Comparison of Anticancer Activity of Dorycnium pentaphyllum Extract on MCF-7 and MCF-12A Cell Line: Correlation with Invasion and Adhesion
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Plant Extract
2.2. Cell Culture
2.3. Detection of Cell Viability by XTT Assay
2.4. RTCA System Measurements
2.5. Matrigel Invasion Assay
2.6. Adhesion Assay
2.7. Lipid Peroxidation
2.8. Bioinformatics
2.9. Statistical Analysis
3. Results
3.1. Cytotoxicity Assay on MCF-7 and MCF-12A Cells
3.2. RTCA System Results
3.3. Role of the Extract on MCF-7 Breast Cancer Cells for Cell Differentiation and Invasion
3.4. Effect of Cell Adhesion Secretion on MCF-7 CELLS
3.5. Effect of the Extract on MDA and GSH Levels
3.6. Bioinformatics
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ferlay, J.; Ervik, M.; Dikshit, R.; Eser, S.; Mathers, C.; Rabelo, M. Cancer Incidence and Mortality Worlwide: IARC Cancer Base No 11; International Agency for Research on Cancer: Lyon, France, 2012. [Google Scholar]
- Bose, S.; Panda, A.K.; Mukherjee, S.; Sa, G. Curcumin and tumor immune-editing: Resurrecting the immune system. Cell Div. 2015, 10, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Das, T.; Sa, G.; Saha, B.; Das, K. Multifocal signal modulation therapy of cancer: Ancient weapon, modern targets. Mol. Cell. Biochem. 2010, 336, 85–95. [Google Scholar] [CrossRef] [PubMed]
- Torre, L.A.; Sauer, A.M.G.; Chen Jr, M.S.; Kagawa-Singer, M.; Jemal, A.; Siegel, R.L. Cancer statistics for Asian Americans, Native Hawaiians, and Pacific Islanders, 2016: Converging incidence in males and females. CA A Cancer J. Clin. 2016, 66, 182–202. [Google Scholar] [CrossRef]
- Behrens, J.; Weidner, K.M.; Frixen, U.H.; Schipper, J.H.; Sachs, M.; Arakaki, N.; Daikuhara, Y.; Birchmeier, W. The role of E-cadherin and scatter factor in tumor invasion and cell motility. In Cell Motility Factors; Springer: Berlin/Heidelberg, Germany, 1991; pp. 109–126. [Google Scholar]
- Frixen, U.H.; Behrens, J.; Sachs, M.; Eberle, G.; Voss, B.; Warda, A.; Löchner, D.; Birchmeier, W. E-cadherin-mediated cell-cell adhesion prevents invasiveness of human carcinoma cells. J. Cell Biol. 1991, 113, 173–185. [Google Scholar] [CrossRef] [Green Version]
- Weinstein, R.S.; Merk, F.B.; Alroy, J. The structure and function of intercellular junctions in cancer. Adv. Cancer Res. 1976, 23, 23–89. [Google Scholar] [PubMed]
- Mollica, A.; Stefanucci, A.; Zengin, G.; Locatelli, M.; Macedonio, G.; Orlando, G.; Ferrante, C.; Menghini, L.; Recinella, L.; Leone, S.; et al. Polyphenolic composition, enzyme inhibitory effects ex-vivo and in-vivo studies on two Brassicaceae of north-central Italy. Biomed. Pharmacother. 2018, 107, 129–138. [Google Scholar] [CrossRef] [PubMed]
- Deferme, L.; Briede, J.; Claessen, S.; Cavill, R.; Kleinjans, J. Cell line-specific oxidative stress in cellular toxicity: A toxicogenomics-based comparison between liver and colon cell models. Toxicol. In Vitro 2015, 29, 845–855. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saw, C.L.-L.; Wu, Q.; Kong, A.-N. Anti-cancer and potential chemopreventive actions of ginseng by activating Nrf2 (NFE2L2) anti-oxidative stress/anti-inflammatory pathways. Chin. Med. 2010, 5, 37. [Google Scholar] [CrossRef] [Green Version]
- Lobo, V.; Patil, A.; Phatak, A.; Chandra, N. Free radicals, antioxidants and functional foods: Impact on human health. Pharmacogn. Rev. 2010, 4, 118. [Google Scholar] [CrossRef] [Green Version]
