Acquired HIV-1 Protease Conformational Flexibility Associated with Lopinavir Failure May Shape the Outcome of Darunavir Therapy after Antiretroviral Therapy Switch
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Approval
2.2. Amplification of HIV-1 Protease
2.3. Cloning, Expression and Purification of HIV-1 Protease
2.4. Western Blotting to Detect the Presence of HIV-1 PR
2.5. Enzyme Activity Assay and Inhibition Studies
2.6. Fluorescent Spectroscopy
2.7. Computational Methods
2.7.1. HIV-1 PR Enzyme and HIV-1 PIs System Preparation and Molecular Docking
2.7.2. Molecular Dynamic (MD) Simulations
2.7.3. Binding Free Energy Calculations
3. Results
3.1. Cloning and Expression of HIV-1 PR
3.2. Enzyme Activity of Wild Type HIV-1 PR and Mutants
3.3. Inhibition of Wild Type HIV-1 PR and Mutants by LPV and DRV
3.4. Fluorescence Spectroscopy
3.5. Molecular Dynamic Simulation
3.5.1. Stability of WT, MUT-1, MUT-2, and MUT-3-Inhibitor Complex
3.5.2. Solvent Exposure and Radius of Gyration of WT and Mutant HIV-1 PRs
3.5.3. HIV-1 PR Flap Dynamics
Distance between Active Site Residue to Flap Tip Residue
Flap Tip to Flap Tip Distance
3.5.4. Structural Comparison of WT and Mutant HIV-1 PR
3.5.5. HIV-1 PR Binding Profile Calculated from MMGBSA
3.5.6. Hydrogen Bond Interaction Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- UNAIDS. Global HIV & AIDS Statistics—2020 Fact Sheet; Joint United Nations Programme on HIV/AIDS: Geneva, Switzerland, 2020. [Google Scholar]
- Dwyer-Lindgren, L.; Cork, M.A.; Sligar, A.; Steuben, K.M.; Wilson, K.F.; Provost, N.R.; Mayala, B.K.; VanderHeide, J.D.; Collison, M.L.; Hall, J.B.; et al. Mapping HIV prevalence in sub-Saharan Africa between 2000 and 2017. Nature 2019, 570, 189–193. [Google Scholar] [CrossRef]
- Hodes, R.; Morrell, R. Incursions from the epicentre: Southern theory, social science, and the global HIV research domain. Afr. J. AIDS Res. 2018, 17, 22–31. [Google Scholar] [CrossRef]
- Mosebi, S.; Morris, L.; Dirr, H.W.; Sayed, Y. Active-site mutations in the South African human immunodeficiency virus type 1 subtype C protease have a significant impact on clinical inhibitor binding: Kinetic and thermodynamic study. J. Virol. 2008, 82, 11476–11479. [Google Scholar] [CrossRef]
- Henes, M.; Kosovrasti, K.; Lockbaum, G.J.; Leidner, F.; Nachum, G.S.; Nalivaika, E.A.; Bolon, D.N.A.; Kurt, Y.N.; Schiffer, C.A.; Whitfield, T.W. Molecular determinants of epistasis in HIV-1 protease: Elucidating the interdependence of L89V and L90M mutations in resistance. Biochemistry 2019, 58, 3711–3726. [Google Scholar] [CrossRef]
- Aoki, M.; Das, D.; Hayashi, H.; Aoki-Ogata, H.; Takamatsu, Y.; Ghosh, A.K.; Mitsuya, H. Mechanism of darunavir (DRV)’s high genetic barrier to HIV-1 resistance: A key V32I substitution in protease rarely occurs, but once it occurs, it predisposes HIV-1 to develop DRV resistance. mBio 2018, 9, e02425-17. [Google Scholar] [CrossRef]
- Grinsztejn, B.; Hughes, M.D.; Ritz, J.; Salata, R.; Mugyenyi, P.; Hogg, E.; Wieclaw, L.; Gross, R.; Godfrey, C.; Cardoso, S.W.; et al. Third-line antiretroviral therapy in low-income and middle-income countries (ACTG A5288): A prospective strategy study. Lancet HIV 2019, 6, e588–e600. [Google Scholar] [CrossRef]
- Weikl, T.R.; Hemmateenejad, B. Accessory mutations balance the marginal stability of the HIV-1 protease in drug resistance. Proteins 2019, 88, 476–484. [Google Scholar] [CrossRef]
- Perryman, A.L.; Lin, J.H.; McCammon, J.A. HIV-1 protease molecular dynamics of a wild-type and of the V82F/I84V mutant: Possible contributions to drug resistance and a potental new target site for drugs. Protein Sci. 2004, 13, 1108–1123. [Google Scholar] [CrossRef]
