Lysyl Oxidase (LOX): Functional Contributions to Signaling Pathways
Abstract
:1. Introduction
2. Caveolae Compartmentalized LOX: Angiotensin II and Epidermal Growth Factor Receptor Cross-Regulation
3. LOX in Platelet Derived Growth Factor Signaling
4. LOX and Vascular Endothelial Growth Factor
5. Cross-Regulation of Transforming Growth Factor β and LOX
6. LOX in Integrin-Mediated Mechano-Transduction
7. LOX in Inflammatory Pathways
8. LOX in Steroid Signaling Regulatory Loops
9. Conclusions and Future Directions
Funding
Conflicts of Interest
References
- Csiszar, K. Lysyl oxidases: A novel multifunctional amine oxidase family. Prog. Nucleic Acid Res. Mol. Biol. 2001, 70, 1–32. [Google Scholar] [CrossRef] [PubMed]
- Umana-Diaz, C.; Pichol-Thievend, C.; Marchand, M.F.; Atlas, Y.; Salza, R.; Malbouyres, M.; Barret, A.; Teillon, J.; Ardidie-Robouant, C.; Reggiero, F.; et al. Scavenger Receptor Cysteine-Rich domains of Lysyl Oxidase-Like2 regulate endothelial ECM and angiogenesis through non-catalytic scaffolding mechanisms. Matrix Biol. 2020, 88, 33–52. [Google Scholar] [CrossRef] [PubMed]
- Trackman, P.C. Lysyl Oxidase Isoforms and Potential Therapeutic Opportunities for Fibrosis and Cancer. Expert Opin. Ther. Targets 2016, 20, 935–945. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trackman, P.C. Functional importance of lysyl oxidase family propeptide regions. J. Cell Commun. Signal. 2018, 12, 45–53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oleggini, R.; di Donato, A. Lysyl oxidase regulates MMTV promoter: Indirect evidence of histone H1 involvement. Biochem. Cell Biol. 2011, 89, 522–532. [Google Scholar] [CrossRef]
- Iturbide, A.; de Herreros, A.G.; Peiró, S. A new role for LOX and LOXL2 proteins in transcription regulation. FEBS J. 2015, 282, 1768–1773. [Google Scholar] [CrossRef]
- Ricard-Blum, S.; Gondelaud, F. Shuttling from the extracellular matrix to the nucleus. Biol. Aujourdhui 2016, 210, 37–44. [Google Scholar] [CrossRef]
- Vallet, S.D.; Guéroult, M.; Belloy, N.; Dauchez, M.; Ricard-Blum, S.A. Three-Dimensional Model of Human Lysyl Oxidase, a Cross-Linking Enzyme. ACS Omega 2019, 4, 8495–8505. [Google Scholar] [CrossRef]
- Spin, J.M.; Hsu, M.; Azuma, J.; Tedesco, M.M.; Deng, A.; Dyer, J.S.; Maegdefessel, L.; Dalman, R.; Tsao, P.S. Transcriptional profiling and network analysis of the murine angiotensin II-induced abdominal aortic aneurysm. Physiol. Genom. 2011, 43, 993–1003. [Google Scholar] [CrossRef] [Green Version]
- Takayanagi, T.; Crawford, K.J.; Kobayashi, T.; Obama, T.; Tsuji, T.; Elliott, K.J.; Takayanagi, T.; Crawford, K.J.; Kobayashi, T.; Obama, T.; et al. Caveolin 1 is critical for abdominal aortic aneurysm formation induced by angiotensin II and inhibition of lysyl oxidase. Clin. Sci. 2014, 126, 785–794. [Google Scholar] [CrossRef] [Green Version]
- Kawai, T.; Takayanagi, T.; Forrester, S.J.; Preston, K.J.; Obama, T.; Tsuji, T.; Kobayashi, T.; Boyer, M.J.; Cooper, H.A.; Kwok, H.F.; et al. Vascular ADAM17 (a Disintegrin and Metalloproteinase Domain 17) Is Required for Angiotensin II/β-Aminopropionitrile-Induced Abdominal Aortic Aneurysm. Hypertension 2017, 70, 959–963. [Google Scholar] [CrossRef]
- Hou, X.; Du, H.; Quan, X.; Shi, L.; Zhang, Q.; Wu, Y.; Liu, Y.; Xiao, J.; Li, Y.; Lu, L.; et al. Silibinin Inhibits NSCLC Metastas by Targeting the EGFR/LOX Pathway. Front. Pharmacol. 2018, 9, 21. [Google Scholar] [CrossRef] [PubMed]
- Tang, H.; Tang, H.; Leung, L.; Saturno, G.; Viros, A.; Smith, D.; Di Leva, G.; Morrison, E.; Niculescu-Duvaz, D.; Lopes, F.; et al. Lysyl oxidase drives tumour progression by trapping EGF receptors at the cell surface. Nat. Commun. 2017, 8, 14909. [Google Scholar] [CrossRef] [PubMed]