- Canter, P.H.; Ernst, E. Herbal supplement use by persons aged over 50 years in Britain. Drugs Aging 2004, 21, 597–605. [Google Scholar] [CrossRef]
- Cohen, P.A.; Ernst, E. Safety of herbal supplements: A guide for cardiologists. Cardiovasc. Ther. 2010, 28, 246–253. [Google Scholar] [CrossRef]
- Loya, A.M.; Gonzalez-Stuart, A.; Rivera, J.O. Prevalence of polypharmacy, polyherbacy, nutritional supplement use and potential product interactions among older adults living on the United States-Mexico border. Drugs Aging 2009, 26, 423–436. [Google Scholar] [CrossRef]
- Qato, D.M.; Alexander, G.C.; Conti, R.M.; Johnson, M.; Schumm, P.; Lindau, S.T. Use of prescription and over-the-counter medications and dietary supplements among older adults in the United States. JAMA 2008, 300, 2867–2878. [Google Scholar]
- Lin, D.; Xiao, M.; Zhao, J.; Li, Z.; Xing, B.; Li, X.; Kong, M.; Li, L.; Zhang, Q.; Liu, Y. An overview of plant phenolic compounds and their importance in human nutrition and management of type 2 diabetes. Molecules 2016, 21, 1374. [Google Scholar] [CrossRef]
- Greenwell, M.; Rahman, P. Medicinal plants: Their use in anticancer treatment. Int. J. Pharm. Sci. Res. 2015, 6, 4103. [Google Scholar] [PubMed]
- Kazantzoglou, G.; Magiatis, P.; Panoutsopoulos, G.; Skaltsounis, A.-L. Dorycnioside, a New Phenylbutanone Glucoside from Dorycnium pentaphyllum subsp. herbaceum. Z. Für Nat. C 2004, 59, 23–26. [Google Scholar] [CrossRef]
- Bremner, P.; Rivera, D.; Calzado, M.; Obón, C.; Inocencio, C.; Beckwith, C.; Fiebich, B.; Muñoz, E.; Heinrich, M. Assessing medicinal plants from South-Eastern Spain for potential anti-inflammatory effects targeting nuclear factor-Kappa B and other pro-inflammatory mediators. J. Ethnopharmacol. 2009, 124, 295–305. [Google Scholar] [CrossRef]
- Rigat, M.; Bonet, M.À.; Garcia, S.; Garnatje, T.; Valles, J. Studies on pharmaceutical ethnobotany in the high river Ter valley (Pyrenees, Catalonia, Iberian Peninsula). J. Ethnopharmacol. 2007, 113, 267–277. [Google Scholar] [CrossRef]
- Usta, C.; Yildirim, A.B.; Turker, A.U. Antibacterial and antitumour activities of some plants grown in Turkey. Biotechnol. Biotechnol. Equip. 2014, 28, 306–315. [Google Scholar] [CrossRef]
- Pistelli, L.; Noccioli, C.; Martera, M.; Giamperi, L.; Bucchini, A.; Fraternale, D.; Ricci, D. Antioxidant flavonol glycosides from Dorycnium hirsutum. Chem. Nat. Compd. 2006, 42, 281–284. [Google Scholar] [CrossRef]
- Stefanović, O.D.; Tešić, J.D.; Čomić, L.R. Melilotus albus and Dorycnium herbaceum extracts as source of phenolic compounds and their antimicrobial, antibiofilm, and antioxidant potentials. J. Food Drug Anal. 2015, 23, 417–424. [Google Scholar] [CrossRef] [Green Version]
- Uysal, S.; Aktumsek, A.; Picot, C.M.N.; Sahan, A.; Mollica, A.; Zengin, G.; Fawzi Mahomoodally, M. A comparative in vitro and in silico study of the biological potential and chemical fingerprints of Dorcycinum pentapyllum subsp. haussknechtii using three extraction procedures. New J. Chem. 2017, 41, 13952–13960. [Google Scholar] [CrossRef]
- Demİr, S.; Turan, İ.; Misir, S.; AlİyazicioĞlu, Y. Selective cytotoxic effect of Dorycnium pentaphyllum extract on human breast, liver, and lung cancer cells. Kahramanmaraş Sütçü İmam Üniversitesi Tarım Doğa Dergisi 2019, 22, 473–479. [Google Scholar]
- Demir, S.; Yaman, S.O.; Sener, S.O.; Ayazoglu Demir, E.; Aliyazicioglu, R.; Ozgen, U.; Mentese, A.; Deger, O.; Aliyazicioglu, Y. Dorycnium pentaphyllum extract has antiproliferative effect on human cervix and colon cancer cells. Nutr. Cancer 2020, 72, 504–512. [Google Scholar] [CrossRef]