- Harte, W.E.; Swaminathan, S.; Mansuri, M.; Martin, J.; Rosenberg, I.; Beveridge, D.L. Domain communication in the dynamical structure of human immunodeficiency virus 1 protease. Proc. Natl. Acad. Sci. USA 1990, 87, 8864–8868. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Wang, J.; Chen, Z.; Wang, G.; Shao, Q.; Shi, J.; Zhu, W. Structural insights into HIV-1 protease flap opening processes and key intermediates. RSC Adv. 2017, 7, 45121–45128. [Google Scholar] [CrossRef]
- Huang, L.; Chen, C. Understanding HIV-1 protease autoprocessing for novel therapeutic development. Future Med. Chem. 2013, 5, 1215–1229. [Google Scholar] [CrossRef]
- Henes, M.; Lockbaum, G.J.; Kosovrasti, K.; Leidner, F.; Nachum, G.S.; Nalivaika, E.A.; Lee, S.K.; Spielvogel, E.; Zhou, S.; Swanstrom, R.; et al. Picomolar to Micromolar: Elucidating the Role of Distal Mutations in HIV-1 Protease in Conferring Drug Resistance. ACS Chem. Biol. 2019, 14, 2441–2452. [Google Scholar] [CrossRef]
- Wu, T.D.; Schiffer, C.A.; Gonzales, M.J.; Taylor, J.; Kantor, R.; Chou, S.; Israelski, D.; Zolopa, A.R.; Fessel, W.J.; Shafer, R.W. Mutation patterns and structural correlates in human immunodeficiency virus type 1 protease following different protease inhibitor treatments. J. Virol. 2003, 77, 4836–4847. [Google Scholar] [CrossRef] [PubMed]
- Johnson, V.A.; Calvez, V.; Günthard, H.F.; Paredes, R.; Pillay, D.; Shafer, R.; Wensing, A.M.; Richman, D.D. 2011 update of the drug resistance mutations in HIV-1. HIV Med. Top. Antivir. Med. 2010, 18, 156–163. [Google Scholar]
- Bastys, T.; Gapsys, V.; Walter, H.; Heger, E.; Doncheva, N.T.; Kaiser, R.; de Groot, B.L.; Kalinina, O.V. Non-active site mutants of HIV-1 protease influence resistance and sensitisation towards protease inhibitors. Retrovirology 2020, 17, 1–14. [Google Scholar] [CrossRef]
- Piana, S.; Carloni, P.; Rothlisberger, U. Drug resistance in HIV-1 protease: Flexibility-assisted mechanism of compensatory mutations. Protein Sci. 2002, 11, 2393–2402. [Google Scholar] [CrossRef]
- Chang, M.W.; Torbett, B.E. Accessory mutations maintain stability in drug-resistant HIV-1 protease. J. Mol. Biol. 2011, 410, 756–760. [Google Scholar] [CrossRef]
- de Vera, I.M.; Smith, A.N.; Dancel, M.C.; Huang, X.; Dunn, B.M.; Fanucci, G.E. Elucidating a relationship between conformational sampling and drug resistance in HIV-1 protease. Biochemistry. 2013, 52, 3278–3288. [Google Scholar] [CrossRef]
- Wang, Y.; Dewdney, T.G.; Liu, Z.; Reiter, S.J.; Brunzelle, J.S.; Kovari, I.A.; Kovari, L.C. Higher desolvation energy reduces molecular recognition in multi-drug resistant HIV-1 protease. Biology 2012, 1, 81–93. [Google Scholar] [CrossRef]
- Oehme, D.P.; Wilson, D.J.; Brownlee, R.T. Effect of Structural Stress on the Flexibility and Adaptability of HIV-1 Protease. J. Chem. Inf. Model. 2011, 51, 1064–1073. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M.; Hosur, M.V. Adaptability and flexibility of HIV-1 protease. Eur. J. Biochem. 2003, 270, 1231–1239. [Google Scholar] [CrossRef]
- Chetty, S.; Bhakat, S.; Martin, A.J.; Soliman, M.E. Multi-drug resistance profile of PR20 HIV-1 protease is attributed to distorted conformational and drug binding landscape: Molecular dynamics insights. J. Biomol. Struct. Dyn. 2016, 34, 135–151. [Google Scholar] [CrossRef]
- WHO. Access to Antiretroviral Drugs in Low-and Middle-Income Countries: Technical Report; World Health Organization: Geneva, Switzerland, 2014; Available online: https://www.who.int/hiv/pub/amds/access-arv-2014/en/ (accessed on 18 December 2020).
