematopoietic and lymphoid tissue | ||||||
VX-680 | 0.618 | 0.024 | clinical | AURKA; AURKB; AURKC | inhibitor of aurora kinases | |
staurosporine | 0.505 | 0.002 | probe | inhibitor of multiple kinases | ||
YM-155 | 0.430 | 0.000 | clinical | BIRC5 | inhibitor of survivin expression | |
BRD-K79669418 | 0.399 | 0.000 | probe | MDM2; MDM4 | inhibitor of MDM4-p53 interaction | |
ruxolitinib | −0.389 | 0.000 | FDA | JAK1; JAK2 | inhibitor of Janus kinases 1 and 2 | |
ML239 | −0.360 | 0.000 | probe | inhibitor of breast cancer stem cell proliferation | ||
MK-2206 | 0.356 | 0.000 | clinical | AKT1 | inhibitor of AKT1 | |
AZD6482 | 0.351 | 0.000 | clinical | PIK3CB; PIK3CD | inhibitor of PI3K catalytic subunits beta and delta | |
sitagliptin | 0.349 | 0.043 | FDA | DPP4 | inhibitor of dipetidyl peptidase-4 | |
AZD1480 | −0.348 | 0.011 | clinical | JAK1; JAK2 | inhibitor of Janus kinases 1 and 2 | |
Large intestine | ||||||
JW-55 | −0.655 | 0.006 | probe | TNKS | inhibitor of tankyrase | |
O-6-benzylguanine | −0.569 | 0.017 | clinical | MGMT | inhibitor of O(6)-alkylguanine DNA alkyltransferases | |
ML210 | −0.488 | 0.001 | probe | selectively kills engineered cells expressing mutant HRAS | ||
ML162 | −0.446 | 0.002 | probe | selectively kills engineered cells expressing mutant HRAS | ||
PRL-3 inhibitor I | −0.437 | 0.003 | probe | PTP4A3 | inhibitor of phosphatase of regenerating liver-3 (PRL3) | |
imatinib | −0.432 | 0.003 | FDA | ABL1; BCR; KIT | inhibitor of BCR-ABL1 and c-KIT | |
1S,3R-RSL-3 | −0.421 | 0.003 | probe | GPX4 | synthetic lethal with HRAS in engineered cells; inhibitor of GPX4 | |
betulinic acid | −0.396 | 0.008 | probe | natural product; inhibitor of specificity protein 1 transcription factor in cells | ||
KH-CB19 | −0.391 | 0.024 | probe | CLK1; CLK4 | inhibitor of CDC2-like kinases 1 and 4 | |
palmostatin B | −0.386 | 0.026 | probe | LYPLA1 | inhibitor of acyl-protein thioesterase 1 | |
Lung | ||||||
GSK-J4 | 0.608 | 0.047 | probe | KDM6A; KDM6B | inhibitor of lysine-specific demethylases | |
BRD-K49290616 | −0.376 | 0.011 | GE-active | product of diversity-oriented synthesis | ||
TGX-221 | −0.325 | 0.000 | probe | PIK3CB | inhibitor of PI3K catalytic subunit beta | |
BRD-K96431673 | −0.302 | 0.046 | GE-active | product of diversity-oriented synthesis | ||
Ovary | ||||||
istradefylline | 0.586 | 0.028 | clinical | ADORA2A | antagonist of the adenosine A2A receptor | |
BRD-K03536150 | 0.507 | 0.001 | probe | BAX | activator of BAX | |
LY-2183240 | 0.448 | 0.005 | probe | FAAH | inhibitor of fatty acid amide hydrolase; inhibitor of anandamide uptake | |
fumonisin B1 | −0.447 | 0.004 | probe | CERS1; CERS2; CERS3; CERS4; CERS5 | inhibitor of ceramide synthase | |
manumycin A | 0.437 | 0.006 | probe | FNTA; FNTB | inhibitor of RAS farnesyltransferase | |
ML311 | 0.431 | 0.006 | probe | MCL1; Bim | inhibitor of the Mcl-1/Bim interaction | |
methotrexate | 0.421 | 0.010 | FDA | DHFR | inhibitor of dihydrofolate reductase | |
SCH-79797 | 0.411 | 0.009 | FDA | DHFR | inhibitor of dihydrofolate reductase | |
BRD-K94991378 | 0.378 | 0.019 | probe | F2R | antagonist of proteinase-activated receptor 1 (PAR1) | |
ibrutinib | −0.373 | 0.047 | clinical | BTK | inhibitor of Bruton’s tyrosine kinase | |
Pancreas | ||||||
CIL70 | −0.500 | 0.034 | probe | screening hit | ||
RITA | 0.401 | 0.011 | probe | MDM2; TP53 | inhibitor of p53-MDM2 interaction | |
sotrastaurin | 0.400 | 0.028 | clinical | PKC | inhibitor of protein kinase C | |
NVP-BEZ235 | 0.386 | 0.032 | clinical | MTOR;PIK3CA; PIK3CB; PIK3CD | inhibitor of PI3K and mTOR kinase activity | |
purmorphamine | 0.384 | 0.016 | probe | SMO | activator of smoothened receptor | |
dexamethasone | 0.365 | 0.022 | FDA | NR3C1 | agonist of glucocorticoid receptor | |
doxorubicin | −0.363 | 0.023 | FDA | TOP2A | inhibitor of topoisomerase II | |
BRD8899 | 0.358 | 0.0275 | probe | STK33 | inhibitor of serine/threonine kinasase STK33 | |
cabozantinib | −0.355 | 0.0290 | FDA | FLT3; KDR; MET; RET | inhibitor of c-MET, VEGFR2/3, and RET | |
PF-750 | 0.354 | 0.0271 | probe | FAAH | inhibitor of fatty acid amide hydrolase | |
Skin | ||||||
bafilomycin A1 | −0.999 | 0.023 | probe | ATP6V0A1 | inhibitor of the vacuolar-type H+-ATPase | |