- Eberson, L.S.; Sanchez, P.A.; Majeed, B.A.; Tawinwung, S.; Secomb, T.W.; Larson, D.F. Effect of lysyl oxidase inhibition on angiotensin II-induced arterial hypertension, remodeling, and stiffness. PLoS ONE 2015, 10, e0124013. [Google Scholar] [CrossRef] [Green Version]
- Galán, M.; Varona, S.; Guadall, A.; Orriols, M.; Navas, M.; Aguiló, S.; de Diego, A.; Navarro, M.A.; García-Dorado, D.; Rodríguez-Sinovas, A.; et al. Lysyl oxidase overexpression accelerates cardiac remodeling and aggravates angiotensin II-induced hypertrophy. FASEB J. 2017, 31, 3787–3799. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Revelles, S.; García-Redondo, A.B.; Avendaño, M.S.; Varona, S.; Palao, T.; Orriols, M.; Roque, F.R.; Fortuño, A.; Touyz, R.M.; Martínez-González, J.; et al. Lysyl Oxidase Induces Vascular Oxidative Stress and Contributes to Arterial Stiffness and Abnormal Elastin Structure in Hypertension: Role of p38MAPK. Antioxid. Redox. Signal. 2017, 27, 379–397. [Google Scholar] [CrossRef]
- Lucero, H.A.; Ravid, K.; Grimsby, J.L.; Rich, C.B.; DiCamillo, S.J.; Mäki, J.M.; Myllyharju, J.; Kagan, H.M. Lysyl oxidase oxidizes cell membrane proteins and enhances the chemotactic response of vascular smooth muscle cells. J. Biol. Chem. 2008, 283, 24103–24117. [Google Scholar] [CrossRef] [Green Version]
- Lucero, H.A.; Mäki, J.M.; Kagan, H.M. Activation of cellular chemotactic responses to chemokines coupled with oxidation of plasma membrane proteins by lysyl oxidase. J. Neural Transm. 2011, 118, 1091–1099. [Google Scholar] [CrossRef]
- Qi, Y.X.; Jiang, J.; Jiang, X.H.; Wang, X.D.; Ji, S.Y.; Han, Y.; Long, D.K.; Shen, B.R.; Yan, Z.Q.; Chien, S.; et al. PDGF-BB and TGF-β1 on cross-talk between endothelial and smooth muscle cells in vascular remodeling induced by low shear stress. Proc. Natl. Acad. Sci. USA 2011, 108, 1908–1913. [Google Scholar] [CrossRef] [Green Version]
- Tadmor, T.; Bejar, J.; Attias, D.; Mischenko, E.; Sabo, E.; Neufeld, G.; Vadasz, Z. The expression of lysyl-oxidase gene family members in myeloproliferative neoplasms. Am. J. Hematol. 2013, 88, 355–358. [Google Scholar] [CrossRef]
- Eliades, A.; Papadantonakis, N.; Bhupatiraju, A.; Burridge, K.A.; Johnston-Cox, H.A.; Migliaccio, A.R.; Crispino, J.D.; Lucero, H.A.; Trackman, P.C.; Ravid, K.; et al. Control of megakaryocyte expansion and bone marrow fibrosis by lysyl oxidase. J. Biol. Chem. 2011, 286, 27630–27638. [Google Scholar] [CrossRef] [Green Version]
- Baker, A.M.; Bird, D.; Welti, J.C.; Gourlaouen, M.; Lang, G.; Murray, G.I.; Reynolds, A.R.; Cox, T.R.; Erler, J.T. Lysyl oxidase plays a critical role in endothelial cell stimulation to drive tumor angiogenesis. Cancer Res. 2013, 73, 583–594. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saxena, D.; Mahjour, F.; Findlay, A.D.; Mously, E.A.; Kantarci, A.; Trackman, P.C. Multiple Functions of Lysyl Oxidase Like-2 in Oral Fibroproliferative Processes. J. Dent. Res. 2018, 97, 1277–1284. [Google Scholar] [CrossRef] [PubMed]
- Mahjour, F.; Dambal, V.; Shrestha, N.; Singh, V.; Noonan, V.; Kantarci, A.; Trackman, P.C. Mechanism for Oral Tumor Cell Lysyl Oxidase like-2 in Cancer Development: Synergy With PDGF-AB. Oncogenesis 2019, 8, 34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mihaylova, Z.; Tsikandelova, R.; Sanimirov, P.; Gateva, N.; Mitev, V.; Ishkitiev, N. Role of PDGF-BB in proliferation, differentiation and maintaining stem cell properties of PDL cells in vitro. Arch. Oral Biol. 2018, 85, 1–9. [Google Scholar] [CrossRef]
