Chemical and Bioinformatics Analyses of the Anti-Leishmanial and Anti-Oxidant Activities of Hemp Essential Oil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals for Antileishmanial Activity
2.2. Experimental Farm and Plant Extraction
2.3. Colorimetric Determination of Scavenging/Reducing and Metal-Chelating Properties
2.4. Color Analyses
2.5. Gas Chromatography/Mass Spectrometry (GC/MS) Analysis
2.6. Preparation of Culture for Leishmania Parasites
2.7. Preparation of Sample Solution
2.8. In Vivo Study
2.9. Bioinformatics and In Silico Analysis
2.10. Statistical Analysis
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Amaducci, S.; Scordia, D.; Liu, F.H.; Zhang, Q.; Guo, H.; Testa, G.; Cosentino, S.L. Key cultivation techniques for hemp in Europe and China. Ind. Crop. Prod. 2015, 68, 2–16. [Google Scholar] [CrossRef]
- Benelli, G.; Pavela, R.; Lupidi, G.; Nabissi, M.; Petrelli, R.; Ngahang Kamte, S.L.; Cappellacci, L.; Fiorini, D.; Sut, S.; Dall’Acqua, S.; et al. The crop-residue of fiber hemp cv. Futura 75: From a waste product to a source of botanical insecticides. Environ. Sci. Pollut. Res. Int. 2018, 25, 10515–10525. [Google Scholar] [CrossRef]
- Fernández-Ruiz, J.; Sagredo, O.; Pazos, M.R.; García, C.; Pertwee, R.; Mechoulam, R.; Martínez-Orgado, J. Cannabidiol for neurodegenerative disorders: Important new clinical applications for this phytocannabinoid? Br. J. Clin. Pharmacol. 2013, 75, 323–333. [Google Scholar] [CrossRef]
- Di Giacomo, V.; Recinella, L.; Chiavaroli, A.; Orlando, G.; Cataldi, A.; Rapino, M.; Di Valerio, V.; Politi, M.; Antolini, M.D.; Acquaviva, A.; et al. Metabolomic Profile and Antioxidant/Anti-Inflammatory Effects of Industrial Hemp Water Extract in Fibroblasts, Keratinocytes and Isolated Mouse Skin Specimens. Antioxidants 2021, 10, 44. [Google Scholar] [CrossRef]
- Ferrante, C.; Recinella, L.; Ronci, M.; Menghini, L.; Brunetti, L.; Chiavaroli, A.; Leone, S.; Di Iorio, L.; Carradori, S.; Tirillini, B.; et al. Multiple pharmacognostic characterization on hemp commercial cultivars: Focus on inflorescence water extract activity. Food Chem. Toxicol. 2019, 125, 452–461. [Google Scholar] [CrossRef] [PubMed]
- Ingallina, C.; Sobolev, A.P.; Circi, S.; Spano, M.; Fraschetti, C.; Filippi, A.; Di Sotto, A.; Di Giacomo, S.; Mazzoccanti, G.; Gasparrini, F.; et al. Cannabis sativa L. Inflorescences from Monoecious Cultivars Grown in Central Italy: An Untargeted Chemical Characterization from Early Flowering to Ripening. Molecules 2020, 25, 1908. [Google Scholar] [CrossRef]
- Nissen, L.; Zatta, A.; Stefanini, I.; Grandi, S.; Sgorbati, B.; Biavati, B.; Monti, A. Characterization and antimicrobial activity of essential oils of industrial hemp varieties (Cannabis sativa L.). Fitoterapia 2010, 81, 413–419. [Google Scholar] [CrossRef] [PubMed]
