Stem Cell-Based Regeneration and Restoration for Retinal Ganglion Cell: Recent Advancements and Current Challenges
Abstract
:1. Introduction
2. Source Cells for RGC Replacement
3. Stem Cell Strategies in RGC Regeneration and Protection
3.1. Stem Cell Transplantation and Replacement
3.2. Stem Cell-Mediated Neuroprotection
3.3. Endogenous Transdifferentiation and Nerve Repair
3.4. Cellular Materialtransfer
4. Challenges Ahead and Perspective
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Weinreb, R.N.; Aung, T.; Medeiros, F.A. The pathophysiology and treatment of glaucoma: A review. JAMA 2014, 311, 1901–1911. [Google Scholar] [CrossRef] [Green Version]
- Kaminska, A.; Romano, G.L.; Rejdak, R.; Zweifel, S.; Fiedorowicz, M.; Rejdak, M.; Bajka, A.; Amato, R.; Bucolo, C.; Avitabile, T.; et al. In-fluence of Trace Elements on Neurodegenerative Diseases of The Eye-The Glaucoma Model. Int. J. Mol. Sci. 2021, 22, 4323. [Google Scholar] [CrossRef]
- Tham, Y.C.; Li, X.; Wong, T.Y.; Quigley, H.A.; Aung, T.; Cheng, C.Y. Global prevalence of glaucoma and projections of glaucoma burden through 2040: A systematic review and meta-analysis. Ophthalmology 2014, 121, 2081–2090. [Google Scholar] [CrossRef] [PubMed]
- Toro, M.D.; Brézin, A.P.; Burdon, M.; Cummings, A.B.; Kemer, O.E.; Malyugin, B.E.; Prieto, I.; Teus, M.A.; Tognetto, D.; Törnblom, R.; et al. Early impact of COVID-19 outbreak on eye care: Insights from EUROCOVCAT group. Eur. J. Ophthalmol. 2021, 31, 5–9. [Google Scholar] [CrossRef]
- Posarelli, C.; Ortenzio, P.; Ferreras, A.; Toro, M.D.; Passani, A.; Loiudice, P.; Oddone, F.; Casini, G.; Figus, M. Twenty-Four-Hour Contact Lens Sensor Monitoring of Aqueous Humor Dynamics in Surgically or Medically Treated Glaucoma Patients. J. Ophthalmol. 2019, 2019, 9890831. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Posarelli, C.; Toro, M.D.; Rejdak, R.; Żarnowski, T.; Pożarowska, D.; Longo, A.; Miccoli, M.; Nardi, M.; Figus, M. Safety and Efficacy of Second Ahmed Valve Implant in Refractory Glaucoma. J. Clin. Med. 2020, 9, 2039. [Google Scholar] [CrossRef] [PubMed]
- Cockburn, D.M. Does Reduction of Intraocular Pressure (IOP) Prevent Visual Field Loss in Glaucoma? Am. J. Optom. Physiol. Opt. 1983, 60, 705–711. [Google Scholar] [CrossRef]
- The Advanced Glaucoma Intervention Study (AGIS): 7. The relationship between control of intraocular pressure and visual field deterioration. The AGIS Investigators. Am. J. Ophthalmol. 2000, 130, 429–440. [Google Scholar] [CrossRef]
- Stern, J.H.; Tian, Y.; Funderburgh, J.; Pellegrini, G.; Zhang, K.; Goldberg, J.L.; Ali, R.; Young, M.; Xie, Y.; Temple, S. Regenerating Eye Tissues to Preserve and Restore Vision. Cell Stem Cell 2018, 22, 834–849. [Google Scholar] [CrossRef] [Green Version]
- Hua, Z.-Q.; Liu, H.; Wang, N.; Jin, Z.-B. Towards Stem Cell-Based Neuronal Regeneration for Glaucoma; Elsevier: Amsterdam, The Netherlands, 2020; Volume 257, pp. 99–118. [Google Scholar]
- Jin, Z.-B.; Takahashi, M. Generation of retinal cells from pluripotent stem cells. Prog. Brain Res. 2012, 201, 171–181. [Google Scholar] [CrossRef]
- Teotia, P.; Chopra, D.A.; Dravid, S.M.; Van Hook, M.J.; Qiu, F.; Morrison, J.; Rizzino, A.; Ahmad, I. Generation of Functional Human Retinal Ganglion Cells with Target Specificity from Pluripotent Stem Cells by Chemically Defined Recapitulation of Devel-opmental Mechanism. Stem Cells 2017, 35, 572–585. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakano, T.; Ando, S.; Takata, N.; Kawada, M.; Muguruma, K.; Sekiguchi, K.; Saito, K.; Yonemura, S.; Eiraku, M.; Sasai, Y. Self-formation of optic cups and storable stratified neural retina from human ESCs. Cell Stem Cell 2012, 10, 771–785. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eiraku, M.; Takata, N.; Ishibashi, H.; Kawada, M.; Sakakura, E.; Okuda, S.; Sekiguchi, K.; Adachi, T.; Sasai, Y. Self-organizing optic-cup morphogenesis in three-dimensional culture. Nature 2011, 472, 51–56. [Google Scholar] [CrossRef] [PubMed]