- Wangpatharawanit, P.; Sungkanuparph, S. Switching lopinavir/ritonavir to atazanavir/ritonavir vs. adding atorvastatin in HIV-infected patients receiving second-line antiretroviral therapy with hypercholesterolemia: A randomized controlled trial. Clin. Infect. Dis. 2016, 63, 818–820. [Google Scholar] [CrossRef]
- Wensing, A.M.; Calvez, V.; Ceccherini-Silberstein, F.; Charpentier, C.; Günthard, H.F.; Paredes, R.; Shafer, R.W.; Richman, D.D. 2019 update of the drug resistance mutations in HIV-1. Top Antivir. Med. 2019, 27, 111. [Google Scholar]
- Tang, M.W.; Shafer, R.W. HIV-1 antiretroviral resistance. Drugs 2012, 72, e1–e25. [Google Scholar] [CrossRef] [PubMed]
- Johnson, V.A.; Brun-Vézinet, F.; Clotet, B.; Günthard, H.F.; Kuritzkes, D.R.; Pillay, D.; Schapiro, J.M.; Richman, U.D. Update of the drug resistance mutations in HIV-1: December 2010. Top. HIV Med. 2010, 18, 156–163. [Google Scholar]
- Santos, J.R.; Llibre, J.M.; Imaz, A.; Domingo, P.; Iribarren, J.A.; Mariño, A.; Miralles, C.; Galindo, M.J.; Ornelas, A.; Moreno, S.; et al. Mutations in the protease gene associated with virological failure to lopinavir/ritonavir-containing regimens. J. Antimicrob. Chemother. 2012, 67, 1462–1469. [Google Scholar] [CrossRef]
- Dierynck, I.; De Wit, M.; Gustin, E.; Keuleers, I.; Vandersmissen, J.; Hallenberger, S.; Hertogs, K. Binding kinetics of darunavir to human immunodeficiency virus type 1 protease explain the potent antiviral activity and high genetic barrier. J. Virol. 2007, 81, 13845–13851. [Google Scholar] [CrossRef]
- Obasa, A.E.; Mikasi, S.G.; Brado, D.; Cloete, R.; Singh, K.; Neogi, U.; Jacobs, G.B. Drug Resistance Mutations Against Protease, Reverse Transcriptase and Integrase Inhibitors in People Living With HIV-1 Receiving Boosted Protease Inhibitors in South Africa. Front. Microbiol. 2020, 11, 438. [Google Scholar] [CrossRef]
- Steegen, K.; Bronze, M.; Papathanasopoulos, M.; Van Zyl, G.; Goedhals, D.; Van Vuuren, C.; Macleod, W.; Sanne, I.; Stevens, W.S.; Carmona, S.C. Prevalence of antiretroviral drug resistance in patients who are not responding to protease inhibitor–based treatment: Results from the first national survey in South Africa. J. Infect. Dis. 2016, 214, 1826–1830. [Google Scholar] [CrossRef]
- Wright, J.K.; Brumme, Z.L.; Carlson, J.M.; Heckerman, D.; Kadie, C.M.; Brumme, C.J.; Wang, B.; Losina, E.; Miura, T.; Chonco, F.; et al. Gag-protease-mediated replication capacity in HIV-1 subtype C chronic infection: Associations with HLA type and clinical parameters. J. Virol. 2010, 84, 10820–10831. [Google Scholar] [CrossRef]
- Lockbaum, G.J.; Leidner, F.; Rusere, L.N.; Henes, M.; Kosovrasti, K.; Nachum, G.S.; Nalivaika, E.A.; Ali, A.; Yilmaz, N.K.; Schiffer, C.A. Structural Adaptation of Darunavir Analogues against Primary Mutations in HIV-1 Protease. ACS Infect. Dis. 2019, 5, 316–325. [Google Scholar] [CrossRef] [PubMed]
- Laemmli, U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970, 227, 680–685. [Google Scholar] [CrossRef]
- Velazquez-Campoy, A.; Todd, M.J.; Vega, S.; Freire, E. Catalytic efficiency and vitality of HIV-1 proteases from African viral subtypes. Proc. Natl. Acad. Sci. USA 2001, 98, 6062–6067. [Google Scholar] [CrossRef]
- Velazquez-Campoy, A.; Vega, S.; Freire, E. Amplification of the effects of drug resistance mutations by background polymorphisms in HIV-1 protease from African subtypes. Biochemistry 2002, 41, 8613–8619. [Google Scholar] [CrossRef] [PubMed]
- Lineweaver, H.; Burk, D. The determination of enzyme dissociation constants. J. Am. Chem. Soc. 1934, 56, 658–666. [Google Scholar] [CrossRef]