- Çiçek, C.; Bilgiç, A. Klinik Viroloji laboratuvarinda uzmanlik öğrencisine verilen hücre kültürü eğitim programi: Bir model. İnfeksiyon Derg. 2006, 20, 231–241. [Google Scholar]
- Del Rio, D.; Pellegrini, N.; Colombi, B.; Bianchi, M.; Serafini, M.; Torta, F.; Tegoni, M.; Musci, M.; Brighenti, F. Rapid fluorimetric method to detect total plasma malondialdehyde with mild derivatization conditions. Clin. Chem. 2003, 49, 690–692. [Google Scholar] [CrossRef] [Green Version]
- Beutler, E. Improved method for the determination of blood glutathione. J. Lab. Clin. Med. 1963, 61, 882–888. [Google Scholar]
- Angelini, P.; Venanzoni, R.; Angeles Flores, G.; Tirillini, B.; Orlando, G.; Recinella, L.; Chiavaroli, A.; Brunetti, L.; Leone, S.; Di Simone, S.C. Evaluation of Antioxidant, Antimicrobial and Tyrosinase Inhibitory Activities of Extracts from Tricholosporum goniospermum, an Edible Wild Mushroom. Antibiotics 2020, 9, 513. [Google Scholar] [CrossRef] [PubMed]
- Ferrante, C.; Angelini, P.; Venanzoni, R.; Angeles Flores, G.; Tirillini, B.; Recinella, L.; Chiavaroli, A.; Brunetti, L.; Leone, S.; Di Simone, S.C. Antimicrobial, Antioxidant, and Antiproliferative Effects of Coronilla minima: An Unexplored Botanical Species. Antibiotics 2020, 9, 611. [Google Scholar] [CrossRef] [PubMed]
- Arvelo, F.; Sojo, F.; Cotte, C. Tumour progression and metastasis. Ecancermedicalscience 2016, 10. [Google Scholar] [CrossRef] [Green Version]
- Xiong, Y.; Wu, X.; Rao, L. Tetrastigma hemsleyanum (Sanyeqing) root tuber extracts induces apoptosis in human cervical carcinoma HeLa cells. J. Ethnopharmacol. 2015, 165, 46–53. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.S.; Murugananthan, G.; Rajkapoor, B. Anticarcinogenic potential of ethanol extract of Indigofera cordifolia Roth.(Fabales: Fabaceae) on diethylnitrosamine induced hepatocarcinogenesis in rats. Braz. J. Biol. Sci. 2017, 4, 53–66. [Google Scholar] [CrossRef] [Green Version]
- Lacerda, L.P.; Malaquias, G.; Peron, A.P. Antiproliferative action of aqueous extracts of Hymenaea stigonocarpa Mart.(Fabaceae) on the cell cycle of Allium cepa L. Anais Acad. Bras. Ciências 2014, 86, 1147–1150. [Google Scholar] [CrossRef] [Green Version]
- Al-Hazzani, A.A.; Alshatwi, A.A. Catechin hydrate inhibits proliferation and mediates apoptosis of SiHa human cervical cancer cells. Food Chem. Toxicol. 2011, 49, 3281–3286. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.S.; Wang, H.; Chen, J.X.; Zhang, J. Effects of Tea Catechins on Cancer Signaling Pathways. Enzymes 2014, 36, 195–221. [Google Scholar]
- Yu, Y.; Deng, Y.; Lu, B.M.; Liu, Y.X.; Li, J.; Bao, J.K. Green tea catechins: A fresh flavor to anticancer therapy. Apoptosis 2014, 19, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Sari, L.M. Catechin: Molecular mechanism of Anti-Cancer Effect: Katekin: Mekanisme Molekular Efek Antikanker. Dentika Dent. J. 2019, 22, 20–25. [Google Scholar] [CrossRef]
- Silva, C.; Correia-Branco, A.; Andrade, N.; Ferreira, A.C.; Soares, M.L.; Sonveaux, P.; Stephenne, J.; Martel, F. Selective pro-apoptotic and antimigratory effects of polyphenol complex catechin:lysine 1:2 in breast, pancreatic and colorectal cancer cell lines. Eur. J. Pharmacol. 2019, 859, 172533. [Google Scholar] [CrossRef]