- Eiraku, M.; Sasai, Y. Mouse embryonic stem cell culture for generation of three-dimensional retinal and cortical tissues. Nat. Protoc. 2011, 7, 69–79. [Google Scholar] [CrossRef] [PubMed]
- Zhong, X.; Gutierrez, C.; Xue, T.; Hampton, C.; Vergara, M.N.; Cao, L.-H.; Peters, A.; Park, T.S.; Zambidis, E.T.; Meyer, J.; et al. Generation of three-dimensional retinal tissue with functional photoreceptors from human iPSCs. Nat. Commun. 2014, 5, 4047. [Google Scholar] [CrossRef] [Green Version]
- Pan, D.; Xia, X.X.; Zhou, H.; Jin, S.Q.; Lu, Y.Y.; Liu, H.; Gao, M.L.; Jin, Z.B. COCO enhances the efficiency of photoreceptor precursor differentiation in early human embryonic stem cell-derived retinal organoids. Stem Cell Res. Ther. 2020, 11, 366. [Google Scholar] [CrossRef]
- Zhang, X.; Jin, Z.-B. Directed Induction of Retinal Organoids from Human Pluripotent Stem Cells. J. Vis. Exp. 2021, 2021, e62298. [Google Scholar] [CrossRef]
- Li, Y.-P.; Deng, W.-L.; Jin, Z.-B. Modeling retinitis pigmentosa through patient-derived retinal organoids. STAR Protoc. 2021, 2, 100438. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Zhang, Y.; Zhang, Y.-Y.; Li, Y.-P.; Hua, Z.-Q.; Zhang, C.-J.; Wu, K.-C.; Yu, F.; Zhang, Y.; Su, J.; et al. Human embryonic stem cell-derived organoid retinoblastoma reveals a cancerous origin. Proc. Natl. Acad. Sci. USA 2020, 117, 33628–33638. [Google Scholar] [CrossRef]
- Miltner, A.M.; La Torre, A. Retinal Ganglion Cell Replacement: Current Status and Challenges Ahead. Dev. Dyn. 2019, 248, 118–128. [Google Scholar] [CrossRef] [Green Version]
- Hertz, J.; Qu, B.; Hu, Y.; Patel, R.D.; Valenzuela, D.A.; Goldberg, J.L. Survival and Integration of Developing and Progenitor-Derived Retinal Ganglion Cells following Transplantation. Cell Transplant. 2014, 23, 855–872. [Google Scholar] [CrossRef]
- Venugopalan, P.; Wang, Y.; Nguyen, T.; Huang, A.; Muller, K.J.; Goldberg, J.L. Transplanted neurons integrate into adult retinas and respond to light. Nat. Commun. 2016, 7, 10472. [Google Scholar] [CrossRef]
- Gill, K.P.; Hung, S.S.; Sharov, A.; Lo, C.Y.; Needham, K.; Lidgerwood, G.E.; Jackson, S.; Crombie, D.E.; Nayagam, B.A.; Cook, A.L.; et al. En-riched retinal ganglion cells derived from human embryonic stem cells. Sci. Rep. 2016, 6, 30552. [Google Scholar] [CrossRef] [PubMed]
- Aparicio, J.G.; Hopp, H.; Choi, A.; Mandayam Comar, J.; Liao, V.C.; Harutyunyan, N.; Lee, T.C. Temporal expression of CD184(CXCR4) and CD171(L1CAM) identifies distinct early developmental stages of human retinal ganglion cells in embryonic stem cell de-rived retina. Exp. Eye Res. 2017, 154, 177–189. [Google Scholar] [CrossRef] [Green Version]
- Pearson, R.A.; Barber, A.C.; Rizzi, M.; Hippert, C.; Xue, T.; West, E.; Duran, Y.; Smith, A.J.; Chuang, J.Z.; Azam, S.A.; et al. Restoration of vision after transplantation of photoreceptors. Nat. Cell Biol. 2012, 485, 99–103. [Google Scholar] [CrossRef] [Green Version]
- Ringuette, R.; Wang, Y.; Atkins, M.; Mears, A.J.; Yan, K.; Wallace, V.A. Combinatorial Hedgehog and Mitogen Signaling Promotes the In Vitro Expansion but Not Retinal Differentiation Potential of Retinal Progenitor Cells. Investig. Opthalmol. Vis. Sci. 2014, 55, 43–54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Czekaj, M.; Haas, J.; Gebhardt, M.; Müller-Reichert, T.; Humphries, P.; Farrar, J.; Bartsch, U.; Ader, M. In Vitro Expanded Stem Cells from the Developing Retina Fail to Generate Photoreceptors but Differentiate into Myelinating Oligodendrocytes. PLoS ONE 2012, 7, e41798. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gualdoni, S.; Baron, M.; Lakowski, J.; Decembrini, S.; Smith, A.J.; Pearson, R.A.; Ali, R.R.; Sowden, J.C. Adult ciliary epithelial cells, pre-viously identified as retinal stem cells with potential for retinal repair, fail to differentiate into new rod photoreceptors. Stem Cells 2010, 28, 1048–1059. [Google Scholar] [CrossRef]
