Lipoprotein(a) and Cardiovascular Outcomes after Revascularization of Carotid and Lower Limbs Arteries
Abstract
:1. Introduction
2. Material and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Sabatine, M.S.; Giugliano, R.P.; Keech, A.C.; Honarpour, N.; Wiviott, S.D.; Murphy, S.A.; Kuder, J.F.; Wang, H.; Liu, T.; Wasserman, S.M.; et al. Evolocumab and Clinical Outcomes in Patients with Cardiovascular Disease. N. Engl. J. Med. 2017, 376, 1713–1722. [Google Scholar] [CrossRef]
- Schwartz, G.G.; Steg, P.G.; Szarek, M.; Bhatt, D.L.; Bittner, V.A.; Diaz, R.; Edelberg, J.M.; Goodman, S.G.; Hanotin, C.; Harrington, R.A.; et al. Alirocumab and Cardiovascular Outcomes after Acute Coronary Syndrome. N. Engl. J. Med. 2018, 379, 2097–2107. [Google Scholar] [CrossRef]
- Mach, F.; Baigent, C.; Catapano, A.L.; Koskinas, K.C.; Casula, M.; Badimon, L.; Chapman, M.J.; De Backer, G.G.; Delgado, V.; Ference, B.A.; et al. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: Lipid modification to reduce cardiovascular risk. Eur. Heart J. 2020, 41, 111–188. [Google Scholar] [CrossRef] [PubMed]
- Cho, K.I.; Yu, J.; Hayashi, T.; Han, S.H.; Koh, K.K. Strategies to Overcome Residual Risk during Statins Era. Circ. J. 2019, 83, 1973–1979. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Varvel, S.; McConnell, J.P.; Tsimikas, S. Prevalence of Elevated Lp(a) Mass Levels and Patient Thresholds in 532 359 Patients in the United States. Arter. Thromb. Vasc. Biol. 2016, 36, 2239–2245. [Google Scholar] [CrossRef] [Green Version]
- Bonaca, M.P.; Nault, P.; Giugliano, R.P.; Keech, A.C.; Pineda, A.L.; Kanevsky, E.; Kuder, J.; Murphy, S.A.; Jukema, J.W.; Lewis, B.S.; et al. Low-Density Lipoprotein Cholesterol Lowering with Evolocumab and Outcomes in Patients with Peripheral Artery Disease. Circulation 2018, 137, 338–350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gerhard-Herman, M.D.; Gornik, H.L.; Barrett, C.; Barshes, N.R.; Corriere, M.A.; Drachman, D.E.; Fleisher, L.A.; Flowkes, F.G.R.; Hamburg, N.M.; Kinlay, S.; et al. 2016 AHA/ACC Guideline on the Management of Patients with Lower Extremity Peripheral Artery Disease: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation 2017, 135, e726–e779. [Google Scholar] [CrossRef] [PubMed]
- Bhatt, D.L.; Eagle, K.A.; Ohman, E.M.; Hirsch, A.T.; Goto, S.; Mahoney, E.M.; Wilson, P.W.F.; Alberts, M.J.; D’Agostino, R.; Liau, C.-S.; et al. Comparative Determinants of 4-Year Cardiovascular Event Rates in Stable Outpatients at Risk of or with Atherothrombosis. JAMA 2010, 304, 1350–1357. [Google Scholar] [CrossRef] [Green Version]
- Dahlen, G.H. Incidence of Lp(a) among Populations; Scanu, А.M., Ed.; Аcademic Press: New York, NY, USA, 1990; pp. 151–173. [Google Scholar]
- Afanasieva, O.I.; Ezhov, M.V.; Razova, O.A.; Afanasieva, M.I.; Utkina, E.A.; Pokrovsky, S.N. Apolipoprotein(a) phenotype determines the correlations of lipoprotein(a) and proprotein convertase subtilisin/kexin type 9 levels in patients with potential familial hypercholesterolemia. Atherosclerosis 2018, 277, 477–482. [Google Scholar] [CrossRef]
