Effects on Lignin Redistribution in Eucalyptus globulus Fibres Pre-Treated by Steam Explosion: A Microscale Study to Cellulose Accessibility
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Material
2.2. Steam Explosion Process
2.3. Chemical Characterisation of Samples
2.4. Scanning Electronic Microscopy (SEM)
2.5. Laser-Scanning Confocal Fluorescence Microscopy (LSCM)
2.6. FT-IR Microimaging
2.7. Chemometric Analysis
2.8. Enzymatic Hydrolysis
3. Results and Discussion
3.1. Characterisation of Wood and Pre-Treated Materials
3.2. Enzymatic Hydrolysis
3.3. Microscopic Characterisation of Pre-Treated Material
3.4. Study of Micro-Accessibility of E. globulus Pre-Treated by Steam Explosion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nielsen, F.; Galbe, M.; Zacchi, G.; Wallberg, O. The effect of mixed agricultural feedstocks on steam pretreatment, enzymatic hydrolysis, and cofermentation in the lignocellulose-to-ethanol process. Biomass Convers. Biorefinery 2019. [Google Scholar] [CrossRef] [Green Version]
- Jacquet, N.; Haubruge, E.; Richel, A. Production of biofuels and biomolecules in the framework of circular economy: A regional case study. Waste Manag. Res. 2015, 33, 1121–1126. [Google Scholar] [CrossRef] [PubMed]
- Matsakas, L.; Raghavendran, V.; Yakimenko, O.; Persson, G.; Olsson, E.; Rova, U.; Olsson, L.; Christakopoulos, P. Lignin-first biomass fractionation using a hybrid organosolv—Steam explosion pretreatment technology improves the saccharification and fermentability of spruce biomass. Bioresour. Technol. 2019, 521–528. [Google Scholar] [CrossRef] [PubMed]
- Montipó, S.; Ballesteros, I.; Martins, A.F.; Ballesteros, M.; Camassola, M. Optimisation of uncatalysed steam explosion of lignocellulosic biomasses to obtain both C6- and C5-sugars. Waste Biomass Valorization 2018, 11, 1–14. [Google Scholar] [CrossRef]
- Liu, Z.H.; Qin, L.; Pang, F.; Jin, M.J.; Li, B.Z.; Kang, Y.; Dale, B.E.; Yuan, Y.J. Effects of biomass particle size on steam explosion pretreatment performance for improving the enzyme digestibility of corn stover. Ind. Crops Prod. 2013, 44, 176–184. [Google Scholar] [CrossRef]
- Sui, W.; Chen, H. Study on loading coefficient in steam explosion process of corn stalk. Bioresour. Technol. 2015, 179, 534–542. [Google Scholar] [CrossRef]
- Walker, D.J.; Gallagher, J.; Winters, A.; Somani, A.; Ravella, S.R.; Bryant, D.N. Process optimization of steam explosion parameters on multiple lignocellulosic biomass using taguchi method—A critical appraisal. Front. Energy Res. 2018, 6, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Reinerte, S.; Andzs, M.; Tupciauskas, R.; Veveris, A.; Gravitis, J. Steam explosion as a pre-treatment method for bio-refined hybrid aspen lignocellulose. Environ. Technol. Resour. Proc. Int. Sci. Pract. Conf. 2017, 3, 276. [Google Scholar] [CrossRef]
- Rodríguez, F.; Sanchez, A.; Parra, C. Role of steam explosion on enzymatic digestibility, xylan extraction, and lignin release of lignocellulosic biomass. ACS Sustain. Chem. Eng. 2017, 5, 5234–5240. [Google Scholar] [CrossRef]