- Duan, X.; Qiao, M.; Bei, F.; Kim, I.-J.; He, Z.; Sanes, J.R. Subtype-Specific Regeneration of Retinal Ganglion Cells following Axotomy: Effects of Osteopontin and mTOR Signaling. Neuron 2015, 85, 1244–1256. [Google Scholar] [CrossRef] [Green Version]
- Tran, N.M.; Shekhar, K.; Whitney, I.E.; Jacobi, A.; Benhar, I.; Hong, G.; Yan, W.; Adiconis, X.; Arnold, M.E.; Lee, J.M.; et al. Single-Cell Profiles of Retinal Ganglion Cells Differing in Resilience to Injury Reveal Neuroprotective Genes. Neuron 2019, 104, 1039–1055.e1012. [Google Scholar] [CrossRef]
- Collin, J.; Queen, R.; Zerti, D.; Dorgau, B.; Hussain, R.; Coxhead, J.; Cockell, S.; Lako, M. Deconstructing Retinal Organoids: Single Cell RNA-Seq Reveals the Cellular Components of Human Pluripotent Stem Cell-Derived Retina. Stem Cells 2019, 37, 593–598. [Google Scholar] [CrossRef] [Green Version]
- Zerti, D.; Collin, J.; Queen, R.; Cockell, S.J.; Lako, M. Understanding the complexity of retina and pluripotent stem cell derived retinal organoids with single cell RNA sequencing: Current progress, remaining challenges and future prospective. Curr. Eye Res. 2020, 45, 385–396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Langer, K.B.; Ohlemacher, S.K.; Phillips, M.J.; Fligor, C.M.; Jiang, P.; Gamm, D.M.; Meyer, J.S. Retinal Ganglion Cell Diversity and Subtype Specification from Human Pluripotent Stem Cells. Stem Cell Rep. 2018, 10, 1282–1293. [Google Scholar] [CrossRef] [Green Version]
- Fu, M.; Zhu, B.; Sun, X.; Luo, D. The role of induced pluripotent stem cell (IPs) in the transplantation of glaucoma. Med. Glas. 2014, 11, 289–294. [Google Scholar]
- Divya, M.S.; Rasheed, V.A.; Schmidt, T.; Lalitha, S.; Hattar, S.; James, J. Intraocular Injection of ES Cell-Derived Neural Progenitors Improve Visual Function in Retinal Ganglion Cell-Depleted Mouse Models. Front. Cell. Neurosci. 2017, 11, 295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oswald, J.; Kegeles, E.; Minelli, T.; Volchkov, P.; Baranov, P. Transplantation of miPSC/mESC-derived retinal ganglion cells into healthy and glaucomatous retinas. Mol. Ther. Methods Clin. Dev. 2021, 21, 180–198. [Google Scholar] [CrossRef]
- Singhal, S.; Bhatia, B.; Jayaram, H.; Becker, S.; Jones, M.F.; Cottrill, P.B.; Khaw, P.T.; Salt, T.E.; Limb, G.A. Human Muller glia with stem cell characteristics differentiate into retinal ganglion cell (RGC) precursors in vitro and partially restore RGC function in vivo fol-lowing transplantation. Stem Cells Transl. Med. 2012, 1, 188–199. [Google Scholar] [CrossRef]
- Suen, H.C.; Qian, Y.; Liao, J.; Luk, C.S.; Lee, W.T.; Ng, J.K.W.; Chan, T.T.H.; Hou, H.W.; Li, I.; Li, K.; et al. Transplantation of Retinal Ganglion Cells Derived from Male Germline Stem Cell as a Potential Treatment to Glaucoma. Stem Cells Dev. 2019, 28, 1365–1375. [Google Scholar] [CrossRef]
- Eastlake, K.; Wang, W.; Jayaram, H.; Murray-Dunning, C.; Carr, A.J.F.; Ramsden, C.M.; Vugler, A.; Gore, K.; Clemo, N.; Stewart, M.; et al. Phenotypic and Functional Characterization of Muller Glia Isolated from Induced Pluripotent Stem Cell-Derived Retinal Or-ganoids: Improvement of Retinal Ganglion Cell Function upon Transplantation. Stem Cells Transl. Med. 2019, 8, 775–784. [Google Scholar]