- Orlando, G.; Recinella, L.; Chiavaroli, A.; Brunetti, L.; Leone, S.; Carradori, S.; Di Simone, S.; Ciferri, M.C.; Zengin, G.; Ak, G.; et al. Water Extract from Inflorescences of Industrial Hemp Futura 75 Variety as a Source of Anti-Inflammatory, Anti-Proliferative and Antimycotic Agents: Results from In Silico, In Vitro and Ex Vivo Studies. Antioxidants 2020, 9, 437. [Google Scholar] [CrossRef] [PubMed]
- Zengin, G.; Menghini, L.; Di Sotto, A.; Mancinelli, R.; Sisto, F.; Carradori, S.; Cesa, S.; Fraschetti, C.; Filippi, A.; Angiolella, L.; et al. Chromatographic Analyses, In Vitro Biological Activities and Cytotoxicity of Cannabis sativa L. Essential Oil: A Multidisciplinary Study. Molecules 2018, 23, 3266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gulluni, N.; Re, T.; Loiacono, I.; Lanzo, G.; Gori, L.; Macchi, C.; Epifani, F.; Bragazzi, N.; Firenzuoli, F. Cannabis essential oil: A preliminary study for the evaluation of the brain effects. Evid. Based Complement. Alternat. Med. 2018, 2018, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Regnault-Roger, C.; Vincent, C.; Arnason, J.T. Essential oils in insect control: Low-risk products in a high-stakes world. Annu. Rev. Entomol. 2012, 57, 405–424. [Google Scholar] [CrossRef]
- Iqbal, K.; Jamal, Q.; Iqbal, J.; Afreen, M.S. Luteolin as a potent anti-leishmanial agent against intracellular Leishmania tropica parasites. Trop. J. Pharm. Res. 2017, 16, 337–342. [Google Scholar] [CrossRef] [Green Version]
- Cairone, F.; Carradori, S.; Locatelli, M.; Casadei, M.A.; Cesa, S. Reflectance colorimetry: A mirror for food quality—A mini review. Eur. Food Res. Technol. 2020, 246, 259–272. [Google Scholar] [CrossRef]
- Spano, M.; Di Matteo, G.; Rapa, M.; Ciano, S.; Ingallina, C.; Cesa, S.; Menghini, L.; Carradori, S.; Giusti, A.M.; Di Sotto, A.; et al. Commercial Hemp Seed Oils: A Multimethodological Characterization. Appl. Sci. 2020, 10, 6933. [Google Scholar] [CrossRef]
- Ingallina, C.; Capitani, D.; Mannina, L.; Carradori, S.; Locatelli, M.; Di Sotto, A.; Di Giacomo, S.; Toniolo, C.; Pasqua, G.; Valletta, A.; et al. Phytochemical and biological characterization of Italian “sedano bianco di Sperlonga” Protected Geographical Indication celery ecotype: A multimethodological approach. Food Chem. 2020, 309, 125649. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.; Ali, M.; Shah, W.; Shah, A.; Yasinzai, M.M. Curcumin-loaded self-emulsifying drug delivery system (cu-SEDDS): A promising approach for the control of primary pathogen and secondary bacterial infections in cutaneous leishmaniasis. Appl. Microbiol. Biotechnol. 2019, 103, 7481–7490. [Google Scholar] [CrossRef] [PubMed]
- Gad, S.C.; Cassidy, C.D.; Aubert, N.; Spainhour, B.; Robbe, H. Nonclinical vehicle use in studies by multiple routes in multiple species. Int. J. Toxicol. 2006, 25, 499–521. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smeriglio, A.; Trombetta, D.; Alloisio, S.; Cornara, L.; Denaro, M.; Garbati, P.; Grassi, G.; Circosta, C. Promising in vitro antioxidant, anti-acetylcholinesterase and neuroactive effects of essential oil from two non-psychotropic Cannabis sativa L. biotypes. Phytother. Res. 2020, 34, 2287–2302. [Google Scholar] [CrossRef]