- Vargas, R.; Vecchietti, A. Modeling the thermochemical pretreatment of eucalyptus globulus for bioethanol production. Ind. Eng. Chem. Res. 2018, 57, 12458–12467. [Google Scholar] [CrossRef]
- Castro, J.F.; Parra, C.; Yáñez-S, M.; Rojas, J.; Teixeira Mendoncìa, R.; Baeza, J.; Freer, J. Optimal pretreatment of eucalyptus globulus by hydrothermolysis and alkaline extraction for microbial production of ethanol and xylitol. Ind. Eng. Chem. Res. 2013, 52, 5713–5720. [Google Scholar] [CrossRef]
- Marzialetti, T.; Salazar, J.P.; Ocampos, C.; Chandra, R.; Chung, P.; Saddler, J.; Parra, C. Second-generation ethanol in chile: Optimisation of the autohydrolysis of eucalyptus globulus. Biomass Convers. Biorefinery 2014, 4, 125–135. [Google Scholar] [CrossRef]
- Leschinsky, M.; Sixta, H.; Patt, R. Detailed mass balances of the autohydrolysis of eucalyptus globulus at 170 °C. Biouresources 2009, 4, 687–703. [Google Scholar]
- Ramos, L.P.; Breuil, C.; Saddler, J.N.; Kushner, D.J. Steam pretreatment conditions for effective enzymatic hydrolysis and recovery yields of eucalyptus viminalis wood chips. Holzforschung 1992, 46, 149–154. [Google Scholar] [CrossRef]
- Martín-Sampedro, R.; Eugenio, M.E.; García, J.C.; Lopez, F.; Villar, J.C.; Diaz, M.J. Steam explosion and enzymatic pre-treatments as an approach to improve the enzymatic hydrolysis of eucalyptus globulus. Biomass Bioenergy 2012, 42, 97–106. [Google Scholar] [CrossRef]
- Ramos, L.P. The chemistry involved in the steam treatment of lignocellulosic materials. Quim. Nova 2003, 26, 863–871. [Google Scholar] [CrossRef] [Green Version]
- Auxenfans, T.; Crônier, D.; Chabbert, B.; Paës, G. Understanding the Structural and Chemical Changes of Plant Biomass Following Steam Explosion Pretreatment. Biotechnol. Biofuels 2017, 10, 1–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Donohoe, B.S.; Decker, S.R.; Tucker, M.P.; Himmel, M.E.; Vinzant, T.B. Visualizing lignin coalescence and migration through maize cell walls following thermochemical pretreatment. Biotechnol. Bioeng. 2008, 101, 913–925. [Google Scholar] [CrossRef]
- Araya, F.; Troncoso, E.; Mendonça, R.T.; Freer, J. Condensed lignin structures and re-localization achieved at high severities in autohydrolysis of eucalyptus globulus wood and their relationship with cellulose accessibility. Biotechnol. Bioeng. 2015, 112, 1783–1791. [Google Scholar] [CrossRef]
- Arévalo, C.; Freer, J.; Naulin, P.A.; Barrera, N.P.; Troncoso, E.; Araya, J.; Peña-Farfal, C.; Castillo, R.P. Study of the ultrastructure of eucalyptus globulus wood substrates subjected to auto-hydrolysis and diluted acid hydrolysis pre-treatments and its influence on enzymatic hydrolysis. Bioenergy Res. 2017, 10, 714–727. [Google Scholar] [CrossRef]
- Sannigrahi, P.; Kim, D.H.; Jung, S.; Ragauskas, A. Pseudo-lignin and pretreatment chemistry. Energy Environ. Sci. 2011, 4, 1306–1310. [Google Scholar] [CrossRef]
- Kumar, R.; Hu, F.; Sannigrahi, P.; Jung, S.; Ragauskas, A.J.; Wyman, C.E. Carbohydrate derived-pseudo-lignin can retard cellulose biological conversion. Biotechnol. Bioeng. 2013, 110, 737–753. [Google Scholar] [CrossRef]