- Takahashi, N.; Dohi, T.; Funamizu, T.; Endo, H.; Wada, H.; Doi, S.; Kato, Y.; Ogita, M.; Okai, I.; Iwata, H.; et al. Prognostic impact of lipoprotein (a) on long-term clinical outcomes in diabetic patients on statin treatment after percutaneous coronary intervention. J. Cardiol. 2020, 76, 25–29. [Google Scholar] [CrossRef]
- Ezhov, M.V.; Safarova, M.S.; Afanasieva, O.I.; Kukharchuk, V.V.; Pokrovsky, S.N. Lipoprotein(a) level and apolipoprotein(a) phenotype as predictors of long-term cardiovascular outcomes after coronary artery bypass grafting. Atherosclerosis 2014, 235, 477–482. [Google Scholar] [CrossRef]
- Anderson, T.J.; Grégoire, J.; Pearson, G.J.; Barry, A.R.; Couture, P.; Dawes, M.; Francis, G.A.; Genest, J.; Grover, S.; Gupta, M.; et al. 2016 Canadian Cardiovascular Society Guidelines for the Management of Dyslipidemia for the Prevention of Cardiovascular Disease in the Adult. Can. J. Cardiol. 2016, 32, 1263–1282. [Google Scholar] [CrossRef] [PubMed]
- Tsimikas, S.; Fazio, S.; Ferdinand, K.C.; Ginsberg, H.N.; Koschinsky, M.L.; Marcovina, S.M.; Moriarty, P.M.; Rader, D.J.; Remaley, A.T.; Reyes-Soffer, G.; et al. NHLBI Working Group Recommendations to Reduce Lipoprotein(a)-Mediated Risk of Cardiovascular Disease and Aortic Stenosis. J. Am. Coll. Cardiol. 2018, 71, 177–192. [Google Scholar] [CrossRef] [PubMed]
- Hishikari, K.; Hikita, H.; Nakamura, S.; Nakagama, S.; Mizusawa, M.; Yamamoto, T.; Doi, J.; Utsugi, Y.; Sudo, Y.; Kimura, S.; et al. Usefulness of Lipoprotein(a) for Predicting Clinical Outcomes after Endovascular Therapy for Aortoiliac Atherosclerotic Lesions. J. Endovasc. Ther. 2017, 24, 793–799. [Google Scholar] [CrossRef]
- Golledge, J.; Rowbotham, S.; Velu, R.; Quigley, F.; Jenkins, J.; Bourke, M.; Bourke, B.; Thanigaimani, S.; Chan, D.C.; Watts, G.F. Association of Serum Lipoprotein (a) with the Requirement for a Peripheral Artery Operation and the Incidence of Major Adverse Cardiovascular Events in People with Peripheral Artery Disease. J. Am. Heart Assoc. 2020, 9, e015355. [Google Scholar] [CrossRef] [PubMed]
- Mozaffarian, D.; Benjamin, E.J.; Go, A.S.; Arnett, D.K.; Blaha, M.J.; Cushman, M.; De Ferranti, S.; Després, J.-P.; Fullerton, H.J.; Howard, V.J.; et al. Heart Disease and Stroke Statistics—2015 Update. Circulation 2015, 131, e29–e322. [Google Scholar] [CrossRef] [Green Version]
- Albers, J.J.; Slee, A.; O’Brien, K.D.; Robinson, J.G.; Kashyap, M.L.; Kwiterovich, P.O.; Xu, P.; Marcovina, S.M. Relationship of Apolipoproteins A-1 and B, and Lipoprotein(a) to Cardiovascular Outcomes. J. Am. Coll. Cardiol. 2013, 62, 1575–1579. [Google Scholar] [CrossRef] [Green Version]
- Khera, A.V.; Everett, B.M.; Caulfield, M.P.; Hantash, F.M.; Wohlgemuth, J.; Ridker, P.M.; Mora, S. Lipoprotein(a) Concentrations, Rosuvastatin Therapy, and Residual Vascular Risk. Circulation 2014, 129, 635–642. [Google Scholar] [CrossRef] [Green Version]
- Nestel, P.J.; Barnes, E.H.; Tonkin, A.M.; Simes, J.; Fournier, M.; White, H.D.; Colquhoun, D.M.; Blankenberg, S.; Sullivan, D.R. Plasma Lipoprotein(a) Concentration Predicts Future Coronary and Cardiovascular Events in Patients with Stable Coronary Heart Disease. Arter. Thromb. Vasc. Biol. 2013, 33, 2902–2908. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giugliano, R.P.; Pedersen, T.R.; Park, J.-G.; De Ferrari, G.M.; Gaciong, Z.A.; Ceska, R.; Toth, K.; Gouni-Berthold, I.; Lopez-Miranda, J.; Schiele, F.; et al. Clinical efficacy and safety of achieving very low LDL-cholesterol concentrations with the PCSK9 inhibitor evolocumab: A prespecified secondary analysis of the FOURIER trial. Lancet 2017, 390, 1962–1971. [Google Scholar] [CrossRef]