- Dixon, M. The determination of enzyme inhibitor constants. Biochem. J. 1953, 55, 170–171. [Google Scholar] [CrossRef]
- Dash, C.; Rao, M. Interactions of a novel inhibitor from an extremophilic Bacillus sp. with HIV-1 protease: Implications for the mechanism of inactivation. J. Biol. Chem. 2001, 276, 2487–2493. [Google Scholar] [CrossRef] [PubMed]
- Ronda, L.; Pioselli, B.; Catinella, S.; Salomone, F.; Marchetti, M.; Bettati, S. Quenching of tryptophan fluorescence in a highly scattering solution: Insights on protein localization in a lung surfactant formulation. PLoS ONE 2018, 13, e0201926. [Google Scholar] [CrossRef]
- Lakowicz, J.R. Principles of Fluorescence Spectroscopy; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Burley, S.K.; Berman, H.M.; Christie, C.; Duarte, J.M.; Feng, Z.; Westbrook, J.; Young, J.; Zardecki, C. RCSB Protein Data Bank: Sustaining a living digital data resource that enables breakthroughs in scientific research and biomedical education. Protein Sci. 2018, 27, 316–330. [Google Scholar] [CrossRef]
- Yang, Z.; Lasker, K.; Schneidman-Duhovny, D.; Webb, B.; Huang, C.C.; Pettersen, E.F.; Goddard, T.D.; Meng, E.C.; Sali, A.; Ferrin, T.E. UCSF Chimera, MODELLER, and IMP: An integrated modeling system. J. Struct. Biol. 2012, 179, 269–278. [Google Scholar] [CrossRef]
- Kim, S.; Thiessen, P.A.; Bolton, E.E.; Chen, J.; Fu, G.; Gindulyte, A.; Han, L.; He, J.; He, S.; Shoemaker, B.A.; et al. PubChem substance and compound databases. Nucleic Acids Res. 2016, 44, D1202–D1213. [Google Scholar] [CrossRef]
- Hanwell, M.D.; Curtis, D.E.; Lonie, D.C.; Vandermeersch, T.; Zurek, E.; Hutchison, G.R. Avogadro: An advanced semantic chemical editor, visualization, and analysis platform. J. Cheminform. 2012, 4, 17. [Google Scholar] [CrossRef] [PubMed]
- Nair, P.C.; Miners, J.O. Molecular dynamics simulations: From structure function relationships to drug discovery. Silico Pharmacol. 2014, 2, 4. [Google Scholar] [CrossRef] [PubMed]
- Kehinde, I.; Ramharack, P.; Nlooto, M.; Gordon, M.L. The pharmacokinetic properties of HIV-1 protease inhibitors: A computational perspective on herbal phytochemicals. Heliyon 2019, 5, e02565. [Google Scholar] [CrossRef]
- Shunmugam, L.; Soliman, M.E. Targeting HCV polymerase: A structural and dynamic perspective into the mechanism of selective covalent inhibition. RSC Adv. 2018, 8, 42210–42222. [Google Scholar] [CrossRef]
- Karnati, K.R.; Wang, Y. Modelling. Structural and binding insights into HIV-1 protease and P2-ligand interactions through molecular dynamics simulations, binding free energy and principal component analysis. J. Mol. Graph. Model. 2019, 92, 112–122. [Google Scholar] [CrossRef]
- Chen, J.; Liang, Z.; Wang, W.; Yi, C.; Zhang, S.; Zhang, Q. Revealing origin of decrease in potency of darunavir and amprenavir against HIV-2 relative to HIV-1 protease by molecular dynamics simulations. Sci. Rep. 2014, 4, 6872. [Google Scholar] [CrossRef]
- Seifert, E. OriginPro 9.1: Scientific data analysis and graphing software-software review. J. Chem. Inf. Model. 2014, 54, 1552. [Google Scholar] [CrossRef]
- Ylilauri, M.; Pentikäinen, O.T. MMGBSA as a tool to understand the binding affinities of filamin-peptide interactions. J. Chem. Inf. Model. 2013, 53, 2626–2633. [Google Scholar] [CrossRef]
- Hayes, J.M.; Archontis, G. MM-GB (PB) SA calculations of protein-ligand binding free energy. In Molecular Dynamic-Studies of Synthetic and Biological Molecules; IntechOpen: Washington, DC, USA, 2012; pp. 171–190. [Google Scholar]