- Monzote, L.; García, M.; Scull, R.; Cuellar, A.; Setzer, W.N. Antileishmanial activity of the essential oil from Bixa orellana. Phytother. Res. 2014, 28, 753–758. [Google Scholar] [CrossRef]
- Islamuddin, M.; Chouhan, G.; Tyagi, M.; Abdin, M.Z.; Sahal, D.; Afrin, F. Leishmanicidal activities of Artemisia annua leaf essential oil against Visceral Leishmaniasis. Front. Microbiol. 2014, 5, 626. [Google Scholar] [CrossRef] [Green Version]
- Cho, H.I.; Hong, J.M.; Choi, J.W.; Choi, H.S.; Hwan Kwak, J.; Lee, D.U.; Kook Lee, S.; Lee, S.M. β-Caryophyllene alleviates D-galactosamine and lipopolysaccharide-induced hepatic injury through suppression of the TLR4 and RAGE signaling pathways. Eur. J. Pharmacol. 2015, 764, 613–621. [Google Scholar] [CrossRef] [PubMed]
- Caputo, L.; Reguilon, M.D.; Mińarro, J.; De Feo, V.; Rodriguez-Arias, M. Lavandula angustifolia Essential Oil and Linalool Counteract Social Aversion Induced by Social Defeat. Molecules 2018, 23, 2694. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Recinella, L.; Chiavaroli, A.; di Giacomo, V.; Antolini, M.D.; Acquaviva, A.; Leone, S.; Brunetti, L.; Menghini, L.; Ak, G.; Zengin, G.; et al. Anti-Inflammatory and Neuromodulatory Effects Induced by Tanacetum parthenium Water Extract: Results from In Silico, In Vitro and Ex Vivo Studies. Molecules 2021, 26, 22. [Google Scholar] [CrossRef] [PubMed]
- Baldini, M.; Ferfuia, C.; Piani, B.; Sepulcri, A.; Dorigo, G.; Zuliani, F.; Danuso, F.; Cattivello, C. The Performance and Potentiality of Monoecious Hemp (Cannabis sativa L.) Cultivars as a Multipurpose Crop. Agronomy 2018, 8, 162. [Google Scholar] [CrossRef] [Green Version]
- Bertoli, S.; Tozzi, L.; Pistelli, L.; Angelini, L.G. Fibre hemp inflorescences: From crop-residues to essential oil production. Ind. Crop. Prod. 2010, 32, 329–337. [Google Scholar] [CrossRef]
- Fischedick, J.T.; Hazekamp, A.; Erkelens, T.; Choi, Y.H.; Verpoorte, R. Metabolic fingerprinting of Cannabis sativa L., cannabinoids and terpenoids for chemotaxonomic and drug standardization purposes. Phytochemistry 2010, 71, 2058–2073. [Google Scholar] [CrossRef]
- Marini, E.; Magi, G.; Ferretti, G.; Bacchetti, T.; Giuliani, A.; Pugnaloni, A.; Rippo, M.R.; Facinelli, B. Attenuation of Listeria monocytogenes Virulence by Cannabis sativa L. Essential Oil. Front. Cell Infect. Microbiol. 2018, 8, 293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iseppi, R.; Brighenti, V.; Licata, M.; Lambertini, A.; Sabia, C.; Messi, P.; Pellati, F.; Benvenuti, S. Chemical Characterization and Evaluation of the Antibacterial Activity of Essential Oils from Fibre-Type Cannabis sativa L. (Hemp). Molecules 2019, 24, 2302. [Google Scholar] [CrossRef] [Green Version]
- Iqbal, K.; Iqbal, J.; Staerk, D.; Kongstad, K.T. Characterization of Antileishmanial Compounds from Lawsonia inermis L. Leaves Using Semi-High Resolution Antileishmanial Profiling Combined with HPLC-HRMS-SPE-NMR. Front. Pharmacol. 2017, 8, 337. [Google Scholar] [CrossRef] [Green Version]
