Recent Advances in the Bacterial Flagellar Motor Study
Conflicts of Interest
References
- Minamino, T.; Namba, K. Self-assembly and type III protein export of the bacterial flagellum. J. Mol. Microbiol. Biotechnol. 2004, 7, 5–17. [Google Scholar] [CrossRef]
- Minamino, T.; Imada, K. The bacterial flagellar motor and its structural diversity. Trends Microbiol. 2015, 23, 267–274. [Google Scholar] [CrossRef]
- Terashima, H.; Kawamoto, A.; Morimoto, Y.V.; Imada, K.; Minamino, T. Structural differences in the bacterial flagellar motor among bacterial species. Biophys. Physicobiol. 2017, 14, 191–198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakamura, S.; Minamino, T. Flagella-driven motility of bacteria. Biomolecules 2019, 9, 279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kojima, S.; Terashima, H.; Homma, M. Regulation of the single polar flagellar biogenesis. Biomolecules 2020, 10, 533. [Google Scholar] [CrossRef] [Green Version]
- Halte, M.; Erhardt, M. Protein export via the type III secretion system of the bacterial flagellum. Biomolecules 2021, 11, 186. [Google Scholar] [CrossRef]
- Zhuang, X.Y.; Lo, C.J. Construction and loss of bacterial flagellar filements. Biomolecules 2020, 10, 1528. [Google Scholar] [CrossRef] [PubMed]
- Carroll, B.; Liu, J. Structural conservation and adaptation of the bacterial flagellar motor. Biomolecules 2020, 10, 1492. [Google Scholar] [CrossRef]
- Khan, S. The architectural dynamics of the bacterial flagellar motor switch. Biomolecules 2020, 10, 833. [Google Scholar] [CrossRef]
- Chu, J.; Liu, J.; Hoover, T.R. Phylogenetic distribution, ultrastructure, and function of bacterial flagellar sheaths. Biomolecules 2020, 10, 363. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.J.; Wu, L.F. Flagella and swimming behavior of marine magnetotactic bacteria. Biomolecules 2020, 10, 460. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakamura, S. Spirochete flagella and motility. Biomolecules 2020, 10, 550. [Google Scholar] [CrossRef] [Green Version]
- Camarena, L.; Dreyfus, G. Living in a foster home: The single subpolar flagellum Fla1 of Rhodobacter sphaeroides. Biomolecules 2020, 10, 774. [Google Scholar] [CrossRef] [PubMed]
- Saijo-Hamano, Y.; Matsunami, H.; Namba, K.; Imada, K. Architecture of the bacterial flagellar rod and hook of Salmonella. Biomolecules 2019, 9, 260. [Google Scholar] [CrossRef] [Green Version]
- Horváth, P.; Kato, T.; Miyata, T.; Namba, K. Structue of Salmonella flagellar hook reveals intermolecular domain interactions for the universal joint function. Biomolecules 2019, 9, 462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamaguchi, T.; Toma, S.; Terahara, N.; Miyata, T.; Ashihara, M.; Minamino, T.; Namba, K.; Kato, T. Structural and functional comparison of Salmonella flagellar filaments composed of FljB and FliC. Biomolecules 2020, 10, 246. [Google Scholar] [CrossRef] [Green Version]
- Terashima, H.; Tatsumi, C.; Kawamoto, A.; Namba, K.; Minamino, T.; Imada, K. In vitro autonomous construction of the flagellar axial structure in inverted membrane vesicles. Biomolecules 2020, 10, 126. [Google Scholar] [CrossRef] [Green Version]
- Fulano, A.M.; Shen, D.; Kinoshita, M.; Chou, S.H.; Qian, G. The homologous componenets of flagellar type III protein apparatus have acuired a novel function to control twitching motility in a non-flagellated biocontrol bacterium. Biomolecules 2020, 10, 733. [Google Scholar] [CrossRef]
- Morimoto, Y.V.; Namba, K.; Minamino, T. GFP fusion to the N-terminus of MotB affects the proton channel activity of the bacterial flagellar motor in Salmonella. Biomolecules 2020, 10, 1255. [Google Scholar] [CrossRef] [PubMed]
- Naganawa, S.; Ito, M. MotP subunit is critical for ion selectivity and evolution of a K+-coupled flagellar motor. Biomolecules 2020, 10, 691. [Google Scholar] [CrossRef]
- Onoe, S.; Yoshida, M.; Terahara, N.; Sowa, Y. Coupling ion specificity of the flagellar stator proteins MotA1/MotB1 of Paenibacillus sp. TCA20. Biomolecules 2020, 10, 1078. [Google Scholar] [CrossRef] [PubMed]
- Che, Y.S.; Sagawa, T.; Inoue, Y.; Takahashi, H.; Hamamoto, T.; Ishijima, A.; Fukuoka, H. Fluctuations in intracellular CheY-P concentration coordinate reversals of flagellar motors in E. coli. Biomolecules 2020, 10, 1544. [Google Scholar] [CrossRef]
- Usui, Y.; Wakabayashi, Y.; Shimizu, T.; Tahara, Y.O.; Miyata, M.; Nakamura, A.; Ito, M. A factor produced by Kaistia sp. 32K accelerated the motility of Methylobacterium sp. ME121. Biomolecules 2020, 10, 618. [Google Scholar] [CrossRef]
- Toyotake, Y.; Nishiyama, M.; Yokoyama, F.; Ogawa, T.; Kawamoto, J.; Kurihara, T. A novel lysophosphatidic acid acyltransferase of Escherichia coli produces membrane phospholipids with a cis-vaccenoyl group and is related to flagellar formation. Biomolecules 2020, 10, 745. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Minamino, T.; Namba, K. Recent Advances in the Bacterial Flagellar Motor Study. Biomolecules 2021, 11, 741. https://doi.org/10.3390/biom11050741
Minamino T, Namba K. Recent Advances in the Bacterial Flagellar Motor Study. Biomolecules. 2021; 11(5):741. https://doi.org/10.3390/biom11050741
Chicago/Turabian StyleMinamino, Tohru, and Keiichi Namba. 2021. "Recent Advances in the Bacterial Flagellar Motor Study" Biomolecules 11, no. 5: 741. https://doi.org/10.3390/biom11050741
APA StyleMinamino, T., & Namba, K. (2021). Recent Advances in the Bacterial Flagellar Motor Study. Biomolecules, 11(5), 741. https://doi.org/10.3390/biom11050741