- Zhu, J.; Huang, S.; Wu, G.; Huang, C.; Li, X.; Chen, Z.; Zhao, L.; Zhao, Y. Lysyl Oxidase Is Predictive of Unfavorable Outcomes and Essential for Regulation of Vascular Endothelial Growth Factor in Hepatocellular Carcinoma. Dig. Dis. Sci. 2015, 60, 3019–3031. [Google Scholar] [CrossRef]
- Coral, K.; Madhavan, J.; Pukhraj, R.; Angayarkanni, N. High glucose induced differential expression of lysyl oxidase and its isoform in ARPE-19 cells. Curr. Eye Res. 2013, 38, 194–203. [Google Scholar] [CrossRef]
- Bae, W.J.; Yi, J.K.; Park, J.; Kang, S.K.; Jang, J.H.; Kim, E.C. Lysyl oxidase-mediated VEGF-induced differentiation and angiogenesis in human dental pulp cells. Int. Endod. J. 2018, 51, 335–346. [Google Scholar] [CrossRef]
- Shi, L.; Zhang, N.; Liu, H.; Zhao, L.; Liu, J.; Wan, J.; Wu, W.; Lei, H.; Liu, R.; Han, M. Lysyl oxidase inhibition via β-aminoproprionitrile hampers human umbilical vein endothelial cell angiogenesis and migration in vitro. Mol. Med. Rep. 2018, 17, 5029–5036. [Google Scholar] [CrossRef] [Green Version]
- Yang, M.; Liu, J.; Wang, F.; Tian, Z.; Ma, B.; Li, Z.; Wang, B.; Zhao, W. Lysyl oxidase assists tumor-initiating cells to enhance angiogenesis in hepatocellular carcinoma. Int. J. Oncol. 2019, 54, 1398–1408. [Google Scholar] [CrossRef]
- Fraga, A.; Ribeiro, R.; Príncipe, P.; Lopes, C.; Medeiros, R. Hypoxia and Prostate Cancer Aggressiveness: A Tale with Many Endings. Clin. Genitourin. Cancer 2015, 13, 295–301. [Google Scholar] [CrossRef] [PubMed]
- Pez, F.; Dayan, F.; Durivault, J.; Kaniewski, B.; Aimond, G.; Le Provost, G.S.; Deux, B.; Clézardin, P.; Sommer, P.; Pouysségur, J.; et al. The HIF-1-inducible lysyl oxidase activates HIF-1 via the Akt pathway in a positive regulation loop and synergizes with HIF-1 in promoting tumor cell growth. Cancer Res. 2011, 71, 1647–1657. [Google Scholar] [CrossRef] [Green Version]
- Chen, G.; Sudhahar, V.; Youn, S.W.; Das, A.; Cho, J.; Kamiya, T.; Urao, N.; McKinney, R.D.; Surenkhuu, B.; Hamakubo, T.; et al. Copper Transport Protein Antioxidant-1 Promotes Inflammatory Neovascularization via Chaperone and Transcription Factor Function. Sci. Rep. 2015, 5, 14780. [Google Scholar] [CrossRef] [Green Version]
- Mizuno, S.; Yasuo, M.; Bogaard, H.J.; Kraskauskas, D.; Alhussaini, A.; Gomez-Arroyo, J.; Farkas, D.; Farkas, L.; Voelkel, N.F. Copper deficiency induced emphysema is associated with focal adhesion kinase inactivation. PLoS ONE 2012, 7, e30678. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Remst, D.F.; Blom, A.B.; Vitters, E.L.; Bank, R.A.; van den Berg, W.B.; Blaney Davidson, E.N.; van der Kraan, P.M. Gene expression analysis of murine and human osteoarthritis synovium reveals elevation of transforming growth factor β-responsive genes in osteoarthritis-related fibrosis. Arthritis Rheumatol. 2014, 66, 647–656. [Google Scholar] [CrossRef]
- Belangero, P.S.; Leal, M.F.; Cohen, C.; Figueiredo, E.A.; Smith, M.C.; Andreoli, C.V.; de Castro Pochini, A.; Ejnisman, B.; Cohen, M. Expression analysis of genes involved in collagen cross-linking and its regulation in traumatic anterior shoulder instability. J. Orthop. Res. 2016, 34, 510–517. [Google Scholar] [CrossRef] [PubMed]
- Hong, H.H.; Trackman, P.C. Cytokine regulation of gingival fibroblast lysyl oxidase, collagen, and elastin. J. Periodontol. 2002, 73, 145–152. [Google Scholar] [CrossRef]
- Voloshenyuk, T.G.; Hart, A.D.; Khoutorova, E.; Gardner, J.D. TNF-α increases cardiac fibroblast lysyl oxidase expression through TGF-β and PI3Kinase signaling pathway. Biochem. Biophys. Res. Commun. 2011, 413, 370–375. [Google Scholar] [CrossRef]
