Two Auxinic Herbicides Affect Brassica napus Plant Hormone Levels and Induce Molecular Changes in Transcription
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Growth and Treatment
2.2. Determination of IAA, ABA, and ACC
2.2.1. Source of Heavy Isotope Labeled Standards
2.2.2. Free Acidic Hormones
2.2.3. Total IAA
2.2.4. GC-MS Analysis
2.3. Transcriptome Analysis
2.3.1. RNA Extraction
2.3.2. RNAseq
3. Results
3.1. Identification of the Hormonal Basis of Different Auxinic Herbicide Treatments on B. napus
3.2. Time Course of Hormone Levels
3.3. Transcriptome Analysis after Treatment with Auxinic Herbicides
3.4. Evaluation of General Functional Groups
3.5. Evaluation of Hormone-Related Genes in More Detail
4. Discussion
4.1. Hormonal Phenotype of B. napus Treated with Auxinic Herbicides under Different Growth Conditions
4.2. Molecular Phenotype of B. napus Treated with Auxinic Herbicides
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Davies, P.J. The plant hormones: Their nature, occurrence, and function. In Plant Hormones: Biosynthesis, Signal Transduction and Action; Davies, P.J., Ed.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2004; pp. 1–15. [Google Scholar]
- Thimann, K.V. On the nature of inhibitions caused by auxin. Am. J. Bot. 1937, 24, 407–412. [Google Scholar] [CrossRef]
- Ludwig-Müller, J. Auxin conjugates: Their role for plant development and in the evolution of land plants. J. Exp. Bot. 2011, 62, 1757–1773. [Google Scholar] [CrossRef] [Green Version]
- Gleason, C.; Foley, R.C.; Singh, K.B. Mutant analysis in Arabidopsis provides insight into the molecular mode of action of the auxinic herbicide dicamba. PLoS ONE 2011, 6, e17245. [Google Scholar] [CrossRef] [Green Version]
- Grossmann, K. Auxin herbicides: Current status of mechanism and mode of action. Pest Man. Sci. 2009, 66, 113–120. [Google Scholar] [CrossRef] [PubMed]
- Song, Y. Insight into the mode of action of 2,4-dichlorophenoxyacetic acid (2,4-D) as an herbicide. J. Integr. Plant Biol. 2014, 56, 106–113. [Google Scholar] [CrossRef]
- Mithila, J.; Hall, J.C.; Johnson, W.G.; Kelley, K.B.; Riechers, D.E. Evolution of resistance to auxinic herbicides: Historical perspectives, mechanisms of resistance, and implications for broadleaf weed management in agronomic crops. Weed Sci. 2011, 59, 445–457. [Google Scholar] [CrossRef] [Green Version]
- Chiu, L.-W.; Chiu, L.W.; Heckert, M.J.; You, Y.; Albanese, N.; Fenwick, T.; Siehl, D.L.; Castle, L.A.; Tao, Y. Members of the GH3 family of proteins conjugate 2,4-D and dicamba with aspartate and glutamate. Plant Cell Physiol. 2018, 59, 2366–2380. [Google Scholar] [CrossRef]
- Ostrowski, M.; Jakubowska, A. GH3 expression and IAA-amide synthetase activity in pea (Pisum sativum L.) seedlings are regulated by light, plant hormones and auxinic herbicides. J. Plant Physiol. 2013, 170, 361–368. [Google Scholar] [CrossRef]
- Goggin, D.E.; Kaur, P.; Owen, M.J.; Powles, S.B. 2,4-D and dicamba resistance mechanisms in wild radish: Subtle, complex and population specific? Ann. Bot. 2018, 122, 627–640. [Google Scholar] [CrossRef] [PubMed]
- Prigge, M.J.; Greenham, K.; Zhang, Y.; Santner, A.; Castillejo, C.; Mutka, A.M.; O’Malley, R.C.; Ecker, J.R.; Kunkel, B.N.; Estelle, M. The Arabidopsis auxin receptor F-box proteins AFB4 and AFB5 are required for response to the synthetic auxin picloram. Genes Genomes Genet. 2016, 6, 1383–1390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zotz, A.; Bernhard, U.; Bonin, J. BELKAR™—a new herbicide for the control of a wide range of broadleaf weeds in winter oilseed rape applied post-emergence in autumn. Julius-Kühn-Archiv 2018, 458, 344–358. [Google Scholar]
- Schmitzer, P.R.; Balko, T.W.; Daeuble, J.F.; Epp, J.B.; Satchivi, N.; Siddall, T.L.; Weimer, M.R.; Yerkes, C.N. Discovery and SAR of halauxifen methyl: A novel auxin herbicide. Discov. Synth. Crop Prot. Prod. 2015, 1204, 247–260. [Google Scholar]
- Raghavan, C.; Ong, E.K.; Dalling, M.J.; Stevenson, T.W. Effect of herbicidal application of 2,4-dichlorophenoxyacetic acid in Arabidopsis. Funct. Integr. Genom. 2005, 5, 4–17. [Google Scholar] [CrossRef]
- McCauley, C.L.; Johnson, W.G.; Young, B.G. Efficacy of Halauxifen-Methyl on Glyphosate-Resistant Horseweed (Erigeron canadensis). Weed Sci. 2018, 66, 758–763. [Google Scholar] [CrossRef]
- McCauley, C.L.; McAdam, S.A.M.; Bhide, K.; Thimmapuram, J.; Banks, J.A.; Young, B.G. Transcriptomics in Erigeron canadensis reveals rapid photosynthetic and hormonal responses to auxin herbicide application. J. Exp. Bot. 2020, 71, 3701–3709. [Google Scholar] [CrossRef] [PubMed]
- Wikimedia. Available online: https://commons.wikimedia.org/wiki/File:Aminopyralid.svg (accessed on 4 May 2021).