BRD-K09344309 | 0.662 | 0.01 | probe | screening hit | ||
tigecycline | −0.515 | 0.029 | FDA | analog of tetracycline | ||
sotrastaurin | 0.475 | 0.001 | clinical | PKC | inhibitor of protein kinase C | |
HBX-41108 | −0.432 | 0.003 | probe | USP7 | inhibitor of the deubiquitinase activity of USP7 | |
itraconazole | −0.414 | 0.003 | FDA | anti-fungal agent; inhibitor of hedgehog signaling pathway | ||
1S,3R-RSL-3 | −0.409 | 0.002 | probe | GPX4 | synthetic lethal with HRAS in engineered cells; inhibitor of GPX4 | |
bleomycin A2 | −0.406 | 0.005 | FDA | inducer of DNA damage | ||
indisulam | −0.376 | 0.008 | clinical | CA9 | inhibitor of carbonic anhydrase isoform IX | |
ML162 | −0.371 | 0.007 | probe | selectively kills engineered cells expressing mutant HRAS | ||
Stomach | ||||||
KH-CB19 | 0.567 | 0.014 | probe | CLK1; CLK4 | inhibitor of CDC2-like kinases 1 and 4 | |
cerulenin | 0.555 | 0.001 | probe | FASN; HMGCS1 | inhibitor of fatty acid synthase; inhibitor of HMG-CoA synthase | |
obatoclax | 0.554 | 0.001 | clinical | BCL2; BCL2L1; MCL1 | inhibitor of MCL1, BCL2, and BCL-xL | |
fingolimod | 0.551 | 0.001 | FDA | S1PR1 | inhibitor of sphingosine 1-phosphate receptor | |
quizartinib | 0.539 | 0.002 | clinical | FLT3 | inhibtor of VEGFR3 | |
ouabain | 0.538 | 0.001 | probe | ATP1A1; ATP1A2; ATP1A3; ATP1B1 | cardiac glycoside; inhibitor of the Na+/K+-ATPase | |
B02 | 0.511 | 0.003 | probe | RAD51 | inhibitor of RAD51 | |
darinaparsin | −0.500 | 0.029 | clinical | inducer of ROS; inhibitor of microtubule assembly | ||
vorapaxar | 0.492 | 0.004 | clinical | F2R | antagonist of proteinase-activated receptor 1 (PAR1) | |
cyclophosphamide | 0.473 | 0.047 | FDA | DNA alkylator | ||
Upper aerodigestive tract | ||||||
JW-55 | 0.998 | 0.007 | probe | TNKS | inhibitor of tankyrase | |
BRD-K29086754 | −0.735 | 0.043 | GE-active | product of diversity-oriented synthesis | ||
nutlin-3 | 0.712 | 0.015 | clinical | MDM2 | inhibitor of p53-MDM2 interaction | |
BRD-K49290616 | −0.699 | 0.000 | GE-active | product of diversity-oriented synthesis | ||
BRD-K48334597 | −0.682 | 0.017 | GE-active | product of diversity-oriented synthesis | ||
CIL55A | 0.678 | 0.021 | probe | screening hit | ||
BRD-K34485477 | −0.618 | 0.008 | GE-active | product of diversity-oriented synthesis | ||
NSC48300 | 0.591 | 0.043 | probe | TASP1 | inhibitor of threonine endopeptidase taspase 1 | |
linifanib | 0.589 | 0.001 | clinical | FLT1; FLT3; KDR | inhibitor of VEGFRs | |
tubastatin A | −0.548 | 0.001 | probe | HDAC6 | inhibitor of tubulin deacetylase activity of HDAC6 |
Primary Site | Compound | Correlation r | p-Value | Status | Gene Symbol of Protein Target | Target or Activity of Compound |
---|---|---|---|---|---|---|
Central nervous system | ||||||
nakiterpiosin | 0.381 | 0.013 | probe | natural product; inhibitor of microtubule assembly | ||
cucurbitacin I | 0.338 | 0.031 | probe | natural product; modulator of NFKB1 and STAT3 signaling | ||
Large intestine | ||||||
betulinic acid | −0.396 | 0.008 | probe | natural product; inhibitor of specificity protein 1 transcription factor in cells | ||
Upper aerodigestive tract | ||||||
phloretin | 0.425 | 0.022 | probe | SLC5A1 | natural product; inhibitor of glucose uptake |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, W.; Dai, X.; Chen, Y.; Tian, F.; Zhang, Y.; Zhang, Q.; Lu, J. Significance of STAT3 in Immune Infiltration and Drug Response in Cancer. Biomolecules 2020, 10, 834. https://doi.org/10.3390/biom10060834
Chen W, Dai X, Chen Y, Tian F, Zhang Y, Zhang Q, Lu J. Significance of STAT3 in Immune Infiltration and Drug Response in Cancer. Biomolecules. 2020; 10(6):834. https://doi.org/10.3390/biom10060834
Chicago/Turabian StyleChen, Wei, Xiaoshuo Dai, Yihuan Chen, Fang Tian, Yanyan Zhang, Qiushuang Zhang, and Jing Lu. 2020. "Significance of STAT3 in Immune Infiltration and Drug Response in Cancer" Biomolecules 10, no. 6: 834. https://doi.org/10.3390/biom10060834
APA StyleChen, W., Dai, X., Chen, Y., Tian, F., Zhang, Y., Zhang, Q., & Lu, J. (2020). Significance of STAT3 in Immune Infiltration and Drug Response in Cancer. Biomolecules, 10(6), 834. https://doi.org/10.3390/biom10060834