- Lu, M.; Qin, Q.; Yao, J.; Sun, L.; Qin, X. Induction of LOX by TGF-β1/Smad/AP-1 signaling aggravates rat myocardial fibrosis and heart failure. IUBMB Life 2019, 71, 1729–1739. [Google Scholar] [CrossRef]
- Xu, X.H.; Jia, Y.; Zhou, X.; Xie, D.; Huang, X.; Jia, L.; Zhou, Q.; Zheng, Q.; Wang, K.; Jin, L.P. Downregulation of lysyl oxidase and lysyl oxidase-like protein 2 suppressed the migration and invasion of trophoblasts by activating the TGF-β/collagen pathway in preeclampsia. Exp. Mol. Med. 2019, 51, 20. [Google Scholar] [CrossRef]
- Salazar, V.S.; Zarkadis, N.; Huang, L.; Norris, J.; Grimston, S.K.; Mbalaviele, G.; Civitelli, R. Embryonic ablation of osteoblast Smad4 interrupts matrix synthesis in response to canonical Wnt signaling and causes an osteogenesis-imperfecta-like phenotype. J. Cell Sci. 2013, 126, 4974–4984. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xia, X.D.; Peng, Y.P.; Lei, D.; Chen, W.Q. Hypercapnia downregulates hypoxia-induced lysyl oxidase expression in pulmonary artery smooth muscle cells via inhibiting transforming growth factor β1 signaling. Cell Biochem. Funct. 2019, 37, 193–202. [Google Scholar] [CrossRef] [PubMed]
- Kutchuk, L.; Laitala, A.; Soueid-Bomgarten, S.; Shentzer, P.; Rosendahl, A.H.; Eilot, S.; Grossman, M.; Sagi, I.; Sormunen, R.; Myllyharju, J.; et al. Muscle composition is regulated by a Lox-TGFβ feedback loop. Development 2015, 142, 983–993. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, T.; Liu, Q.; Zhang, R.; Zhang, Y.; Chen, J.; Yu, R.; Ge, G. Lysyl oxidase promotes bleomycin-induced lung fibrosis through modulating inflammation. J. Mol. Cell Biol. 2014, 6, 506–515. [Google Scholar] [CrossRef] [PubMed]
- Atsawasuwan, P.; Mochida, Y.; Katafuchi, M.; Kaku, M.; Fong, K.S.; Csiszar, K.; Yamauchi, M. Lysyl oxidase binds transforming growth factor-beta and regulates its signaling via amine oxidase activity. J. Biol. Chem. 2008, 283, 34229–34240. [Google Scholar] [CrossRef] [Green Version]
- Handorf, A.M.; Zhou, Y.; Halanski, M.A.; Li, W.J. Tissue stiffness dictates development, homeostasis, and disease progression. Organogenesis 2015, 11, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.J.; Jeng, J.H.; Chang, H.H.; Huang, M.Y.; Tsai, F.F.; Yao, C.C. Differential regulation of collagen, lysyl oxidase and MMP-2 in human periodontal ligament cells by low- and high-level mechanical stretching. J. Periodontal Res. 2013, 48, 466–474. [Google Scholar] [CrossRef]
- Gao, A.E.; Sullivan, K.E.; Black, L.D. Lysyl oxidase expression in cardiac fibroblasts is regulated by α2β1 integrin interactions with the cellular microenvironment. Biochem. Biophys. Res. Commun. 2016, 475, 70–75. [Google Scholar] [CrossRef]
- Voloshenyuk, T.G.; Landesman, E.S.; Khoutorova, E.; Hart, A.D.; Gardner, J.D. Induction of cardiac fibroblast lysyl oxidase by TGF-β1 requires PI3K/Akt, Smad3, and MAPK signaling. Cytokine 2011, 55, 190–197. [Google Scholar] [CrossRef]
- Amendola, P.G.; Reuten, R.; Erler, J.T. Interplay Between LOX Enzymes and Integrins in the Tumor Microenvironment. Cancers 2019, 11, 729. [Google Scholar] [CrossRef] [Green Version]
- You, Y.; Zheng, Q.; Dong, Y.; Wang, Y.; Zhang, L.; Xue, T.; Xie, X.; Hu, C.; Wang, Z.; Chen, R.; et al. Higher Matrix Stiffness Upregulates Osteopontin Expression in Hepatocellular Carcinoma Cells Mediated by Integrin β1/GSK3β/β-Catenin Signaling Pathway. PLoS ONE 2015, 10, e0134243. [Google Scholar] [CrossRef] [PubMed]