- Shafer, R.W.; Jung, D.R.; Betts, B.J. Human immunodeficiency virus type 1 reverse transcriptase and protease mutation search engine for queries. Nat. Med. 2000, 6, 1290–1292. [Google Scholar] [CrossRef] [PubMed]
- Bekale, L.; Chanphai, P.; Sanyakamdhorn, S.; Agudelo, D.; Tajmir-Riahi, H. Microscopic and thermodynamic analysis of PEG–β-lactoglobulin interaction. RSC Adv. 2014, 4, 31084–31093. [Google Scholar] [CrossRef]
- Maseko, S.B.; Padayachee, E.; Govender, T.; Sayed, Y.; Kruger, G.; Maguire, G.E.; Lin, J. I36T↑ T mutation in South African subtype C (C-SA) HIV-1 protease significantly alters protease-drug interactions. Biol. Chem. 2017, 398, 1109–1117. [Google Scholar] [CrossRef]
- Eche, S.; Gordon, M.L. Recombinant expression of HIV-1 protease using soluble fusion tags in Escherichia coli: A vital tool for functional characterization of HIV-1 protease. Virus Res. 2021, 295, 198289. [Google Scholar] [CrossRef]
- Prabu-Jeyabalan, M.; Nalivaika, E.A.; Romano, K.; Schiffer, C.A. Mechanism of substrate recognition by drug-resistant human immunodeficiency virus type 1 protease variants revealed by a novel structural intermediate. J. Virol. 2006, 80, 3607–3616. [Google Scholar] [CrossRef] [PubMed]
- Šašková, K.G.; Kožíšek, M.; Lepšík, M.; Brynda, J.; Řezáčová, P.; Václavíková, J.; Kagan, R.M.; Machala, L.; Konvalinka, J. Enzymatic and structural analysis of the I47A mutation contributing to the reduced susceptibility to HIV protease inhibitor lopinavir. Protein Sci. 2008, 17, 1555–1564. [Google Scholar] [CrossRef] [PubMed]
- Ohtaka, H.; Schön, A.; Freire, E. Multidrug resistance to HIV-1 protease inhibition requires cooperative coupling between distal mutations. Biochemistry 2003, 42, 13659–13666. [Google Scholar] [CrossRef]
- Gulnik, S.V.; Suvorov, L.I.; Liu, B.; Yu, B.; Anderson, B.; Mitsuya, H.; Erickson, J.W. Kinetic characterization and cross-resistance patterns of HIV-1 protease mutants selected under drug pressure. Biochemistry 1995, 34, 9282–9287. [Google Scholar] [CrossRef]
- Fernàndez, G.; Clotet, B.; Martínez, M.A. Fitness landscape of human immunodeficiency virus type 1 protease quasispecies. J. Virol. 2007, 81, 2485–2496. [Google Scholar] [CrossRef]
- Parera, M.; Fernandez, G.; Clotet, B.; Martínez, M.A. HIV-1 protease catalytic efficiency effects caused by random single amino acid substitutions. Mol. Biol. Evol. 2007, 24, 382–387. [Google Scholar] [CrossRef]
- Guo, B.; Bi, Y. Cloning PCR products: An overview. Methods Mol. Biol. 2002, 192, 111–119. [Google Scholar] [PubMed]
- Lin, Y.; Lin, X.; Hong, L.; Foundling, S.; Heinrikson, R.L.; Thaisrivongs, S.; Leelamanit, W.; Raterman, D.; Shah, M. Effect of point mutations on the kinetics and the inhibition of human immunodeficiency virus type 1 protease: Relationship to drug resistance. Biochemistry 1995, 34, 1143–1152. [Google Scholar] [CrossRef] [PubMed]
- Lefebvre, E.; Schiffer, C.A. Resilience to resistance of HIV-1 protease inhibitors: Profile of darunavir. AIDS Rev. 2008, 10, 131. [Google Scholar] [PubMed]
- Santos, J.R.; Cozzi-Lepri, A.; Phillips, A.; De Wit, S.; Pedersen, C.; Reiss, P.; Blaxhult, A.; Lazzarin, A.; Sluzhynska, M.; Orkin, C.; et al. Long-term effectiveness of recommended boosted protease inhibitor-based antiretroviral therapy in Europe. HIV Med. 2018, 19, 324–338. [Google Scholar] [CrossRef] [PubMed]
- Venter, W.D.; Moorhouse, M.; Sokhela, S.; Serenata, C.; Akpomiemie, G.; Qavi, A.; Mashabane, N.; Arulappan, N.; Sim, J.W.; Sinxadi, P.Z.; et al. Low-dose ritonavir-boosted darunavir once daily versus ritonavir-boosted lopinavir for participants with less than 50 HIV RNA copies per mL (WRHI 052): A randomised, open-label, phase 3, non-inferiority trial. Lancet HIV 2019, 6, e428–e437. [Google Scholar] [CrossRef]
