Influence of the Levels of Arsenic, Cadmium, Mercury and Lead on Overall Survival in Lung Cancer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Subjects
2.2. Measurement of Heavy Metals Level
2.2.1. Sample Collection and Storage
2.2.2. Measurement Methodology
2.2.3. Quality Control
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [Green Version]
- Norseth, T. Metal carcinogenesis. Ann. N. Y. Acad. Sci. 1988, 534, 377–386. [Google Scholar] [CrossRef] [PubMed]
- Boffetta, P.; Merler, E.; Vainio, H. Carcinogenicity of mercury and mercury compounds. Scand. J. Work Environ. Health 1993, 19, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- National Priorities List from the Agency for Toxic Substances and Disease Registry (ATSDR). Available online: https://www.atsdr.cdc.gov/spl/resources/2015_atsdr_substance_priority_list.html (accessed on 30 March 2020).
- International Agency for Research on Cancer (IARC) IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. 2012. Available online: https://monographs.iarc.fr/wp-content/uploads/2018/06/mono100C.pdf (accessed on 13 June 2020).
- United States Environmental Protection Agency (U.S. EPA). 2015. Available online: http://www.epa.gov (accessed on 13 June 2020).
- Ferdosi, H.; Dissen, E.K.; Afari-Dwamena, N.A.; Li, J.; Chen, R.; Feinleib, M.; Lamm, S.H. Arsenic in Drinking Water and Lung Cancer Mortality in the United States: An Analysis Based on US Counties and 30 Years of Observation (1950–1979). J. Environ. Public Health 2016, 2016, 1602929. [Google Scholar] [CrossRef] [Green Version]
- Fowler, B.A.; Chou, S.H.S.; Jones, R.L.; Chen, C.J. Arsenic. In Handbook of Toxicology of Metals, 3rd ed.; Nordberg, G., Fowler, B., Nordberg, M., Friberg, L., Eds.; Elsevier: Amsterdam, The Netherlands, 2007; Volume 19, pp. 368–397. [Google Scholar]
- Satarug, S.; Garrett, S.H.; Sens, M.A.; Sena, D.A. Cadmium, environmental exposure, and health outcomes. Environ. Health Perspect. 2010, 118, 182–190. [Google Scholar] [CrossRef]
- Menai, M.; Heude, B.; Slama, R.; Forhan, A.; Sahuquillo, J.; Charles, M.-A.; Yazbeck, C. Association between maternal blood cadmium during pregnancy and birth weight and the risk of fetal growth restriction: The EDEN mother-child cohort study. Reprod. Toxicol. 2012, 34, 622–627. [Google Scholar] [CrossRef]
- Hays, S.M.; Nordberg, M.; Yager, J.W.; Aylward, L.L. Biomonitoring Equivalents (BE) dossier for cadmium (Cd) (CAS No. 7440-43-9). Regul. Toxicol. Pharmacol. 2008, 51 (Suppl. 3), S49–S56. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization (WHO). Lead Poisoning and Health. Available online: https://www.who.int/news-room/fact-sheets/detail/lead-poisoning-and-health (accessed on 27 April 2020).
- Clarkson, T.W.; Laszlo, M.; Myers, G.J. The toxicology of mercury–current exposures and clinical manifestation. N. Engl. J. Med. 2003, 349, 1731–1737. [Google Scholar] [CrossRef] [Green Version]
- Grandjean, P.; Weiehe, P.; White, R.F.; Debes, F. Cognitive performance of children prenatally exposed to “safe” levels of methylmercury. Environ. Res. 1998, 77, 165–172. [Google Scholar] [CrossRef]
- Karagas, M.R.; Choi, A.L.; Oken, E.; Horvat, M.; Schoeny, R.; Kamai, E.; Cowell, W.; Grandjean, P.; Korrick, S. Evidence on the human health effects of low-level methylmercury exposure. Environ. Health Perspect. 2012, 120, 799–806. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pietrzak, S.; Wójcik, J.; Scott, R.J.; Kashyap, A.; Grodzki, T.; Baszuk, P.; Bielewicz, M.; Marciniak, W.; Wójcik, N.; Dębniak, T.; et al. Influence of the selenium level on overall survival in lung cancer. J. Trace Elem. Med. Biol. 2019, 56, 46–51. [Google Scholar] [CrossRef] [PubMed]
- Adams, S.V.; Passarelli, M.N.; Newcomb, P.A. Cadmium exposure and cancer mortality in the Third National Health and Nutrition Examination Survey cohort. Occup. Environ. Med. 2012, 69, 153–156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- García-Esquinas, E.; Pollan, M.; Tellez-Plaza, M.; Francesconi, K.A.; Goessler, W.; Guallar, E.; Umans, J.G.; Yeh, J.; Best, L.G.; Navas-Acien, A. Cadmium exposure and cancer mortality in a prospective cohort: The strong heart study. Environ. Health Perspect. 2014, 122, 363–370. [Google Scholar] [CrossRef] [PubMed]
- Arisawa, K.; Nakano, A.; Saito, H.; Liu, X.J.; Yokoo, M.; Soda, M.; Koba, T.; Takahashi, T.; Kinoshita, K. Mortality and cancer incidence among a population previously exposed to environmental cadmium. Int. Arch. Occup. Environ. Health 2001, 74, 255–262. [Google Scholar] [CrossRef] [PubMed]
- Nishijo, M.; Nakagawa, H.; Suwazono, Y.; Nogawa, K.; Sakurai, M.; Ishizaki, M.; Kido, T. Cancer mortality in residents of the cadmium-polluted Jinzu River Basin in Toyama, Japan. Toxics 2018, 6, 23. [Google Scholar] [CrossRef] [Green Version]
- Du, T.; Huang, W.; Zheng, S.; Bao, M.; Huang, Y.; Li, A.; He, M.; Wu, K. Blood cadmium level is associated with short progression-free survival in nasopharyngeal carcinoma. Int. J. Environ. Res. Public Health 2019, 16, 2952. [Google Scholar] [CrossRef] [Green Version]
- Satarug, S.; Baker, J.R.; Urbenjapol, S.; Haswell-Elkins, M.; Reilly, P.E.; Williams, D.J.; Moore, M.R. A global perspective on cadmium pollution and toxicity in non-occupationally exposed population. Toxicol. Lett. 2003, 137, 65–83. [Google Scholar] [CrossRef]
- Garrett, R.G. Natural sources of metals to the environment. Hum. Ecol. Risk Assess. 2000, 6, 945–963. [Google Scholar] [CrossRef]
- World Health Organization (WHO) Data [Homepage on the Internet]. Available online: https://www.who.int/water_sanitation_health/dwq/chemicals/cadmiumsum.pdf (accessed on 20 June 2020).