- ben Sghaier, M.; Pagano, A.; Mousslim, M.; Ammari, Y.; Kovacic, H.; Luis, J. Rutin inhibits proliferation, attenuates superoxide production and decreases adhesion and migration of human cancerous cells. Biomed. Pharmacother. 2016, 84, 1972–1978. [Google Scholar] [CrossRef]
- Caparica, R.; Júlio, A.; Araújo, M.E.M.; Baby, A.R.; Fonte, P.; Costa, J.G.; Santos de Almeida, T. Anticancer Activity of Rutin and Its Combination with Ionic Liquids on Renal Cells. Biomolecules 2020, 10, 233. [Google Scholar] [CrossRef] [Green Version]
- Rauf, A.; Imran, M.; Khan, I.A.; ur-Rehman, M.; Gilani, S.A.; Mehmood, Z.; Mubarak, M.S. Anticancer potential of quercetin: A comprehensive review. Phytother. Res. 2018, 32, 2109–2130. [Google Scholar] [CrossRef]
- Gabbert, H.; Wagner, R.; Moll, R.; Gerharz, C.-D. Tumor dedifferentiation: An important step in tumor invasion. Clin. Exp. Metastasis 1985, 3, 257–279. [Google Scholar] [CrossRef] [PubMed]
- Alamer, A.; Ali, D.; Alarifi, S.; Alkahtane, A.; Al-Zharani, M.; Abdel-Daim, M.M.; Albasher, G.; Almeer, R.; Al-Sultan, N.K.; Almalik, A.; et al. Bismuth oxide nanoparticles induce oxidative stress and apoptosis in human breast cancer cells. Environ. Sci. Pollut. Res. Int. 2020. [Google Scholar] [CrossRef] [PubMed]
- Halliwell, B.; Clement, M.V.; Ramalingam, J.; Long, L.H. Hydrogen peroxide. Ubiquitous in cell culture and in vivo? IUBMB Life 2000, 50, 251–257. [Google Scholar] [CrossRef] [PubMed]
- Poh, A.R.; O’Donoghue, R.J.; Ernst, M. Hematopoietic cell kinase (HCK) as a therapeutic target in immune and cancer cells. Oncotarget 2015, 6, 15752. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.; Song, M.; Kundu, J.K.; Lee, M.H.; Liu, Z.Z. PIM Kinase as an Executional Target in Cancer. J. Cancer Prev. 2018, 23, 109–116. [Google Scholar] [CrossRef] [Green Version]
- Ezzati, M.; Yousefi, B.; Velaei, K.; Safa, A. A review on anti-cancer properties of Quercetin in breast cancer. Life Sci. 2020, 117463. [Google Scholar] [CrossRef]
Well | Doubling Time (h) ± Standard Deviation (SD) |
---|---|
MCF-12A cell control | 35.66 ± 3.5 |
MCF-12A—50 μg/mL | 23.42 ± 0.37 |
MCF-12A—25 μg/mL | 28.45 ± 2.72 |
MCF-12A—12.5 μg/mL | 31.57 ± 3.80 |
MCF-7 cell control | 46.53 ± 2.97 |
MCF-7—50 μg/mL | 29.43 ± 0.74 |
MCF-7—25 μg/mL | 34.74 ± 1.12 |
MCF-7—12.5 μg/mL | 39.94 ± 1.54 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koygun, G.; Arslan, E.; Zengin, G.; Orlando, G.; Ferrante, C. Comparison of Anticancer Activity of Dorycnium pentaphyllum Extract on MCF-7 and MCF-12A Cell Line: Correlation with Invasion and Adhesion. Biomolecules 2021, 11, 671. https://doi.org/10.3390/biom11050671
Koygun G, Arslan E, Zengin G, Orlando G, Ferrante C. Comparison of Anticancer Activity of Dorycnium pentaphyllum Extract on MCF-7 and MCF-12A Cell Line: Correlation with Invasion and Adhesion. Biomolecules. 2021; 11(5):671. https://doi.org/10.3390/biom11050671
Chicago/Turabian StyleKoygun, Gözde, Emine Arslan, Gökhan Zengin, Giustino Orlando, and Claudio Ferrante. 2021. "Comparison of Anticancer Activity of Dorycnium pentaphyllum Extract on MCF-7 and MCF-12A Cell Line: Correlation with Invasion and Adhesion" Biomolecules 11, no. 5: 671. https://doi.org/10.3390/biom11050671
APA StyleKoygun, G., Arslan, E., Zengin, G., Orlando, G., & Ferrante, C. (2021). Comparison of Anticancer Activity of Dorycnium pentaphyllum Extract on MCF-7 and MCF-12A Cell Line: Correlation with Invasion and Adhesion. Biomolecules, 11(5), 671. https://doi.org/10.3390/biom11050671