- Lv, Z.; Chu, Y.; Wang, Y. HIV protease inhibitors: A review of molecular selectivity and toxicity. HIV AIDS 2015, 7, 95–104. [Google Scholar]
- Williams, A.; Basson, A.; Achilonu, I.; Dirr, H.W.; Morris, L.; Sayed, Y. Double trouble? Gag in conjunction with double insert in HIV protease contributes to reduced DRV susceptibility. Biochem. J. 2019, 476, 375–384. [Google Scholar] [CrossRef]
- Park, J.H.; Sayer, J.M.; Aniana, A.; Yu, X.; Weber, I.T.; Harrison, R.W.; Louis, J.M. Binding of clinical inhibitors to a model precursor of a rationally selected multidrug resistant HIV-1 protease is significantly weaker than that to the released mature enzyme. Biochemistry 2016, 55, 2390–2400. [Google Scholar] [CrossRef] [PubMed]
- Kneller, D.W.; Agniswamy, J.; Harrison, R.W.; Weber, I.T. Highly drug-resistant HIV-1 protease reveals decreased intra-subunit interactions due to clusters of mutations. FEBS J. 2020, 287, 3235–3254. [Google Scholar] [CrossRef]
- Weber, I.T.; Kneller, D.W.; Wong-Sam, A. Highly resistant HIV-1 proteases and strategies for their inhibition. Future Med. Chem. 2015, 7, 1023–1038. [Google Scholar] [CrossRef]
- Häggblom, A.; Svedhem, V.; Singh, K.; Sönnerborg, A.; Neogi, U. Virological failure in patients with HIV-1 subtype C receiving antiretroviral therapy: An analysis of a prospective national cohort in Sweden. Lancet HIV 2016, 3, e166–e174. [Google Scholar] [CrossRef]
- Fidy, J.; Laberge, M.; Ullrich, B.; Polgar, L.; Szeltner, Z.; Gallay, J.; Vincent, M. Tryptophan rotamers that report the conformational dynamics of proteins. Pure Appl. Chem. 2001, 73, 415–419. [Google Scholar] [CrossRef]
- Chen, Z.; Li, Y.; Schock, H.B.; Hall, D.; Chen, E.; Kuo, L.C. Three-dimensional structure of a mutant HIV-1 protease displaying cross-resistance to all protease inhibitors in clinical trials. J. Biol. Chem. 1995, 270, 21433–21436. [Google Scholar] [CrossRef]
- Schock, H.B.; Garsky, V.M.; Kuo, L.C. Mutational anatomy of an HIV-1 protease variant conferring cross-resistance to protease inhibitors in clinical trials compensatory modulations of binding and activity. J. Biol. Chem. 1996, 271, 31957–31963. [Google Scholar] [CrossRef]
- van Maarseveen, N.; Boucher, C. Resistance to protease inhibitors. In Antiretroviral Resistance in Clinical Practice; Geretti, A.M., Ed.; Mediscript: London, UK, 2006; Chapter 3. [Google Scholar]
- Matange, N.; Bodkhe, S.; Patel, M.; Shah, P. Trade-offs with stability modulate innate and mutationally acquired drug resistance in bacterial dihydrofolate reductase enzymes. Biochem. J. 2018, 475, 2107–2125. [Google Scholar] [CrossRef] [PubMed]
- Mittal, S.; Cai, Y.; Nalam, M.N.; Bolon, D.N.; Schiffer, C.A. Hydrophobic core flexibility modulates enzyme activity in HIV-1 protease. J. Am. Chem. Soc. 2012, 134, 4163–4168. [Google Scholar] [CrossRef] [PubMed]
- Wong-Sam, A.; Wang, Y.F.; Zhang, Y.; Ghosh, A.K.; Harrison, R.W.; Weber, I.T. Drug Resistance Mutation L76V Alters Nonpolar Interactions at the Flap–Core Interface of HIV-1 Protease. ACS Omega 2018, 3, 12132–12140. [Google Scholar] [CrossRef]
- Ragland, D.A.; Nalivaika, E.A.; Nalam, M.N.; Prachanronarong, K.L.; Cao, H.; Bandaranayake, R.M.; Cai, Y.; Kurt-Yilmaz, N.; Schiffer, C.A. Drug resistance conferred by mutations outside the active site through alterations in the dynamic and structural ensemble of HIV-1 protease. J. Am. Chem. Soc. 2014, 136, 11956–11963. [Google Scholar] [CrossRef]