- Hu, F.; Jung, S.; Ragauskas, A. Pseudo-lignin formation and its impact on enzymatic hydrolysis. Bioresour. Technol. 2012, 117, 7–12. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Pu, Y.; Kumar, R.; Ragauskas, A.J.; Wyman, C.E. Investigation of lignin deposition on cellulose during hydrothermal pretreatment, its effect on cellulose hydrolysis, and underlying mechanisms. Biotechnol. Bioeng. 2014, 111, 485–492. [Google Scholar] [CrossRef] [PubMed]
- Castillo, R.P.; Araya, J.; Troncoso, E.; Vinet, S.; Freer, J. Fourier transform infrared imaging and microscopy studies of pinus radiata pulps regarding the simultaneous saccharification and fermentation process. Anal. Chim. Acta 2015, 866, 10–20. [Google Scholar] [CrossRef]
- Kim, Y.; Kreke, T.; Mosier, N.S.; Ladisch, M.R. Severity factor coefficients for subcritical liquid hot water pretreatment of hardwood chips. Biotechnol. Bioeng. 2014, 111, 254–263. [Google Scholar] [CrossRef]
- Mendonça, R.T.; Jara, J.F.; González, V.; Elissetche, J.P.; Freer, J. Evaluation of the white-rot fungi ganoderma australe and ceriporiopsis subvermispora in biotechnological applications. J. Ind. Microbiol. Biotechnol. 2008, 35, 1323–1330. [Google Scholar] [CrossRef]
- Reyes, P.; Márquez, N.; Troncoso, E.; Parra, C.; Teixeira Mendonça, R.; Rodríguez, J. Evaluation of combined dilute acid-kraft and steam explosion-kraft processes as pretreatment for enzymatic hydrolysis of pinus radiata wood chips. BioResources 2015, 11, 612–625. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Lawoko, M.; Heiningen, A. Van kinetics and mechanism of autohydrolysis of hardwoods. Bioresour. Technol. 2010, 101, 7812–7819. [Google Scholar] [CrossRef]
- Ruiz, E.; Cara, C.; Manzanares, P.; Ballesteros, M.; Castro, E. Evaluation of steam explosion pre-treatment for enzymatic hydrolysis of sunflower stalks. Enzym. Microb. Technol. 2008, 42, 160–166. [Google Scholar] [CrossRef]
- Gourlay, K.; Arantes, V.; Saddler, J.N. Use of substructure-specific carbohydrate binding modules to track changes in cellulose accessibility and surface morphology during the amorphogenesis step of enzymatic hydrolysis. Biotechnol. Biofuels 2012, 5, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Troncoso, E.; Castillo, R.; Valenzuela, R.; Reyes, P.; Freer, J.; Norambuena, M.; Rodríguez, J.; Parra, C. Chemical and microstructural changes in eucalyptus globulus fibers subjected to four different pretreatments and their influence on the enzymatic hydrolysis. J. Chil. Chem. Soc. 2017, 62, 3442–3446. [Google Scholar] [CrossRef] [Green Version]
- Popescu, C.M.; Larsson, P.T.; Olaru, N.; Vasile, C. Spectroscopic study of acetylated kraft pulp fibers. Carbohydr. Polym. 2012, 88, 530–536. [Google Scholar] [CrossRef]
- Pandey, K.K.; Pitman, A.J. FTIR studies of the changes in wood chemistry following decay by brown-rot and white-rot fungi. Int. Biodeterior. Biodegrad. 2003, 52, 151–160. [Google Scholar] [CrossRef]
- Faix, O. Classification of lignins from different botanical origins by FT-IR spectroscopy. Holzforschung 1991, 45, 21–28. [Google Scholar] [CrossRef]