- Chao, J.R.; Lamba, D.A.; Klesert, T.R.; Torre, A.; Hoshino, A.; Taylor, R.J.; Jayabalu, A.; Engel, A.L.; Khuu, T.H.; Wang, R.K.; et al. Trans-plantation of Human Embryonic Stem Cell-Derived Retinal Cells into the Subretinal Space of a Non-Human Primate. Transl. Vis. Sci. Technol. 2017, 6, 4. [Google Scholar] [CrossRef]
- Song, W.-T.; Zhang, X.-Y.; Xia, X.-B. Atoh7 promotes the differentiation of Müller cells-derived retinal stem cells into retinal ganglion cells in a rat model of glaucoma. Exp. Biol. Med. 2015, 240, 682–690. [Google Scholar] [CrossRef] [Green Version]
- He, Y.; Li, H.-B.; Li, X.; Zhou, Y.; Xia, X.-B.; Song, W.-T. MiR-124 Promotes the Growth of Retinal Ganglion Cells Derived from Müller Cells. Cell. Physiol. Biochem. 2018, 45, 973–983. [Google Scholar] [CrossRef]
- Aoki, H.; Hara, A.; Niwa, M.; Motohashi, T.; Suzuki, T.; Kunisada, T. Transplantation of cells from eye-like structures differentiated from embryonic stem cells in vitro and in vivo regeneration of retinal ganglion-like cells. Graefes Arch. Clin. Exp. Ophthalmol. 2007, 246, 255–265. [Google Scholar] [CrossRef]
- Hambright, D.; Park, K.-Y.; Brooks, M.; McKay, R.; Swaroop, A.; Nasonkin, I.O. Long-term survival and differentiation of retinal neurons derived from human embryonic stem cell lines in un-immunosuppressed mouse retina. Mol. Vis. 2012, 18, 920–936. [Google Scholar]
- Zhang, X.; Tenerelli, K.; Wu, S.; Xia, X.; Yokota, S.; Sun, C.; Galvao, J.; Venugopalan, P.; Li, C.; Madaan, A.; et al. Cell transplantation of retinal ganglion cells derived from hESCs. Restor. Neurol. Neurosci. 2020, 38, 131–140. [Google Scholar] [CrossRef]
- Banin, E.; Obolensky, A.; Idelson, M.; Hemo, I.; Reinhardtz, E.; Pikarsky, E.; Reubinoff, B.; Ben-Hur, T. Retinal Incorporation and Differentiation of Neural Precursors Derived from Human Embryonic Stem Cells. Stem Cells 2006, 24, 246–257. [Google Scholar] [CrossRef] [Green Version]
- Yu, S.; Tanabe, T.; Dezawa, M.; Ishikawa, H.; Yoshimura, N. Effects of bone marrow stromal cell injection in an experimental glaucoma model. Biochem. Biophys. Res. Commun. 2006, 344, 1071–1079. [Google Scholar] [CrossRef]
- Su, W.; Li, Z.; Jia, Y.; Zhu, Y.; Cai, W.; Wan, P.; Zhang, Y.; Zheng, S.G.; Zhuo, Y. microRNA-21a-5p/PDCD4 axis regulates mesenchymal stem cell-induced neuroprotection in acute glaucoma. J. Mol. Cell Biol. 2017, 9, 289–301. [Google Scholar] [CrossRef] [Green Version]
- Mead, B.; Hill, L.; Blanch, R.J.; Ward, K.; Logan, A.; Berry, M.; Leadbeater, W.; Scheven, B.A. Mesenchymal stromal cell–mediated neuroprotection and functional preservation of retinal ganglion cells in a rodent model of glaucoma. Cytotherapy 2016, 18, 487–496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, Y.; Tan, H.B.; Wang, X.M.; Rong, H.; Cui, H.P.; Cui, H. Bone marrow mesenchymal stem cells protect against retinal ganglion cell loss in aged rats with glaucoma. Clin. Interv. Aging 2013, 8, 1467–1470. [Google Scholar] [PubMed] [Green Version]
- Osborne, A.; Sanderson, J.; Martin, K.R. Neuroprotective Effects of Human Mesenchymal Stem Cells and Platelet-Derived Growth Factor on Human Retinal Ganglion Cells. Stem Cells 2018, 36, 65–78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mead, B.; Logan, A.; Berry, M.; Leadbeater, W.; Scheven, B.A. Intravitreally transplanted dental pulp stem cells promote neuro-protection and axon regeneration of retinal ganglion cells after optic nerve injury. Investig. Ophthalmol. Vis. Sci. 2013, 54, 7544–7556. [Google Scholar] [CrossRef] [Green Version]