- Mambetsariev, I.; Tian, Y.; Wu, T.; Lavoie, T.; Solway, J.; Birukov, K.G.; Birukova, A.A. Stiffness-activated GEF-H1 expression exacerbates LPS-induced lung inflammation. PLoS ONE 2014, 9, e92670. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Lee, G.; Won, Y.; Lee, M.; Kwak, J.S.; Chun, C.H.; Chun, J.S. Matrix cross-linking-mediated mechanotransduction promotes posttraumatic osteoarthritis. Proc. Natl Acad. Sci. USA 2015, 112, 9424–9429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mittapalli, V.R.; Madl, J.; Löffek, S.; Kiritsi, D.; Kern, J.S.; Römer, W.; Nyström, A.; Bruckner-Tuderman, L. Injury-Driven Stiffening of the Dermis Expedites Skin Carcinoma Progression. Cancer Res. 2016, 76, 940–951. [Google Scholar] [CrossRef] [Green Version]
- Dong, Y.; Xie, X.; Wang, Z.; Hu, C.; Zheng, Q.; Wang, Y.; Chen, R.; Xue, T.; Chen, J.; Gao, D.; et al. Increasing matrix stiffness upregulates vascular endothelial growth factor expression in hepatocellular carcinoma cells mediated by integrin β1. Biochem. Biophys. Res. Commun. 2014, 444, 427–432. [Google Scholar] [CrossRef]
- Chen, P.; Zhao, D.; Li, J.; Liang, X.; Chang, A.; Henry, V.K.; Lan, Z.; Spring, D.J.; Rao, G.; Wang, Y.A. Symbiotic Macrophage-Glioma Cell Interactions Reveal Synthetic Lethality in PTEN-Null Glioma. Cancer Cell 2019, 35, 868–884.e6. [Google Scholar] [CrossRef]
- Chen, W.C.; Lin, H.H.; Tang, M.J. Matrix-Stiffness-Regulated Inverse Expression of Krüppel-Like Factor 5 and Krüppel-Like Factor 4 in the Pathogenesis of Renal Fibrosis. Am. J. Pathol. 2015, 185, 2468–2481. [Google Scholar] [CrossRef]
- Li, H.; Lei, M.; Yu, C.; Lv, Y.; Song, Y.; Yang, L. Mechano growth factor-E regulates apoptosis and inflammatory responses in fibroblast-like synoviocytes of knee osteoarthritis. Int. Orthop. 2015, 39, 2503–2509. [Google Scholar] [CrossRef]
- Liu, L.; Geng, X.; McDermott, J.; Shen, J.; Corbin, C.; Xuan, S.; Kim, J.; Zuo, L.; Liu, Z. Copper Deficiency in the Lungs of TNF-α Transgenic Mice. Front. Physiol. 2016, 7, 234. [Google Scholar] [CrossRef] [Green Version]
- Khosravi, R.; Sodek, K.L.; Xu, W.P.; Bais, M.V.; Saxena, D.; Faibish, M.; Trackman, P.C. A novel function for lysyl oxidase in pluripotent mesenchymal cell proliferation and relevance to inflammation-associated osteopenia. PLoS ONE 2014, 9, e100669. [Google Scholar] [CrossRef]
- Alcudia, J.F.; Martinez-Gonzalez, J.; Guadall, A.; Gonzalez-Diez, M.; Badimon, L.; Rodriguez, C. Lysyl oxidase and endothelial dysfunction: Mechanisms of lysyl oxidase down-regulation by pro-inflammatory cytokines. Front. Biosci. 2008, 13, 2721–2727. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kasagi, Y.; Dods, K.; Wang, J.X.; Chandramouleeswaran, P.M.; Benitez, A.J.; Gambanga, F.; Kluger, J.; Ashorobi, T.; Gross, J.; Tobias, J.W.; et al. Fibrostenotic eosinophilic esophagitis might reflect epithelial lysyl oxidase induction by fibroblast-derived TNF-α. J. Allergy Clin. Immunol. 2019, 144, 171–182. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Ma, J.; Wang, W.; Sun, Y.; Sun, K. Lysyl oxidase blockade ameliorates anovulation in polycystic ovary syndrome. Hum. Reprod. 2018, 33, 2096–2106. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, W.; Liu, C.; Lu, J.; Sun, K. Role of NF-κB/GATA3 in the inhibition of lysyl oxidase by IL-1β in human amnion fibroblasts. Immunol. Cell Biol. 2017, 95, 943–952. [Google Scholar] [CrossRef] [PubMed]
- Aoki, T.; Kataoka, H.; Ishibashi, R.; Nozaki, K.; Morishita, R.; Hashimoto, N. Reduced collagen biosynthesis is the hallmark of cerebral aneurysm: Contribution of interleukin-1beta and nuclear factor-κB. Arterioscler. Thromb. Vasc. Biol. 2009, 29, 1080–1086. [Google Scholar] [CrossRef] [Green Version]