- Wikimedia. Available online: https://commons.wikimedia.org/wiki/File:4-amino-3,5,6-trichloropicolinic_acid_200.svg (accessed on 4 May 2021).
- Wikimedia. Available online: https://commons.wikimedia.org/wiki/File:Halauxifen-methyl.svg (accessed on 4 May 2021).
- Wikimedia. Available online: https://commons.wikimedia.org/wiki/Category:Indole_acetic_acid (accessed on 4 May 2021).
- Lancashire, P.D.; Bleiholder, H.; van den Boom, T.; Langelüddeke, P.; Stauß, R.; Weber, E.; Witzenberger, A. A uniform decimal code for growth stages of crops and weeds. Ann. Appl. Biol. 1991, 119, 561–601. [Google Scholar] [CrossRef]
- Meier, U.; Bleiholder, H.; Buhr, L.; Feller, C.; Hack, H.; Heß, M.; Lancashire, P.D.; Schnock, U.; Stauß, R.; van den Boom, T.; et al. The BBCH system to coding the phenological growth stages of plants—History and publications. J. Kult. 2009, 61, 41–52. [Google Scholar]
- Zörb, C.; Geilfus, C.-M.; Mühling, K.H.; Ludwig-Müller, J. The influence of salt stress on ABA and auxin concentrations in two maize cultivars differing in salt resistance. J. Plant Physiol. 2013, 170, 220–224. [Google Scholar] [CrossRef]
- Migowska, N.; Stepnowski, P.; Paszkiewicz, M.; Gołȩbiowski, M.; Kumirska, J. Trimethylsilyldiazomethane (TMSD) as a new derivatization reagent for trace analysis of selected non-steroidal anti-inflammatory drugs (NSAIDs) by gas chromatography methods. Anal. Bioanal. Chem. 2010, 397, 3029–3034. [Google Scholar] [CrossRef]
- Villas-Bôas, S.G.; Delicado, D.G.; Åkesson, M.; Nielsen, J. Simultaneous analysis of amino and nonamino organic acids as methyl chloroformate derivatives using gas chromatography-mass spectrometry. Anal. Biochem. 2003, 322, 134–138. [Google Scholar] [CrossRef]
- Rawlinson, C.; Kamphuis, L.G.; Gummer, J.P.A.; Singh, K.B.; Trengove, R.D. A rapid method for profiling of volatile and semi-volatile phytohormones using methyl chloroformate derivatisation and GC–MS. Metabolomics 2015, 11, 1922–1933. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, P.; Lor, P.; Ludwig-Müller, J.; Hegeman, A.D.; Cohen, J.D. Quantitative evaluation of IAA conjugate pools in Arabidopsis thaliana. Planta 2015, 241, 539–548. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J.D.; Baldi, B.G.; Slovin, J.P. 13C6-[Benzene ring] –indole-3-acetic acid. Plant Physiol. 1986, 80, 14–19. [Google Scholar] [CrossRef] [Green Version]
- Wang, R.; Li, M.; Wu, X.; Wang, J. The gene structure and expression level changes of the gh3 gene family in brassica napus relative to its diploid ancestors. Genes 2019, 10, 58. [Google Scholar] [CrossRef] [Green Version]
- Kanehisa, M.; Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucl. Acids Res. 2000, 28, 27–30. [Google Scholar] [CrossRef]
- Diggle, A.; Neve, P.B.; Smith, F.P. Herbicides used in combination can reduce the probability of herbicide resistance in finite weed populations. Weed Res. 2003, 43, 371–382. [Google Scholar] [CrossRef]
- Lagator, M.; Vogwill, T.; Mead, A.; Colegrave, N.; Neve, P. Herbicide mixtures at high doses slow the evolution of resistance in experimentally evolving populations of Chlamydomonas reinhardtii. New Phytol. 2013, 198, 938–945. [Google Scholar] [CrossRef]