- Osborne, A.; Khatib, T.Z.; Songra, L.; Barber, A.C.; Hall, K.; Kong, G.Y.X.; Widdowson, P.S.; Martin, K.R. Neuroprotection of retinal gan-glion cells by a novel gene therapy construct that achieves sustained enhancement of brain-derived neurotrophic fac-tor/tropomyosin-related kinase receptor-B signaling. Cell Death Dis. 2018, 9, 1007. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harper, M.M.; Grozdanic, S.D.; Blits, B.; Kuehn, M.H.; Zamzow, D.; Buss, J.; Kardon, R.; Sakaguchi, D.S. Transplantation of BDNF-Secreting Mesenchymal Stem Cells Provides Neuroprotection in Chronically Hypertensive Rat Eyes. Investig. Opthalmol. Vis. Sci. 2011, 52, 4506–4515. [Google Scholar] [CrossRef] [PubMed]
- Levkovitch-Verbin, H.; Sadan, O.; Vander, S.; Rosner, M.; Barhum, Y.; Melamed, E.; Offen, D.; Melamed, S. Intravitreal Injections of Neurotrophic Factors Secreting Mesenchymal Stem Cells Are Neuroprotective in Rat Eyes following Optic Nerve Transection. Investig. Opthalmol. Vis. Sci. 2010, 51, 6394–6400. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kalluri, R.; LeBleu, V.S. The biology, function, and biomedical applications of exosomes. Science 2020, 367, 6478. [Google Scholar] [CrossRef] [PubMed]
- Mead, B.; Tomarev, S. Bone Marrow-Derived Mesenchymal Stem Cells-Derived Exosomes Promote Survival of Retinal Ganglion Cells Through miRNA-Dependent Mechanisms. Stem Cells Transl. Med. 2017, 6, 1273–1285. [Google Scholar] [CrossRef] [PubMed]
- Mathew, B.; Ravindran, S.; Liu, X.; Torres, L.; Chennakesavalu, M.; Huang, C.C.; Feng, L.; Zelka, R.; Lopez, J.; Sharma, M.; et al. Mesen-chymal stem cell-derived extracellular vesicles and retinal ischemia-reperfusion. Biomaterials 2019, 197, 146–160. [Google Scholar] [CrossRef] [PubMed]
- Mead, B.; Ahmed, Z.; Tomarev, S. Mesenchymal Stem Cell–Derived Small Extracellular Vesicles Promote Neuroprotection in a Genetic DBA/2J Mouse Model of Glaucoma. Investig. Opthalmol. Vis. Sci. 2018, 59, 5473–5480. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jindal, N.; Banik, A.; Prabhakar, S.; Vaiphie, K.; Anand, A. Alteration of Neurotrophic Factors After Transplantation of Bone Marrow Derived Lin-ve Stem Cell in NMDA-Induced Mouse Model of Retinal Degeneration. J. Cell. Biochem. 2017, 118, 1699–1711. [Google Scholar] [CrossRef]
- Ma, J.; Guo, C.; Guo, C.; Sun, Y.; Liao, T.; Beattie, U.; López, F.J.; Chen, D.F.; Lashkari, K. Transplantation of Human Neural Progenitor Cells Expressing IGF-1 Enhances Retinal Ganglion Cell Survival. PLoS ONE 2015, 10, e0125695. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, N.; Zeng, M.; Ruan, Y.; Wu, H.; Chen, J.; Fan, Z.; Zhen, H. Protection of retinal ganglion cells against glaucomatous neuropathy by neurotrophin-producing, genetically modified neural progenitor cells in a rat model. Chin. Med. J. 2002, 115, 1394–1400. [Google Scholar] [PubMed]
- Bernardos, R.L.; Barthel, L.K.; Meyers, J.R.; Raymond, P.A. Late-stage neuronal progenitors in the retina are radial Muller glia that function as retinal stem cells. J. Neurosci. 2007, 27, 7028–7040. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, W.-T.; Zhang, X.-Y.; Xia, X.-B. Atoh7 promotes the differentiation of retinal stem cells derived from Müller cells into retinal ganglion cells by inhibiting Notch signaling. Stem Cell Res. Ther. 2013, 4, 94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, H.; Su, J.; Hu, X.; Zhou, C.; Li, H.; Chen, Z.; Xiao, Q.; Wang, B.; Wu, W.; Sun, Y.; et al. Glia-to-Neuron Conversion by CRISPR-CasRx Alleviates Symptoms of Neurological Disease in Mice. Cell 2020, 181, 590–603.e516. [Google Scholar] [CrossRef] [PubMed]
- Xiao, D.; Qiu, S.; Huang, X.; Zhang, R.; Lei, Q.; Huang, W.; Chen, H.; Gou, B.; Tie, X.; Liu, S.; et al. Directed robust generation of functional retinal ganglion cells from M€uller glia. bioRxiv 2019. [Google Scholar] [CrossRef]