- Xie, J.; Wang, C.; Yin, L.; Xu, C.; Zhang, Y.; Sung, K.L. Interleukin-1 beta influences on lysyl oxidases and matrix metalloproteinases profile of injured anterior cruciate ligament and medial collateral ligament fibroblasts. Int. Orthop. 2013, 37, 495–505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Jiang, J.; Xie, J.; Xu, C.; Wang, C.; Yin, L.; Yang, L.; Sung, K.P. Combined effects of tumor necrosis factor-α and interleukin-1β on lysyl oxidase and matrix metalloproteinase expression in human knee synovial fibroblasts. Exp. Ther. Med. 2017, 14, 5258–5266. [Google Scholar] [CrossRef]
- Papacleovoulou, G.; Critchley, H.O.; Hillier, S.G.; Mason, J.I. IL1α and IL4 signalling in human ovarian surface epithelial cells. J. Endocrinol. 2011, 211, 273–283. [Google Scholar] [CrossRef] [Green Version]
- Thaler, R.; Agsten, M.; Spitzer, S.; Paschalis, E.P.; Karlic, H.; Klaushofer, K.; Varga, F. Homocysteine suppresses the expression of the collagen cross-linker lysyl oxidase involving IL-6, Fli1, and epigenetic DNA methylation. J. Biol. Chem. 2011, 286, 5578–5588. [Google Scholar] [CrossRef] [Green Version]
- Shetty, R.; Sathyanarayanamoorthy, A.; Ramachandra, R.A.; Arora, V.; Ghosh, A.; Srivatsa, P.R.; Pahuja, N.; Nuijts, R.M.; Sinha-Roy, A.; Mohan, R.R. Attenuation of lysyl oxidase and collagen gene expression in keratoconus patient corneal epithelium corresponds to disease severity. Mol. Vis. 2015, 21, 12–25. [Google Scholar]
- Song, Y.L.; Ford, J.W.; Gordon, D.; Shanley, C.J. Regulation of lysyl oxidase by interferon-gamma in rat aortic smooth muscle cells. Arterioscler. Thromb. Vasc. Biol. 2000, 20, 982–988. [Google Scholar] [CrossRef] [Green Version]
- Pappritz, K.; Savvatis, K.; Koschel, A.; Miteva, K.; Tschöpe, C.; van Linthout, S. Cardiac (myo)fibroblasts modulate the migration of monocyte subsets. Sci. Rep. 2018, 8, 5575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harlow, C.R.; Rae, M.; Davidson, L.; Trackman, P.C.; Hillier, S.G. Lysyl oxidase gene expression and enzyme activity in the rat ovary: Regulation by follicle-stimulating hormone, androgen, and transforming growth factor-beta superfamily members in vitro. Endocrinology 2003, 144, 154–162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rae, M.T.; Niven, D.; Ross, A.; Forster, T.; Lathe, R.; Critchley, H.O.; Ghazal, P.; Hillier, S.G. Steroid signalling in human ovarian surface epithelial cells: The response to interleukin-1alpha determined by microarray analysis. J. Endocrinol. 2004, 183, 19–28. [Google Scholar] [CrossRef] [PubMed]
- Zong, W.; Jiang, Y.; Zhao, J.; Zhang, J.; Gao, J.G. Estradiol plays a role in regulating the expression of lysyl oxidase family genes in mouse urogenital tissues and human Ishikawa cells. J. Zhejiang Univ. Sci. B 2015, 16, 857–864. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, C.; Guo, C.; Wang, W.; Zhu, P.; Li, W.; Mi, Y.; Myatt, L.; Sun, K. Inhibition of Lysyl Oxidase by Cortisol Regeneration in Human Amnion: Implications for Rupture of Fetal Membranes. Endocrinology 2016, 157, 4055–4065. [Google Scholar] [CrossRef]
- Liu, C.; Zhu, P.; Wang, W.; Li, W.; Shu, Q.; Chen, Z.J.; Myatt, L.; Sun, K. Inhibition of lysyl oxidase by prostaglandin E2 via EP2/EP4 receptors in human amnion fibroblasts: Implications for parturition. Mol. Cell Endocrinol. 2016, 424, 118–127. [Google Scholar] [CrossRef]
- Cox, T.R.; Gartland, A.; Erler, J.T. Lysyl Oxidase, a Targetable Secreted Molecule Involved in Cancer Metastasis. Cancer Res. 2016, 76, 188–192. [Google Scholar] [CrossRef] [Green Version]
- Leung, L.; Niculescu-Duvaz, D.; Smithen, D.; Lopes, F.; Callens, C.; McLeary, R.; Saturno, G.; Davies, L.; Aljarah, M.; Brown, M.; et al. Anti-metastatic Inhibitors of Lysyl Oxidase (LOX): Design and Structure-Activity Relationships. J. Med. Chem. 2019, 62, 5863–5884. [Google Scholar] [CrossRef]