- Catapano, A.L.; Graham, I.; De Backer, G.; Wiklund, O.; Chapman, J.M.; Drexel, H.; Hoes, A.V.; Jennings, C.; Landmesser, U.; Pedersen, T.R.; et al. 2016 ESC/EAS Guidelines for the Management of Dyslipidaemias. Russ. J. Cardiol. 2017, 14, 2999–3058. [Google Scholar] [CrossRef]
- O’Donoghue, M.L.; Fazio, S.; Giugliano, R.P.; Stroes, E.S.; Kanevsky, E.; Gouni-Berthold, I.; Im, K.; Pineda, A.L.; Wasserman, S.M.; Češka, R.; et al. Lipoprotein(a), PCSK9 Inhibition, and Cardiovascular Risk. Circulation 2019, 139, 1483–1492. [Google Scholar] [CrossRef] [PubMed]
- Bittner, V.A.; Szarek, M.; Aylward, P.E.; Bhatt, D.L.; Diaz, R.; Edelberg, J.M.; Fras, Z.; Goodman, S.G.; Halvorsen, S.; Hanotin, C.; et al. Effect of Alirocumab on Lipoprotein(a) and Cardiovascular Risk after Acute Coronary Syndrome. J. Am. Coll. Cardiol. 2020, 75, 133–144. [Google Scholar] [CrossRef] [PubMed]
- Ray, K.K.; Vallejo-Vaz, A.J.; Ginsberg, H.N.; Davidson, M.H.; Louie, M.J.; Bujas-Bobanovic, M.; Minini, P.; Eckel, R.H.; Cannon, C.P. Lipoprotein(a) reductions from PCSK9 inhibition and major adverse cardiovascular events: Pooled analysis of alirocumab phase 3 trials. Atherosclerosis 2019, 288, 194–202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsimikas, S.; Karwatowska-Prokopczuk, E.; Gouni-Berthold, I.; Tardif, J.-C.; Baum, S.J.; Steinhagen-Thiessen, E.; Shapiro, M.D.; Stroes, E.S.; Moriarty, P.M.; Nordestgaard, B.G.; et al. Lipoprotein(a) Reduction in Persons with Cardiovascular Disease. N. Engl. J. Med. 2020, 382, 244–255. [Google Scholar] [CrossRef] [PubMed]
- Safarova, M.S.; Ezhov, M.V.; Afanasieva, O.I.; Matchin, Y.G.; Atanesyan, R.V.; Adamova, I.Y.; Utkina, E.A.; Konovalov, G.A.; Pokrovsky, S.N. Effect of specific lipoprotein(a) apheresis on coronary atherosclerosis regression assessed by quantitative coronary angiography. Atheroscler. Suppl. 2013, 14, 93–99. [Google Scholar] [CrossRef]
- Pokrovsky, S.; Afanasieva, O.; Safarova, M.; Balakhonova, T.; Matchin, Y.; Adamova, I.; Konovalov, G.; Ezhov, M. Specific Lp(a) apheresis: A tool to prove lipoprotein(a) atherogenicity. Atheroscler. Suppl. 2017, 30, 166–173. [Google Scholar] [CrossRef] [PubMed]
Parameters | Total n = 258 | CVE+ n = 128 | CVE− n = 130 |
---|---|---|---|
Age, years | 67 [61; 75] | 67 ± 8 | 67 ± 10 |
Male sex | 209 (81%) | 107 (84%) | 102 (78%) |
Hypertension | 224 (87%) | 108 (84%) | 116 (89%) |
Obesity | 72 (28%) | 36 (28%) | 36 (28%) |
Type 2 diabetes | 65 (25%) | 38 (30%) | 27 (21%) |
Smoking | 130 (50%) | 66 (52%) | 64 (49%) |
Ischemic heart disease | 175 (68%) | 93 (73%) | 82 (63%) |
Myocardial infarction | 85 (33%) | 49 (38%) | 36 (28%) |
Ischemic stroke | 54 (21%) | 36 (28%) * | 18 (14%) |
Total cholesterol, mmol/L | 4.4 [3.8; 5.1] | 4.6 [3.9; 5.3] * | 4.2 [3.7; 4.9] |
Triglycerides, mmol/L | 1.5 [1.1; 2.0] | 1.6 [1.1; 2.0] | 1.4 [1.1; 2.0] |