- Kumar, R.; Mago, G.; Balan, V.; Wyman, C.E. Physical and chemical characterizations of corn stover and poplar solids resulting from leading pretreatment technologies. Bioresour. Technol. 2009, 100, 3948–3962. [Google Scholar] [CrossRef]
- Uematsu, M.; Frank, E.U. Static dielectric constant of water and steam. J. Phys. Chem. Ref. Data 1980, 9, 1291–1306. [Google Scholar] [CrossRef]
Pre-Treated Materials | ||||||
---|---|---|---|---|---|---|
Sample | Raw Material | 1 | 2 | 3 | 4 | 5 |
Temperature, °C | -- | 180 | 180 | 200 | 220 | 220 |
Time, min | -- | 9.5 | 36 | 9.5 | 2.0 | 9.5 |
S0, ω = 4.6 | -- | 8.5 | 9.1 | 10.4 | 11.6 | 12.3 |
Solids recovered, % | 86.6 | 77.1 | 72.3 | 69.4 | 67.3 | |
Glucans, % | 45.5 | 44.3 ± 0.8 | 44.5 ± 0.3 | 43.4 ± 0.8 | 42.1 ± 1.0 | 41.1 ± 0.5 |
Xylans, % | 15.3 | 7.1 ± 0.9 | 5.9 ± 0.3 | 3.4 ± 0.4 | 2.0 ± 0.1 | 0.3 ± 0.1 |
Lignin, % | 23.5 | 23.9 ± 0.4 | 23.0 ± 0.1 | 22.5 ± 0.8 | 25.1 ± 0.4 | 25.9 ± 0.1 |
Acetyl groups, % | 3.6 | nd | nd | nd | nd | nd |
Liquid phase | ||||||
Glucans, % | -- | 0.1± 0.0 | 0.3 ± 0.0 | 0.4 ± 0.0 | 0.1 ± 0.0 | 1.1 ± 0.0 |
Xylans, % | -- | 3.5 ± 0.1 | 8.5 ± 0.1 | 11.2 ± 0.2 | 13.8 ± 0.2 | 15.6 ± 0.1 |
Arabinans, % | -- | 0.1 ± 0.0 | 0.1 ± 0.0 | 0.3 ± 0.0 | 0.2 ± 0.0 | 0.1 ± 0.0 |
Acetyl groups, % | 0.6 ± 0.0 | 2.0 ± 0.1 | 3.0 ± 0.0 | 3.4 ± 0.1 | 3.2 ± 0.1 | |
Lignin, % | -- | 1.0 ± 0.1 | 2.4 ± 0.3 | 2.3 ± 0.3 | 1.5 ± 0.2 | 2.1 ± 0.1 |
Formic acid | -- | nd | 0.2 ± 0.0 | 0.5 ± 0.0 | 0.2 ± 0.0 | 0.3 ± 0.0 |
HMF | -- | nd | 0.1 ± 0.0 | 0.2 ± 0.0 | 0.2 ± 0.0 | 0.2 ± 0.0 |
Furfural | -- | 0.1 ± 0.0 | 0.6 ± 0.0 | 1.7 ± 0.1 | 1.1 ± 0.1 | 0.7 ± 0.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Troncoso-Ortega, E.; Castillo, R.d.P.; Reyes-Contreras, P.; Castaño-Rivera, P.; Teixeira Mendonça, R.; Schiappacasse, N.; Parra, C. Effects on Lignin Redistribution in Eucalyptus globulus Fibres Pre-Treated by Steam Explosion: A Microscale Study to Cellulose Accessibility. Biomolecules 2021, 11, 507. https://doi.org/10.3390/biom11040507
Troncoso-Ortega E, Castillo RdP, Reyes-Contreras P, Castaño-Rivera P, Teixeira Mendonça R, Schiappacasse N, Parra C. Effects on Lignin Redistribution in Eucalyptus globulus Fibres Pre-Treated by Steam Explosion: A Microscale Study to Cellulose Accessibility. Biomolecules. 2021; 11(4):507. https://doi.org/10.3390/biom11040507
Chicago/Turabian StyleTroncoso-Ortega, Eduardo, Rosario del P. Castillo, Pablo Reyes-Contreras, Patricia Castaño-Rivera, Regis Teixeira Mendonça, Nicolás Schiappacasse, and Carolina Parra. 2021. "Effects on Lignin Redistribution in Eucalyptus globulus Fibres Pre-Treated by Steam Explosion: A Microscale Study to Cellulose Accessibility" Biomolecules 11, no. 4: 507. https://doi.org/10.3390/biom11040507
APA StyleTroncoso-Ortega, E., Castillo, R. d. P., Reyes-Contreras, P., Castaño-Rivera, P., Teixeira Mendonça, R., Schiappacasse, N., & Parra, C. (2021). Effects on Lignin Redistribution in Eucalyptus globulus Fibres Pre-Treated by Steam Explosion: A Microscale Study to Cellulose Accessibility. Biomolecules, 11(4), 507. https://doi.org/10.3390/biom11040507