- Lu, Y.; Brommer, B.; Tian, X.; Krishnan, A.; Meer, M.; Wang, C.; Vera, D.L.; Zeng, Q.; Yu, D.; Bonkowski, M.S.; et al. Reprogramming to recover youthful epigenetic information and restore vision. Nat. Cell Biol. 2020, 588, 124–129. [Google Scholar] [CrossRef]
- Pearson, R.A.; Gonzalez-Cordero, A.; West, E.L.; Ribeiro, J.R.; Aghaizu, N.; Goh, D.; Sampson, R.D.; Georgiadis, A.; Waldron, P.V.; Duran, Y.; et al. Donor and host photoreceptors engage in material transfer following transplantation of post-mitotic photoreceptor precursors. Nat. Commun. 2016, 7, 13029. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, D.; Chen, F.-X.; Zhou, H.; Lu, Y.-Y.; Tan, H.; Yu, S.-J.; Yuan, J.; Liu, H.; Meng, W.; Jin, Z.-B. Bioenergetic Crosstalk between Mesenchymal Stem Cells and various Ocular Cells through the intercellular trafficking of Mitochondria. Theranostics 2020, 10, 7260–7272. [Google Scholar] [CrossRef]
- Santos-Ferreira, T.; Llonch, S.; Borsch, O.; Postel, K.; Haas, J.; Ader, M. Retinal transplantation of photoreceptors results in donor–host cytoplasmic exchange. Nat. Commun. 2016, 7, 13028. [Google Scholar] [CrossRef] [Green Version]
- Singh, M.S.; Balmer, J.; Barnard, A.R.; Aslam, S.A.; Moralli, D.; Green, C.M.; Barnea-Cramer, A.; Duncan, I.; MacLaren, R. Transplanted photoreceptor precursors transfer proteins to host photoreceptors by a mechanism of cytoplasmic fusion. Nat. Commun. 2016, 7, 13537. [Google Scholar] [CrossRef] [Green Version]
- Zou, T.; Gao, L.; Zeng, Y.; Li, Q.; Li, Y.; Chen, S.; Hu, X.; Chen, X.; Fu, C.; Xu, H.; et al. Organoid-derived C-Kit+/SSEA4− human retinal progenitor cells promote a protective retinal microenvironment during transplantation in rodents. Nat. Commun. 2019, 10, 1–17. [Google Scholar] [CrossRef]
- Suzuki, D.; Flahou, C.; Yoshikawa, N.; Stirblyte, I.; Hayashi, Y.; Sawaguchi, A.; Akasaka, M.; Nakamura, S.; Higashi, N.; Xu, H.; et al. iPSC-Derived Platelets Depleted of HLA Class I Are Inert to Anti-HLA Class I and Natural Killer Cell Immunity. Stem Cell Rep. 2020, 14, 49–59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deng, W.L.; Gao, M.L.; Lei, X.L.; Lv, J.N.; Zhao, H.; He, K.W.; Xia, X.X.; Li, L.Y.; Chen, Y.C.; Li, Y.P.; et al. Gene Correction Reverses Ciliopathy and Photoreceptor Loss in iPSC-Derived Retinal Organoids from Retinitis Pigmentosa Patients. Stem Cell Rep. 2018, 10, 2005. [Google Scholar] [CrossRef] [PubMed]
- Johnson, T.V.; Bull, N.D.; Martin, K.R. Identification of Barriers to Retinal Engraftment of Transplanted Stem Cells. Investig. Opthalmol. Vis. Sci. 2010, 51, 960–970. [Google Scholar] [CrossRef]
- Li, K.; Zhong, X.; Yang, S.; Luo, Z.; Li, K.; Liu, Y.; Cai, S.; Gu, H.; Lu, S.; Zhang, H.; et al. HiPSC-derived retinal ganglion cells grow dendritic arbors and functional axons on a tissue-engineered scaffold. Acta Biomater. 2017, 54, 117–127. [Google Scholar] [CrossRef] [PubMed]
- Benowitz, L.I.; He, Z.; Goldberg, J.L. Reaching the brain: Advances in optic nerve regeneration. Exp. Neurol. 2017, 287, 365–373. [Google Scholar] [CrossRef]
- Trakhtenberg, E.F.; Li, Y.; Feng, Q.; Tso, J.; Rosenberg, P.A.; Goldberg, J.L.; Benowitz, L.I. Zinc chelation and Klf9 knockdown cooper-atively promote axon regeneration after optic nerve injury. Exp. Neurol. 2018, 300, 22–29. [Google Scholar] [CrossRef]
- Moore, D.; Blackmore, M.G.; Hu, Y.; Kaestner, K.H.; Bixby, J.; Lemmon, V.; Goldberg, J.L. KLF Family Members Regulate Intrinsic Axon Regeneration Ability. Science 2009, 326, 298–301. [Google Scholar] [CrossRef] [Green Version]