- Mahalingam, B.; Wang, Y.F.; Boross, P.I.; Tozser, J.; Louis, J.M.; Harrison, R.W.; Weber, I.T. Crystal structures of HIV protease V82A and L90M mutants reveal changes in the indinavir-binding site. Eur. J. Biochem. 2004, 271, 1516–1524. [Google Scholar] [CrossRef] [PubMed]
- Sugiura, W.; Matsuda, Z.; Yokomaku, Y.; Hertogs, K.; Larder, B.; Oishi, T.; Okano, A.; Shiino, T.; Tatsumi, M.; Matsuda, M.; et al. Interference between D30N and L90M in selection and development of protease inhibitor-resistant human immunodeficiency virus type 1. Antimicrob. Agents Chemother. 2002, 46, 708–715. [Google Scholar] [CrossRef] [PubMed]
- Grossman, Z.; Vardinon, N.; Chemtob, D.; Alkan, M.L.; Bentwich, Z.; Burke, M.; Gottesman, G.; Istomin, V.; Levi, I.; Maayan, S.; et al. Genotypic variation of HIV-1 reverse transcriptase and protease: Comparative analysis of clade C and clade B. AIDS 2001, 15, 1453–1460. [Google Scholar] [CrossRef] [PubMed]
- Maphumulo, S.I.; Halder, A.K.; Govender, T.; Maseko, S.; Maguire, G.E.; Honarparvar, B.; Kruger, H.G. Exploring the flap dynamics of the South African HIV subtype C protease in presence of FDA-approved inhibitors: MD study. Chem. Biol. Drug Des. 2018, 92, 1899–1913. [Google Scholar] [CrossRef] [PubMed]
- Halder, A.K.; Honarparvar, B. Molecular alteration in drug susceptibility against subtype B and C-SA HIV-1 proteases: MD study. Struct. Chem. 2019, 30, 1715–1727. [Google Scholar] [CrossRef]
- Huang, X.; Britto, M.D.; Kear-Scott, J.L.; Boone, C.D.; Rocca, J.R.; Simmerling, C.; Mckenna, R.; Bieri, M.; Gooley, P.R.; Dunn, B.M.; et al. The role of select subtype polymorphisms on HIV-1 protease conformational sampling and dynamics. J. Biol. Chem. 2014, 289, 17203–17214. [Google Scholar] [CrossRef]
- Mahanti, M.; Bhakat, S.; Nilsson, U.J.; Söderhjelm, P. Flap dynamics in aspartic proteases: A computational perspective. Chem. Biol. Drug Des. 2016, 88, 159–177. [Google Scholar] [CrossRef]
- Clemente, J.C.; Moose, R.E.; Hemrajani, R.; Whitford, L.R.; Govindasamy, L.; Reutzel, R.; McKenna, R.; Agbandje-McKenna, M.; Goodenow, M.M.; Dunn, B.M. Comparing the accumulation of active-and nonactive-site mutations in the HIV-1 protease. Biochemistry 2004, 43, 12141–12151. [Google Scholar] [CrossRef]
- Liu, F.; Kovalevsky, A.Y.; Louis, J.M.; Boross, P.I.; Wang, Y.F.; Harrison, R.W.; Weber, I.T. Mechanism of drug resistance revealed by the crystal structure of the unliganded HIV-1 protease with F53L mutation. J. Mol. Biol. 2006, 358, 1191–1199. [Google Scholar] [CrossRef]
- Weikl, T.R.; Hemmateenejad, B. Proteomics. How conformational changes can affect catalysis, inhibition and drug resistance of enzymes with induced-fit binding mechanism such as the HIV-1 protease. Biochim. Biophys. Acta 2013, 1834, 867–873. [Google Scholar] [CrossRef]
- Yu, Y.; Wang, J.; Shao, Q.; Shi, J.; Zhu, W. Effects of drug-resistant mutations on the dynamic properties of HIV-1 protease and inhibition by Amprenavir and Darunavir. Sci. Rep. 2015, 5, 10517. [Google Scholar] [CrossRef]
- Agniswamy, J.; Kneller, D.W.; Brothers, R.; Wang, Y.F.; Harrison, R.W.; Weber, I.T. Highly Drug-Resistant HIV-1 Protease Mutant PRS17 Shows Enhanced Binding to Substrate Analogues. ACS Omega 2019, 4, 8707–8719. [Google Scholar] [CrossRef]
HIV-1 PR Variants | Km (µM) | Kcat (S−1) | Kcat/Km (S−1µM−1) | LPV | DRV | ||
---|---|---|---|---|---|---|---|
Ki (nM) | Relative Resistance to LPV | Ki (nM) | Relative Resistance to DRV | ||||
WT | 37.49 ± 0.63 | 0.79 ± 0.11 | 0.021 ± 0.003 | 2.13 ± 0.23 | 1.00 | 1.58 ± 0.11 | 1.00 |
MUT-1 M46I, I54V, V82A, L10F | 67.78 ± 1.22 | 0.48 ± 0.10 | 0.0071 ± 0.001 | 46.50 ± 0.14 | 21.83 | 5.53 ± 0.09 | 3.50 |