- Netting, A.G.; Theobald, J.C.; Dodd, I.C. Xylem sap collection and extraction methodologies to determine in vivo concentrations of ABA and its bound forms by gas chromatography-mass spectrometry (GC-MS). Plant Methods 2012, 8, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okamoto, M.; Kushiro, T.; Jikumaru, Y.; Abrams, S.R.; Kamiya, Y.; Seki, M.; Nambara, E. ABA 9′-hydroxylation is catalyzed by CYP707A in Arabidopsis. Phytochemistry 2011, 72, 717–722. [Google Scholar] [CrossRef] [Green Version]
- Staswick, P.E.; Serban, B.; Rowe, M.; Tiryaki, I.; Maldonado, M.T.; Maldonado, M.C.; Suza, W. Characterization of an Arabidopsis enzyme family that conjugates amino acids to indole-3-acetic acid. Plant Cell 2005, 17, 616–627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sherp, A.M.; Lee, S.G.; Schraft, E.; Jez, J.M. Modification of auxinic phenoxyalkanoic acid herbicides by the acyl acid amido synthetase GH3.15 from Arabidopsis. J. Biol. Chem. 2018, 293, 17731–17738. [Google Scholar] [CrossRef] [Green Version]
- Hagen, G.; Guilfoyle, T. Auxin-responsive gene expression: Genes, promoters and regulatory factors. Plant Mol. Biol. 2002, 49, 373–385. [Google Scholar] [CrossRef]
- Walter, A.; Caputi, L.; Connor, S.O.; van Pée, K.-H. Chlorinated auxins—How does Arabidopsis thaliana deal with them? Int. J. Mol. Sci. 2020, 21, 2567. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, Z.; Arciga-Reyes, L.; Zhong, S.; Alexander, L.; Hackett, R.; Wilson, I.; Grierson, D. SlTPR1, a tomato tetratricopeptide repeat protein, interacts with the ethylene receptors NR and LeETR1, modulating ethylene and auxin responses and development. J. Exp. Bot. 2008, 59, 4271–4287. [Google Scholar] [CrossRef] [PubMed]
- Nakazawa, M.; Yabe, N.; Ichikawa, T.; Yamamoto, Y.Y.; Yoshizumi, T.; Hasunuma, K.; Matsui, M. DFL1, an auxin-responsive GH3 gene homologue, negatively regulates shoot cell elongation and lateral root formation, and positively regulates the light response of hypocotyl length. Plant J. 2001, 25, 213–221. [Google Scholar] [CrossRef] [PubMed]
- Park, J.-E.; Park, J.-Y.; Kim, Y.-S.; Staswick, P.E.; Jeon, J.; Yun, J.; Kim, S.-Y.; Kim, J.; Lee, Y.-H.; Park, C.-M. GH3-mediated auxin homeostasis links growth regulation with stress adaptation response in Arabidopsis. J. Biol. Chem. 2007, 282, 10036–10046. [Google Scholar] [CrossRef] [Green Version]
- Westfall, C.S.; Sherp, A.M.; Zubieta, C.; Alvarez, S.; Schraft, E.; Marcellin, R. Arabidopsis thaliana GH3.5 acyl acid amido synthetase mediates metabolic crosstalk in auxin and salicylic acid homeostasis. Proc. Natl. Acad. Sci. USA 2016, 113, 13917–13922. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lanza, M.; Garcia-Ponce, B.; Castrillo, G.; Catarecha, P.; Sauer, M.; Rodriguez-Serrano, M.; Páez-García, A.; Sánchez-Bermejo, E.; TC, M.; Leo del Puerto, Y.; et al. Role of actin cytoskeleton in brassinosteroid signaling and in its integration with the auxin response in plants. Dev. Cell 2012, 22, 1275–1285. [Google Scholar] [CrossRef] [Green Version]
- Yang, C.-J.; Zhang, C.; Lu, Y.-N.; Jin, J.-Q.; Wang, X.-L. The mechanisms of brassinosteroids’ action: From signal transduction to plant development. Mol. Plant 2011, 4, 588–600. [Google Scholar] [CrossRef] [Green Version]