HDL-C, mmol/L | 1.2 [1.0; 1.4] | 1.2 [1.0; 1.4] | 1.3 [1.0; 1.5] |
LDL-C, mmol/L | 2.4 [1.9; 2.9] | 2.6 [2.1; 3.1] * | 2.2 [1.8; 2.7] |
LDL-Ccorrected, mmol/L | 2.0 [1.6; 2.6] | 2.1 [1.7; 2.7] | 1.9 [1.5; 2.6] |
Lipoprotein(a), mg/dL | 27 [11; 57] | 41 (20; 76) * | 18 (8; 34) |
C-reactive protein, mg/L | 6.8 [2.7; 10.6] | 6.7 [2.2; 13.7] | 7.3 [3.6; 10.5] |
Creatinine, µmol/L | 93 [78; 109] | 89.0 [75.2; 110.0] | 94.0 [80.1; 107.8] |
Parameters | Primary Endpoint | Secondary Endpoint | ||||||
---|---|---|---|---|---|---|---|---|
Univariate Analysis | Multivariate Analysis | Univariate Analysis | Multivariate Analysis | |||||
HR (95% CI) | p | RR (95% CI) | p | HR (95% CI) | p | RR (95% CI) | p | |
Age, years | 1.0 (0.96–1.04) | 0.96 | 1.0 (0.98–1.02) | 0.9 | ||||
Male sex | 3.2 (0.77–13.42) | 0.06 | 1.1 (0.71–1.80) | 0.6 | ||||
Hypertension | 0.5 (0.20–1.19) | 0.1 | 0.7 (0.46–1.18) | 0.2 | ||||
Obesity | 1.9 (0.92–3.99) | 0.09 | 1.0 (0.69–1.49) | 0.9 | ||||
Type 2 diabetes | 1.3 (0.60–2.88) | 0.5 | 1.3 (0.88–1.87) | 0.2 | ||||
Smoking | 1.5 (0.69–3.09) | 0.3 | 0.9 (0.67–1.33) | 0.7 | ||||
Ischemic heart disease | 2.7 (0.93–7.61) | 0.07 | 1.2 (0.84–1.83) | 0.3 | ||||
Myocardial infarction | 2.1 (1.26–3.37) | <0.01 | 2.0 (1.17–3.40) | 0.01 | 1.3 (0.96–1.65) | 0.1 | ||
Ischemic stroke | 2.6 (1.54–4.31) | <0.01 | 2.3 (1.38–3.78) | <0.01 | 1.7 (1.23–2.27) | <0.01 | 1.7 (1.27–2.35) | <0.01 |
Total cholesterol | 1.0 (0.84–1.30) | 0.7 | 1.1 (0.96–1.16) | 0.3 | ||||
Triglycerides | 0.9 (0.59–1.49) | 0.8 | 1.1 (0.89–1.33) | 0.4 | ||||
HDL-C | 1.0 (0.35–2.89) | 1.0 | 1.0 (0.59–1.57) | 0.9 | ||||
LDL-C | 1.0 (0.91–1.32) | 0.3 | 1.1 (0.97–1.17) | 0.2 | ||||
LDL-Ccorrected | 1.0 (0.79–1.33) | 0.9 | 1.0 (0.88–1.14) | 1.0 | ||||
Lipoprotein(a) ≥ 30 mg/dL | 3.0 (1.35–6.84) | <0.01 | 2.9 (1.30–6.61) | <0.01 | 2.9 (1.99–4.12) | <0.01 | 2.9 (2.03–4.19) | <0.01 |
Statins | 0.5 (0.17–1.42) | 0.2 | 1.0 (0.52–1.77) | 0.9 | ||||
C-reactive protein | 1.0 (0.99–1.02) | 0.7 | 1.0 (0.99–1.01) | 0.7 | ||||
Creatinine | 1.0 (0.99–1.01) | 0.6 | 1.0 (0.99–1.00) | 0.7 | ||||
CKD | 1.2 (0.81–1.79) | 0.4 | 1.0 (0.81–1.22) | 0.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ezhov, M.V.; Tmoyan, N.A.; Afanasieva, O.I.; Afanasieva, M.I.; Pokrovsky, S.N. Lipoprotein(a) and Cardiovascular Outcomes after Revascularization of Carotid and Lower Limbs Arteries. Biomolecules 2021, 11, 257. https://doi.org/10.3390/biom11020257
Ezhov MV, Tmoyan NA, Afanasieva OI, Afanasieva MI, Pokrovsky SN. Lipoprotein(a) and Cardiovascular Outcomes after Revascularization of Carotid and Lower Limbs Arteries. Biomolecules. 2021; 11(2):257. https://doi.org/10.3390/biom11020257
Chicago/Turabian StyleEzhov, Marat V., Narek A. Tmoyan, Olga I. Afanasieva, Marina I. Afanasieva, and Sergei N. Pokrovsky. 2021. "Lipoprotein(a) and Cardiovascular Outcomes after Revascularization of Carotid and Lower Limbs Arteries" Biomolecules 11, no. 2: 257. https://doi.org/10.3390/biom11020257
APA StyleEzhov, M. V., Tmoyan, N. A., Afanasieva, O. I., Afanasieva, M. I., & Pokrovsky, S. N. (2021). Lipoprotein(a) and Cardiovascular Outcomes after Revascularization of Carotid and Lower Limbs Arteries. Biomolecules, 11(2), 257. https://doi.org/10.3390/biom11020257