- Páramo, J.A. New mechanisms of vascular fibrosis: Role of lysyl oxidase. Clin. Investig. Arterioscler. 2017, 29, 166–167. [Google Scholar] [CrossRef]
- López, B.; González, A.; Hermida, N.; Valencia, F.; de Teresa, E.; Díez, J. Role of lysyl oxidase in myocardial fibrosis: From basic science to clinical aspects. Am. J. Physiol. Heart Circ. Physiol. 2010, 299, H1–H9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodríguez, C.; Martínez-González, J. The Role of Lysyl Oxidase Enzymes in Cardiac Function and Remodeling. Cells 2019, 8, 1483. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harlow, C.R.; Wu, X.; van Deemter, M.; Gardiner, F.; Poland, C.; Green, R.; Sarvi, S.; Brown, P.; Kadler, K.E.; Lu, Y.; et al. Targeting lysyl oxidase reduces peritoneal fibrosis. PLoS ONE 2017, 12, e0183013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, W.; Yang, A.; Jia, J.; Popov, Y.V.; Schuppan, D.; You, H. Lysyl oxidase (LOX) family members: Rationale and their potential as therapeutic targets for liver fibrosis. Hepatology 2020. accepted for publication. [Google Scholar] [CrossRef]
- Li, T.; Wu, C.; Gao, L.; Qin, F.; Wei, Q.; Yuan, J. Lysyl oxidase family members in urological tumorigenesis and fibrosis. Oncotarget 2018, 9, 20156–20164. [Google Scholar] [CrossRef] [Green Version]
- Pastel, E.; Price, E.; Sjöholm, K.; McCulloch, L.J.; Rittig, N.; Liversedge, N.; Knight, B.; Møller, N.; Svensson, P.A.; Kos, K. Lysyl oxidase and adipose tissue dysfunction. Metabolism 2018, 78, 118–127. [Google Scholar] [CrossRef]
- De Bruyn, J.R.; van den Brink, G.R.; Steenkamer, J.; Buskens, C.J.; Bemelman, W.A.; Meisner, S.; Muncan, V.; Velde, A.A.T.; D’Haens, G.R.; Wildenberg, M.E. Fibrostenotic Phenotype of Myofibroblasts in Crohn’s Disease is Dependent on Tissue Stiffness and Reversed by LOX Inhibition. J. Crohns Colitis 2018, 12, 849–859. [Google Scholar] [CrossRef]
Signaling Mediators | Interaction/Activity | Signaling Pathways Involved | Refs. |
---|---|---|---|
Ang II | Ang II upregulated LOX via EGFR transactivation | EGFR transactivator ADAM17, EGFR/PI3K/AKT, MEK/ERK and SAPK/JNK (lung carcinoma); Oxidative stress-activated p38MAPK (vascular remodeling) | [11,12,16] |
EGFR | LOX-controlled modulation of EGFR cell surface availability and EGF activation | Suppressed TGF-β signaling leading to HTRA1/increased MATN2 that traps EGFR at cell surface (tumor progression) | [13] |
PDGF | LOX-induced modification/oxidation of cell surface PDGFRβ | Faster turnover of PDGFR-dependent SHP2, AKT1, ERK1/2 (chemotactic response); PDGF/TGF-β1/ERK1/2 (vascular remodeling, myelofibrosis); PDGFRβ/Akt/VEGF (angiogenesis) | [17,18,19,20,22] |
VEGF | Mutual positive regulation | LOX-activated AKT via PDGFRβ/increased VEGF (endothelial cells, hepatocellular carcinoma, diabetic neovascularization); VEGF-promoted LOX activity via Akt/ERK/JNK/p38/NF-κB (endothelial angiogenesis) | [22,26,27,28,29,30] |
Cu-related coregulation | VEGF/LOX upregulation by Cu-dependent activation of HIF-1α (angiogenesis); VEGF/LOX expression coordinated with HIF-1α by DAC2 | [34] | |
TGF-β | Coregulation of LOX with ECM substrates | TGF-β/p38MAPK via TGF-β response promoter elements in the LOX and the COL1A1/A2 genes | [37] |
Induction of LOX gene expression | TGF-β and TGF-βR1; PI3K, Smad3, p38-MAPK, JNK, ERK1/2 (fibrosis); Smad2/3 promoted C-JUN/AP-1 (myocardial fibrosis); TGF-β/SMAD3 (preeclampsia); SMAD4 (osteogenesis) | [35,36,38,39,40,41] | |
LOX/TGF-β feedback loop | LOX-modulated TGF-β1 regulating myofiber and muscle ECM balance and in inflammatory fibrotic stage (pulmonary fibrosis) | [43,44] | |