- de Lima, S.; Koriyama, Y.; Kurimoto, T.; Oliveira, J.T.; Yin, Y.; Li, Y.; Gilbert, H.Y.; Fagiolini, M.; Martinez, A.M.; Benowitz, L. Full-length axon regeneration in the adult mouse optic nerve and partial recovery of simple visual behaviors. Proc. Natl. Acad. Sci. USA 2012, 109, 9149–9154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lim, J.-H.A.; Stafford, B.K.; Nguyen, P.L.; Lien, B.V.; Wang, C.; Zukor, K.; He, Z.; Huberman, A.D. Neural activity promotes long-distance, target-specific regeneration of adult retinal axons. Nat. Neurosci. 2016, 19, 1073–1084. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.; He, X.; Meng, H.; Li, Y.; Dmitriev, P.; Tian, F.; Page, J.C.; Lu, Q.R.; He, Z. Robust Myelination of Regenerated Axons Induced by Combined Manipulations of GPR17 and Microglia. Neuron 2020, 108, 876–886.e874. [Google Scholar] [CrossRef] [PubMed]
Donor Cells | Source of Donor Cells | Animal Model | Position of Transplantation | Does (Cells/Eye) | Layers of Integration | Cell Survival Time (Observation Period) | Survival Numbers/Rates of Transplanted Cell | Immunosuppressant | Functioal Evaluation | Ref. |
---|---|---|---|---|---|---|---|---|---|---|
Müller-RSC (Aton7 overexpressed) | rat | Laser induced hypertension rat | vitreous | 50,000 | INL-GCL | 14 days | N/A | N/A | N/A | [42] |
Müller-RSC-RGC | rat | Laser induced hypertension rat | Subretinal | 50,000 | GCL | 14 days | N/A | N/A | N/A | [43] |
Müller-RGC precursor | Human | NMDA induced retina injury Rat | Intravitreal | 40,000 | GCL | 4 weeks | N/A | cyclosporine A/prednisolone/azathioprine | ERG preserved | [38] |
NPCs-RGC | rat | Optic Nerve Axotomy rat | Intravitreal | 50,000 | GCL | 1 week | 1600 (24 h)/600 (1 week) | N/A | N/A | [22] |
iPSC/ESC -RGC | mouse | WT/Microbeads induced hypertension/ NMDA induced retina injury mouse | Intravitreal | 20,000 | GCL | 48 weeks/2 weeks | 1% | N/A | N/A | [37] |
ESC-RPC | mouse | NMDA induced retina injury mouse | Intravitreal | Unknown | GCL | 8 weeks | N/A | N/A | N/A | [44] |
SSC-ESC-RGC | mouse | NMDA induced retina injury mouse | Intravitreal | 10,000 | GCL | 10 days | N/A | N/A | N/A | [39] |
ESC-NPC | mouse | NMDA induced retina injury mouse/DBA2J | Intravitreal | 1,000,000 | GCL | 8 weeks | N/A | N/A | Visual acuity increased; Improve Visual function (Light Avoidance Experiment) /both Negative in DBA2J | [36] |
iPSC-Müller | human | NMDA induced retina injury rat | Intravitreal | 100,000 | GCL | 4 weeks | N/A | Azathioprine/prednisolone/cyclosporin A | ERG preserved | [40] |
ESC-RPC | human | WT mouse | Subretinal and epiretinal | 50,000 | GCL/INL, ONL | 12 weeks | N/A | N/A | N/A | [45] |
ESC-RGC | human | WT rat | Intravitreal | 50,000 | GCL | 7 days | 19–25/mm2 retina wholemount | N/A | N/A | [46] |
ESC-Retinal Neurons | human | Squirrel monkey | submacular space | 1,000,000 | GCL, INL | 12 weeks | N/A | N/A | N/A | [41] |
ESC-NP | human | WT sabra rat | Intravitreal/ Subretinal | 60,000–100,000 | IPL | 4 weeks/ 8–16 weeks | 55,611/197,481 | cyclosporine A | N/A | [47] |
Type of SC | Sources | Animal Model | Position of Transplantation | Does Cells/Eye | Integration | Observation Period (Survival Rates/Numbers of Transplanted Cell) | Functional Factors | Immunosuppressant | Positive Results of Functional Evaluation | Ref |
---|---|---|---|---|---|---|---|---|---|---|
Lineage negative cells from bone marrow | mouse | NMDA induced retina injury mouse | Intravitreal | 100,000 | GCL, INL | 21 days | CNTF, BDNF, GDNF | N/A | N/A | [61] |
IGF1-NPC | human | Microbeads induced hypertension mouse | Intravitreal | 200,000 | N/A | 30 days | IGF1 | N/A | Enhanced RGC survival Enhanced Axon survival | [62] |
BDNF-MSCs | rat | Laser induced hypertension rat | Intravitreal | 200,000 | GCL | 42 days (17.62% survival rate) | BDNF | N/A | ERG preserved Enhanced RGC survival | [55] |
BDNF-NPC | N/A | optic nerve crush rat | Intravitreal | 160,000 | N/A | N/A | BDNF | N/A | Enhanced RGC survival | [63] |