- Katakura, K. An experimental challenge model of visceral leishmaniasis by Leishmania donovani promastigotes in mice. Parasitol. Int. 2016, 65, 603–606. [Google Scholar] [CrossRef]
- Mittal, A.; Ray, Y.; Soneja, M.; Chatterjee, M.; Kumar, P. Concurrent ocular and cutaneous leishmaniasis caused by Leishmania tropica. QJM 2020, 113, 286–287. [Google Scholar] [CrossRef]
- Rosenthal, E.; Delaunay, P.; Jeandel, P.Y.; Haas, H.; Pomares-Estran, C.; Marty, P. Le traitement de la leishmaniose viscérale en Europe en 2009. Place de l’amphotéricine B liposomale. Med. Mal. Infect. 2009, 39, 741–744. (In French) [Google Scholar] [CrossRef]
- Gonçalves, E.C.D.; Assis, P.M.; Junqueira, L.A.; Cola, M.; Santos, A.R.S.; Raposo, N.R.B.; Dutra, R.C. Citral Inhibits the Inflammatory Response and Hyperalgesia in Mice: The Role of TLR4, TLR2/Dectin-1 and CB2 Cannabinoid Receptor/ATP-Sensitive K+ Channel Pathways. J. Nat. Prod. 2020, 83, 1190–1200. [Google Scholar] [CrossRef]
- Irrera, N.; D’Ascola, A.; Pallio, G.; Bitto, A.; Mazzon, E.; Mannino, F.; Squadrito, V.; Arcoraci, V.; Minutoli, L.; Campo, G.M.; et al. β-Caryophyllene Mitigates Collagen Antibody Induced Arthritis (CAIA) in Mice Through a Cross-Talk between CB2 and PPAR-γ Receptors. Biomolecules 2019, 9, 326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Atalay, S.; Jarocka-Karpowicz, I.; Skrzydlewska, E. Antioxidative and Anti-Inflammatory Properties of Cannabidiol. Antioxidants 2020, 9, 21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pollastro, F.; Minassi, A.; Fresu, L.G. Cannabis Phenolics and their Bioactivities. Curr. Med. Chem. 2018, 25, 1160–1185. [Google Scholar] [CrossRef] [PubMed]
- Moss, D.E. Improving Anti-Neurodegenerative Benefits of Acetylcholinesterase Inhibitors in Alzheimer’s Disease: Are Irreversible Inhibitors the Future? Int. J. Mol. Sci. 2020, 21, 3438. [Google Scholar] [CrossRef]
- Mogana, R.; Adhikari, A.; Debnath, S.; Hazra, S.; Hazra, B.; Teng-Jin, K.; Wiart, C. The antiacetylcholinesterase and antileishmanial activities of Canarium patentinervium Miq. Biomed. Res. Int. 2014, 2014, 903529. [Google Scholar] [CrossRef] [Green Version]
- Lenta, B.N.; Vonthron-Sénécheau, C.; Weniger, B.; Devkota, K.P.; Ngoupayo, J.; Kaiser, M.; Naz, Q.; Choudhary, M.I.; Tsamo, E.; Sewald, N. Leishmanicidal and Cholinesterase Inhibiting Activities of Phenolic Compounds from Allanblackia monticola and Symphonia globulifera. Molecules 2007, 12, 1548–1557. [Google Scholar] [CrossRef]
- Wassef, M.K.; Fioretti, T.B.; Dwyer, D.M. Lipid analyses of isolated surface membranes of Leishmania donovani promastigotes. Lipids 1985, 20, 108–115. [Google Scholar] [CrossRef]
- Ray, L.; Karthik, R.; Srivastava, V.; Singh, S.P.; Pant, A.B.; Goyal, N.; Gupta, K.C. Efficient antileishmanial activity of amphotericin B and piperine entrapped in enteric coated guar gum nanoparticles. Drug Deliv. Transl. Res. 2021, 11, 118–130. [Google Scholar] [CrossRef] [PubMed]