- Jiroutová, P.; Mikulík, J.; Novák, O.; Strnad, M.; Oklestkova, J. Brassinosteroids induce strong, dose-dependent inhibition of etiolated pea seedling growth correlated with ethylene production. Biomolecules 2019, 9, 849. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frigerio, M.; Alabadi, D.; Perez-Gomez, J.; Garcia-Carcel, L.; Phillips, A.L.; Hedden, P.; Blazquez, M.A. Transcriptional regulation of gibberellin metabolism genes by auxin signaling in Arabidopsis. Plant Physiol. 2006, 142, 553–563. [Google Scholar] [CrossRef] [Green Version]
- O’Neill, D.P.; Ross, J.J. Auxin regulation of the gibberellin pathway in pea. Plant Physiol. 2002, 130, 1974–1982. [Google Scholar] [CrossRef] [Green Version]
- Unterholzner, S.J.; Rozhon, W.; Papacek, M.; Ciomas, J.; Lange, T.; Kugler, K.G.; Mayer, K.F.; Sieberer, T.; Poppenberger, B. Brassinosteroids are master regulators of gibberellin biosynthesis in Arabidopsis. Plant Cell 2015, 27, 2261–2272. [Google Scholar] [CrossRef] [Green Version]
- SŠmehilová, M.; Dobrušková, J.; Novák, O.; Takáč, T.; Galuszka, P. Cytokinin-specific glycosyltransferases possess different roles in cytokinin homeostasis maintenance. Front. Plant Sci. 2016, 7, 1264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poppenberger, B.; Fujioka, S.; Soeno, K.; George, G.L.; Vaistij, F.E.; Hiranuma, S.; Seto, H.; Takatsuto, S.; Adam, G.; Yoshida, S.; et al. The UGT73C5 of Arabidopsis thaliana glucosylates brassinosteroids. Proc. Natl. Acad. Sci. USA 2005, 102, 15253–15258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, Y.; Li, W.; You, W.; Di, Z.; Wang, M.; Zhou, H.; Yuan, S.; Wong, N.-K.; Xiao, Y. Discovery of Arabidopsis UGT73C1 as a steviol-catalyzing UDP-glycosyltransferase with chemical probes. Chem Commun. (Camb.) 2018, 54, 7179–7182. [Google Scholar] [CrossRef]
- Schaller, G.E.; Bishopp, A.; Kieber, J.J. The yin-yang of hormones: Cytokinin and auxin interactions in plant development. Plant Cell 2015, 27, 44–63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Edgar, R.; Domrachev, M.; Lash, A.E. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 2002, 30, 207–210. [Google Scholar] [CrossRef] [Green Version]
Solution | Control | Hal | Hal + AP | Pic |
---|---|---|---|---|
DMSO | 1% | 1% | 1% | 1% |
Triton X-100 | 0.01% | 0.01% | 0.01% | 0.01% |
NaOH | 0.01 M | 0.01 M | 0.01 M | 0.01 M |
Hal | - | 0.1 g/L | 0.1 g/L | - |
AP | - | - | 0.36 g/L | - |
Pic | - | - | - | 0.48 g/L |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ludwig-Müller, J.; Rattunde, R.; Rößler, S.; Liedel, K.; Benade, F.; Rost, A.; Becker, J. Two Auxinic Herbicides Affect Brassica napus Plant Hormone Levels and Induce Molecular Changes in Transcription. Biomolecules 2021, 11, 1153. https://doi.org/10.3390/biom11081153
Ludwig-Müller J, Rattunde R, Rößler S, Liedel K, Benade F, Rost A, Becker J. Two Auxinic Herbicides Affect Brassica napus Plant Hormone Levels and Induce Molecular Changes in Transcription. Biomolecules. 2021; 11(8):1153. https://doi.org/10.3390/biom11081153
Chicago/Turabian StyleLudwig-Müller, Jutta, Roman Rattunde, Sabine Rößler, Katja Liedel, Freia Benade, Agnes Rost, and Jörg Becker. 2021. "Two Auxinic Herbicides Affect Brassica napus Plant Hormone Levels and Induce Molecular Changes in Transcription" Biomolecules 11, no. 8: 1153. https://doi.org/10.3390/biom11081153
APA StyleLudwig-Müller, J., Rattunde, R., Rößler, S., Liedel, K., Benade, F., Rost, A., & Becker, J. (2021). Two Auxinic Herbicides Affect Brassica napus Plant Hormone Levels and Induce Molecular Changes in Transcription. Biomolecules, 11(8), 1153. https://doi.org/10.3390/biom11081153