NTF-MSCs | human | optic nerve crush rat | Intravitreal | 400,000 | N/A | 24 days (418 cells/10 slides) | BDNF, GDNF | Cyclosporine A | Enhanced RGC survival | [56] |
MSCs | mouse | Normal saline anterior chamber perfusion mouse | Intravitreal | 50,000 | N/A | N/A | miR-21 / PDCD4 | N/A | Enhanced RGC survival Inflammatory factors decreased Microglia inhibition | [49] |
BMSC | rat | Episcleral vein cautery induced hypertension rat | Intravitreal | 200,000 | GCL | 8 weeks (few transplanted cells) | CNTF, bFGF | N/A | Enhanced RGC survival | [48] |
MSCs | Human | Intracameral injection of TGFβ1 induced hypertension rat | Intravitreal | 150,000 | N/A | N/A | N/A | N/A | RNFL preserved Enhanced RGC survival pSTR preserved | [50] |
BMSC | unknown | Laser induced hypertension rat | Intravitreal | 30,000/100,000 | N/A | N/A | N/A | N/A | Enhanced RGC survival Improve Visual function (Water maze) | [51] |
BMSCs | human | Human Retinal Explant | directly drop | 5000 | N/A | 7 days | PDGF | N/A | Enhanced RGC survival Enhanced NeuN+ cells survival | [52] |
DPSC | rat | optic nerve crush rat | Intravitreal | 150,000 | N/A | 21 days | NGF, BDNF, NT-3 | N/A | Enhanced RGC survival RNFL preserved Axon regeneration | [53] |
Exosomes derived from BMSC | human | optic nerve crush rat | Intravitreal | 3 × 109 | N/A | N/A | miRNA in exosomes | N/A | RNFL preserved pSTR preserved Axon regeneration | [58] |
Exosomes derived from MSCs | human | Ischemia-Reperfusion rat | Intravitreal | 4 × 106 | N/A | N/A | N/A | N/A | pSTR preserved Apoptosis decreased Inflammatory factors decreased | [59] |
Exosomes derived from BMSC | human | DBA/2J mouse | Intravitreal | 1 × 109 | N/A | N/A | N/A | N/A | Enhanced RGC survival pSTR preserved | [60] |
Factors | Method of Transfection | Animal Model | Efficiency | Mechanism | Function | Ref. |
---|---|---|---|---|---|---|
math5, Brn3b/a/c overexpression | AAV9 | optic nerve crush mouse | 92.8% Rbpms+ RGCs of infected Müller 67.9% Brn3a+ RGCs of infected Müller | reprogramming Müller to RGC | Connect to appropriate central targets, Exhibited typical neuronal electrophysiological properties Increase of RGCs Stronger VEP response | [67] |
OCT4, SOX2, KLF4 overexpression | AAV2 | optic nerve crush mouse Microbeads induced hypertension mouse | 40% RGC infected | restores youthful DNA methylation patterns and transcriptomes of aging and injured RGC, | Promote RGC survival promote axon regeneration Restore visual function (optomotor response & PERG) | [68] |
Ptbp1 knockdown | AAV-CasRx-ptbp1 | NMDA Induced Retinal Injury mouse | more than half infected Müller cells in GCL expressed Brn3a and Rbpms | reprogramming Müller to RGC | Connect to appropriate central targets, vision-dependent behavior restored (Light Avoidance Experiment;) | [66] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Wu, S.; Jin, Z.-B.; Wang, N. Stem Cell-Based Regeneration and Restoration for Retinal Ganglion Cell: Recent Advancements and Current Challenges. Biomolecules 2021, 11, 987. https://doi.org/10.3390/biom11070987
Zhang J, Wu S, Jin Z-B, Wang N. Stem Cell-Based Regeneration and Restoration for Retinal Ganglion Cell: Recent Advancements and Current Challenges. Biomolecules. 2021; 11(7):987. https://doi.org/10.3390/biom11070987
Chicago/Turabian StyleZhang, Jingxue, Shen Wu, Zi-Bing Jin, and Ningli Wang. 2021. "Stem Cell-Based Regeneration and Restoration for Retinal Ganglion Cell: Recent Advancements and Current Challenges" Biomolecules 11, no. 7: 987. https://doi.org/10.3390/biom11070987
APA StyleZhang, J., Wu, S., Jin, Z. -B., & Wang, N. (2021). Stem Cell-Based Regeneration and Restoration for Retinal Ganglion Cell: Recent Advancements and Current Challenges. Biomolecules, 11(7), 987. https://doi.org/10.3390/biom11070987