- Rinaldi, F.; Hanieh, P.N.; Longhi, C.; Carradori, S.; Secci, D.; Zengin, G.; Ammendolia, M.G.; Mattia, E.; Del Favero, E.; Marianecci, C.; et al. Neem oil nanoemulsions: Characterisation and antioxidant activity. J. Enzyme Inhib. Med. Chem. 2017, 32, 1265–1273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumari, P.; Luqman, S.; Meena, A. Application of the combinatorial approaches of medicinal and aromatic plants with nanotechnology and its impacts on healthcare. Daru 2019, 27, 475–489. [Google Scholar] [CrossRef] [PubMed]
Hemp Cultivar | GPS Coordinates | Extension (sqm) | Previous Crops (2 Years) | Sowing Scheme (cm Inter/Intra Lines) | Sowing Density |
---|---|---|---|---|---|
F75 | 42,363,059, 14,093,390 | 4000 | Wheat/alfalfa | 20 cm/50 cm | 15 kg/ha |
CS | 42,359,222, 14,108,528 | 14,000 | Wheat/Wheat | 40 cm/50 cm | 20 kg/ha |
EC | 42,343,824, 14,102,808 | 6000 | Not cultivated | 20 cm/40 cm | 20 kg/ha |
Cultivar | Harvesting Period | Crop Yields | ||
---|---|---|---|---|
Inflorescences (kg Fresh Flowers/ha) | Essential Oil (L/ha) | Hydrodistillation (mL EO/kg Fresh Flowers) | ||
EC (Eletta campana) | Late August to early September | 1160 | 0.92 | 0.85 |
CS (Carmagnola selezionata) | Mid September to mid October | 1070 | 1.39 | 1.33 |
F75 (Futura 75) | Early to mid September | 1000 | 1.01 | 0.95 |
EO Cultivar | DPPH (mg TE/g EO) | ABTS (mg TE/g EO) | CUPRAC (mg TE/g EO) | FRAP (mg TE/g EO) | Metal Chelating (mg EDTAE/g EO) | Phosphomolybdenum (mmol TE/g EO) |
---|---|---|---|---|---|---|
EC | 2.53 ± 0.23 a * | 32.44 ± 0.03 a | 45.51 ± 0.75 a | 19.29 ± 0.34 a | 11.55 ± 0.84 a | 17.95 ± 0.34 b |
CS | 1.18 ± 0.09 c | 32.15 ± 0.08 b | 29.91 ± 0.95 c | 13.55 ± 0.46 c | 7.19 ± 0.42 b | 17.52 ± 1.12 b |
F75 | 2.11 ± 0.15 b | 32.47 ± 0.04 a | 35.05 ± 0.85 b | 16.16 ± 0.47 b | 10.84 ± 0.46 a | 18.80 ± 0.47 a |
EC | CS | F75 | |
---|---|---|---|
L* | 58.39 ± 0.89 | 54.62 ± 0.79 | 57.14 ± 1.08 |
a* | −5.01 ± 0.20 | −3.39 ± 0.28 | −3.67 ± 0.21 |
b* | 12.82 ± 0.45 | 7.82 ± 0.70 | 8.47 ± 0.50 |
C*ab | 13.77 ± 0.50 | 8.52 ± 0.75 | 9.23 ± 0.55 |
hab | 111.34 ± 0.09 | 113.42 ± 0.16 | 113.43 ± 0.05 |
Peak # | Compounds | Area (%) | ||
---|---|---|---|---|
Eletta campana | Futura 75 | Carmagnola selezionata | ||
1 | α-pinene | 11.9 | 14.9 | 12.6 |
2 | camphene | 0.3 | 0.3 | 0.3 |
3 | β-pinene | 3.6 | 3.8 | 4.1 |
4 | myrcene | 6.8 | 11.8 | 26.4 |
5 | α-phellandrene | 0.1 | 0.2 | 0.3 |
6 | ∆3-Carene | 0.5 | 0.5 | 0.3 |
7 | α-terpinene | 0.1 | 0.2 | 0.3 |
8 | para-cymene | 0.2 | 0.1 | 0.2 |
9 | limonene | 2.2 | 1.8 | 4.7 |
10 | eucalyptol | 0.4 | 0.2 | 0.5 |
11 | Z-β-ocimene | 0.5 | - | 0.4 |
12 | E-β-ocimene | 1.9 | 2.9 | 2.5 |
13 | γ-terpinene | 0.2 | 0.2 | 0.3 |
14 | terpinolene | 2.3 | 5.1 | 7.0 |
15 | linalyl anthranilate | 0.2 | - | 0.3 |
16 | fenchyl alcohol | 0.1 | - | - |
17 | terpinen-4-ol | 0.2 | - | - |
18 | α-ylangene | 0.2 | - | 0.2 |
19 | Z-caryophyllene | 0.3 | 0.5 | 0.4 |