Direct interaction: LOX-induced oxidative changes altered TGF-β receptor biding | Diminished TGF-β1 induced SMAD3 activation in a cross-talk with PI3K and AKT | [45] | |
Integrins | LOX-stabilized ECM-mediated regulation | TGF-β pathway activation and a positive feedback for LOX expression | [49,50] |
Stromal stiffness promoted LOX | Activation of integrin β1/GSK-3β/β-catenin (hepatocellular carcinoma) or Rho-Rho kinase myosin light chain axis (osteoarthritis) | [51,53] | |
ECM stiffness-driven inflammation, elevated LOX | Involving Rho activator GEF-H1 (lung endothelia) | [52] | |
Injury-driven stromal alterations | TGF-β and LOX-dependent activation of integrin β1/pFAK/pAKT (epidermolysis bullosa subtype) or PI3K/AKT (angiogenesis) | [54,55] | |
LOX promoted macrophage infiltration | Integrin β1/PYK2 activation via SRC/AKT/YAP1 (macrophages, glioblastoma); | [58] |
Inflammatory Mediators | Regulatory Activity | Signaling Pathways Involved | Refs. |
---|---|---|---|
TNF-α | LOX inhibition in chronic inflammation | TNF-α downregulation via Vegf and Fak (mouse model); miR203-mediated silencing (mesenchymal cells); TNF-α receptor and protein kinase C activation-mediated (endothelial cells) | [59,60,61] |
LOX upregulation | TGF-β/PI3K signaling (myocardial fibrosis); NF-κB/TGF-β-mediated signaling (fibroblast-epithelial interactions, esophagitis) | [38,62] | |
IL-1β | Induced/inhibited LOX expression | Overexpression via ERK1/2/JNK and c-JUN activation (rat granulosa cells); inhibition by p38 and ERK1/2, NF-κB activation and interaction with GATA3 at the NF-κB binding LOX promoter site (amnion); via IL-1β-activated NF-κβ (aortic smooth muscle cells); IL-1β-mediated inhibition (ligaments) | [63,64,65,66] |
IL-4 | Pro-/anti-inflammatory activity-related upregulation of LOX | SATA6, PI3K, p38MAPK (ovarian epithelium) | [68] |
IL-6 | Epigenetic control of LOX expression | Downregulation through JAK2, Fli1 and Dnmt1 (osteoblasts) | [69] |
IFN-γ | Pro-inflammatory control of LOX | Downregulation by transcription and mRNA half-life control (aortic smooth muscle cells, cardiac fibroblast) | [71,72] |
Steroid Hormones | Regulatory Activity | Signaling Pathways Involved | Refs. |
---|---|---|---|
Follicle stimulating hormone | FHS activation/inhibition of LOX mRNA/activity | Local dihydrotestosterone, GDF-9, activin A, and TFG-β1 (rat ovaries) | [73] |
Estradiol (E2) | Intersection with TGF-β1/LOX | TGF-β- mediated E2 upregulation of LOX gene expression (mouse urogenital tissue, Ishikawa cells) | [75] |
Cortisol | LOX inhibition by cortisol induced PGE2 and 11β-HSD1 | Regulation via the negative steroid LOX promoter element (amniotic fibroblasts and tissue, fetal membrane rupture) | [76] |
Prostaglandin E2 (PGE2) | PGE2-induced feed-forward loop targeting LOX | EP2/EP4 receptor-coupled cAMP/PKA pathway (amniotic fibroblasts, fetal membrane rupture) | [77] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Laczko, R.; Csiszar, K. Lysyl Oxidase (LOX): Functional Contributions to Signaling Pathways. Biomolecules 2020, 10, 1093. https://doi.org/10.3390/biom10081093
Laczko R, Csiszar K. Lysyl Oxidase (LOX): Functional Contributions to Signaling Pathways. Biomolecules. 2020; 10(8):1093. https://doi.org/10.3390/biom10081093
Chicago/Turabian StyleLaczko, Rozalia, and Katalin Csiszar. 2020. "Lysyl Oxidase (LOX): Functional Contributions to Signaling Pathways" Biomolecules 10, no. 8: 1093. https://doi.org/10.3390/biom10081093
APA StyleLaczko, R., & Csiszar, K. (2020). Lysyl Oxidase (LOX): Functional Contributions to Signaling Pathways. Biomolecules, 10(8), 1093. https://doi.org/10.3390/biom10081093