MUT-2 M46I, I54V, L76V, V82A, L33F, L10F | 67.46 ± 1.48 | 0.44 ± 0.01 | 0.0065 ± 0.001 | 52.63 ± 0.65 | 24.71 | 7.80 ± 0.71 | 4.94 |
MUT-3 M46I, I54V, L76V, V82A, L90M, F53L | 70.59 ± 1.01 | 0.39 ± 0.01 | 0.0055 ± 0.001 | 76.26 ± 0.09 | 35.80 | 11.53 ± 1.09 | 7.30 |
HIV-1 PR Variants | LPV | DRV | ||
---|---|---|---|---|
Ki (nM) | Ksv (nM−1) | Ki (nM) | Ksv (nM−1) | |
WT | 17.25 | 0.02 | 8.12 | 0.030 |
MUT-1 M46I, I54V, V82A, L10F | 54.74 | 0.004 | 26.34 | 0.01 |
MUT-2 M46I, I54V, L76V, V82A, L10F, L33F | 79.47 | 0.004 | 32.85 | 0.009 |
MUT-3 M46I, I54V, L76V, V82A, L90M, F53L | 113.16 | 0.003 | 44.70 | 0.005 |
Energy Components | PI | WT-DRV | MUT-1-DRV | MUT-2-DRV | MUT-3-DRV |
---|---|---|---|---|---|
ΔEvdw | LPV | −53.35 ± 7.97 | −34.67 ± 5.23 | −34.46 ± 4.39 | −32.96 ± 8.03 |
DRV | −51.27 ± 5.51 | −36.10 ± 5.66 | −32.46 ± 5.23 | −33.13 ± 8.31 | |
ΔEelec | LPV | −26.98 ± 4.65 | −25.89 ± 8.30 | −24.48 ± 5.06 | −25.12 ± 6.21 |
DRV | −29.75 ± 8.55 | −27.32 ±7.74 | −28.91 ± 6.68 | −24.38 ± 8.30 | |
ΔGgas | LPV | −80.33 ± 13.33 | −60.56 ± 9.64 | −58.94 ± 8.28 | −59.08 ± 5.29 |
DRV | −81.02 ± 11.63 | −65.04 ± 10.43 | −61.37 ± 9.80 | −57.53 ± 14.07 | |
ΔGsolv | LPV | 37.08 ± 8.12 | 35.17 ± 5.76 | 35.27 ± 7.93 | 38.80 ± 6.11 |
DRV | 31.83 ± 5.68 | 34.03 ± 7.17 | 35.92 ± 5.21 | 35.93 ± 7.96 | |
ΔGbind | LPV | −43.25 ± 12.30 | −25.39 ± 7.76 | −23.67 ± 4.49 | −20.28 ± 5.53 |
DRV | −48.19 ± 9.28 | −31.51 ± 6.81 | −24.43 ± 6.05 | −21.58 ± 7.58 |
Hydrogen Bond Interaction | Distance (Å) | |||
WT-LPV | MUT-1-LPV | MUT-2-LPV | MUT-3-LPV | |
ARG8:HH21—LPV:O5 | 2.59 | 1.93 | - | - |
ARG107:HH12—LPV:O3 | 1.77 | - | - | - |
ARG107:HH22—LPV:O3 | 2.57 | - | - | - |
ASP25:OD2—LPV:H27 | 1.95 | - | - | - |
ASP25:OD1—LPV:H26 | - | - | - | 2.08 |
ASP29:OD1—LPV:H26 | 2.02 | - | - | - |
ASP29:H—LPV:OD3 | 2.04 | - | - | - |
GLY 48:H—LPV:O2 | - | - | 2.30 | - |
ILE50:H—LPV:O1 | - | 2.20 | - | - |
GLY 150:H—LPV:O4 | - | - | - | 1.93 |
Hydrogen Bond Interaction | Distance (Å) | |||
WT-DRV | MUT-1-DRV | MUT-2-DRV | MUT-3-DRV | |
ARG8:NH1—DRV:O2 | - | - | 2.12 | - |
ASP124:OD2—DRV:H14 | 2.17 | - | - | - |
ASP124:OD2—DRV:H20 | 1.69 | - | - | - |
ASP124:OD2—DRV:H36 | - | - | - | 1.82 |
VAL32:O—DRV:H36 | 2.65 | - | - | - |
GLY 48:H—DRV:O6 | - | 2.73 | - | - |
GLY 48:O—DRV:H14 | - | - | - | 1.91 |
ILE50:H—DRV: O2 | - | 2.06 | 2.04 | 2.31 |
PRO79:O—DRV:H36 | - | 2.03 | - | - |
VAL82:O—DRV:H36 | 1.78 | - | - | - |
ILE 149:H—DRV:O7 | 2.95 | - | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eche, S.; Kumar, A.; Sonela, N.; Gordon, M.L. Acquired HIV-1 Protease Conformational Flexibility Associated with Lopinavir Failure May Shape the Outcome of Darunavir Therapy after Antiretroviral Therapy Switch. Biomolecules 2021, 11, 489. https://doi.org/10.3390/biom11040489
Eche S, Kumar A, Sonela N, Gordon ML. Acquired HIV-1 Protease Conformational Flexibility Associated with Lopinavir Failure May Shape the Outcome of Darunavir Therapy after Antiretroviral Therapy Switch. Biomolecules. 2021; 11(4):489. https://doi.org/10.3390/biom11040489
Chicago/Turabian StyleEche, Simeon, Ajit Kumar, Nelson Sonela, and Michelle L. Gordon. 2021. "Acquired HIV-1 Protease Conformational Flexibility Associated with Lopinavir Failure May Shape the Outcome of Darunavir Therapy after Antiretroviral Therapy Switch" Biomolecules 11, no. 4: 489. https://doi.org/10.3390/biom11040489
APA StyleEche, S., Kumar, A., Sonela, N., & Gordon, M. L. (2021). Acquired HIV-1 Protease Conformational Flexibility Associated with Lopinavir Failure May Shape the Outcome of Darunavir Therapy after Antiretroviral Therapy Switch. Biomolecules, 11(4), 489. https://doi.org/10.3390/biom11040489