20 | α-cis-bergamotene | - | 0.3 | - |
21 | E-caryophyllene | 13.5 | 19.3 | 19.1 |
22 | α-trans-bergamotene | 0.6 | 1.9 | 0.2 |
23 | α-humulene | 5.3 | 8.3 | 7.2 |
24 | 9-epi-E-caryophyllene | 0.7 | 1.1 | 0.6 |
25 | γ-muurolene | 0.5 | - | - |
26 | α-amorphene | 0.2 | - | - |
27 | β-selinene | 1.5 | 1.7 | 1.3 |
28 | α-selinene | 1.7 | 1.3 | 1.1 |
29 | Z-γ-bisabolene | 1.4 | - | 1.1 |
30 | γ-cadinene | 0.4 | - | - |
31 | selina-4(15),7(11)-diene | 1.3 | 0.9 | 0.3 |
32 | selina-3,7(11)-diene | 2.5 | 1.5 | 0.5 |
33 | germacrene-B | 0.3 | - | - |
34 | caryophyllene oxide | 2.2 | 4.3 | 3.2 |
35 | humulene epoxide | 0.7 | 1.1 | 1.0 |
36 | α-bisabolol | 0.5 | - | - |
37 | allo-aromadendrene epoxide | - | 0.4 | - |
38 | tetracosane | 6.0 | 8.8 | - |
39 | heptacosane | 23.9 | - | - |
unknown compounds (n) | 4.8 (12) | 6.6 (13) | 3.6 (10) |
Sample | Dosing Regimen a | Mean Lesion (mm) before Treatment | Mean Lesion (mm) after Treatment (After 8 Weeks) | % Cure Rate (with 95% Confidence Intervals) | N° of Mice Cured/N° of Mice Infected | Mean Survival Time (Days) |
---|---|---|---|---|---|---|
Eletta campana | 2.5 mL/kg | 0.81 ± 0.20 | 0.31 ± 0.10 *** | 96.012 (96.126–98.087) | 6/6 | ≥60 |
Futura 75 | 2.5 mL/kg | 0.73 ± 0.30 | 0.42 ± 0.70 *** | 84.28 (83.25–85.88) | 5/6 | ≥60 |
Carmagnola selezionata | 2.5 mL/kg | 0.71 ± 0.20 | 0.61 ± 0.20 ** | 75.12 (74.86–76.49) | 4/6 | ≥60 |
Amp | 12.5 mg/kg | 0.96 ± 0.60 | 0.34 ± 0.60 *** | 95.00 (94.583–96.02) | 6/6 | ≥60 |
NC c | 2.5 mL/kg | 0.78 ± 0.50 | 1.6 ± 0.50 | 0.000 | 0/6 | ≥30 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Menghini, L.; Ferrante, C.; Carradori, S.; D’Antonio, M.; Orlando, G.; Cairone, F.; Cesa, S.; Filippi, A.; Fraschetti, C.; Zengin, G.; et al. Chemical and Bioinformatics Analyses of the Anti-Leishmanial and Anti-Oxidant Activities of Hemp Essential Oil. Biomolecules 2021, 11, 272. https://doi.org/10.3390/biom11020272
Menghini L, Ferrante C, Carradori S, D’Antonio M, Orlando G, Cairone F, Cesa S, Filippi A, Fraschetti C, Zengin G, et al. Chemical and Bioinformatics Analyses of the Anti-Leishmanial and Anti-Oxidant Activities of Hemp Essential Oil. Biomolecules. 2021; 11(2):272. https://doi.org/10.3390/biom11020272
Chicago/Turabian StyleMenghini, Luigi, Claudio Ferrante, Simone Carradori, Marianna D’Antonio, Giustino Orlando, Francesco Cairone, Stefania Cesa, Antonello Filippi, Caterina Fraschetti, Gokhan Zengin, and et al. 2021. "Chemical and Bioinformatics Analyses of the Anti-Leishmanial and Anti-Oxidant Activities of Hemp Essential Oil" Biomolecules 11, no. 2: 272. https://doi.org/10.3390/biom11020272
APA StyleMenghini, L., Ferrante, C., Carradori, S., D’Antonio, M., Orlando, G., Cairone, F., Cesa, S., Filippi, A., Fraschetti, C., Zengin, G., Ak, G., Tacchini, M., & Iqbal, K. (2021). Chemical and Bioinformatics Analyses of the Anti-Leishmanial and Anti-Oxidant Activities of Hemp Essential Oil. Biomolecules, 11(2), 272. https://doi.org/10.3390/biom11020272