- Olsson, I.M.; Bensryd, I.; Lundh, T.; Ottosson, H.; Skerfving, S.; Oskarsson, A. Cadmium in blood and urine–impact of sex, age, dietary intake, iron status, and former smoking–association of renal effects. Environ. Health Perspect. 2002, 110, 1185–1190. [Google Scholar] [CrossRef]
- International Programme on Chemical Safety (IPCS) [Homepage on the Internet]. Available online: http://www.inchem.org/documents/jecfa/jecmono/v024je09.htm (accessed on 20 June 2020).
- Baddeley, H.; Thomas, B.J.; Thomas, B.W.; Summers, V. Liver cadmium concentrations in metal industry workers. Br. J. Radiol. 1983, 56, 449–451. [Google Scholar] [CrossRef]
- Bertin, G.; Averbeck, D. Cadmium: Cellular effects, modifications of biomolecules, modulation of DNA repair and genotoxic consequences (a review). Biochimie 2006, 88, 1549–1559. [Google Scholar] [CrossRef]
- Satarug, S.; Moore, M.R. Adverse health effects of chronic exposure to low-level cadmium in foodstuffs and cigarette smoke. Environ. Health Perspect. 2004, 112, 1099–1103. [Google Scholar] [CrossRef]
- International Agency for Research on Cancer. Berryllium, Cadmium, Mercury and Exposures in the Glass Manufacturing Industry. In International Agency for Research on Cancer Monographs on the Evaluation of Carcinogenic Risks to Humans; IARC Scientific Publications: Lyon, France, 1993; Volume 58, pp. 119–237. [Google Scholar]
- Beyersmann, D.; Hechtenberg, S. Cadmium, gene regulation, and cellular signalling in mammalian cells. Toxicol. Appl. Pharmacol. 1997, 144, 247–261. [Google Scholar] [CrossRef] [PubMed]
- Nair, A.R.; Degheselle, O.; Smeets, K.; Van Kerkhove, E.; Cuypers, A. Cadmium-induced pathologies: Where is the oxidative balance lost (or not)? Int. J. Mol. Sci. 2013, 14, 6116–6143. [Google Scholar] [CrossRef] [Green Version]
- Shaulian, E.; Karin, M. AP-1 in cell proliferation and survival. Oncogene 2001, 20, 2390–2400. [Google Scholar] [CrossRef] [Green Version]
- Misra, U.K.; Gawdi, G.; Pizzo, S.V. Induction of mitogenic signalling in the 1LN prostate cell line on exposure to submicromolar concentrations of cadmium+. Cell Signal. 2003, 15, 1059–1070. [Google Scholar] [CrossRef]
- Von Zglinicki, T.; Edwall, C.; Ostlund, E.; Lind, B.; Nordberg, M.; Ringertz, N.R.; Wroblewski, J. Very low cadmium concentrations stimulate DNA synthesis and cell growth. J Cell Sci 1992, 103 Pt 4, 1073–1081. [Google Scholar] [CrossRef]
- Pulido, M.D.; Parrish, A.R. Metal-induced apoptosis: Mechanisms. Mutat. Res. 2003, 533, 227–241. [Google Scholar] [CrossRef] [PubMed]
- Poirier, L.A.; Vlasova, T.I. The prospective role of abnormal methyl metabolism in cadmium toxicity. Environ. Health Perspect. 2002, 110 (Suppl. 5), 793–795. [Google Scholar] [CrossRef] [Green Version]
- Kwong, R.C.; Karagas, M.R.; Kelsey, K.T.; Mason, R.A.; Tanyos, S.A.; Schned, A.R.; Marsit, C.J.; Andrew, A.S. Arsenic exposure predicts bladder cancer survival in a US population. World J. Urol. 2010, 28, 487–492. [Google Scholar] [CrossRef] [Green Version]
- Chowdhury, R.; Sarnat, S.E.; Darrow, L.; McClellan, W.; Steenland, K. Mortality among participants in a lead surveillance program. Environ. Res. 2014, 132, 100–104. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.G.; Ryoo, J.H.; Chang, S.J.; Kim, C.B.; Park, J.K.; Koh, S.B.; Ahn, Y.S. Blood lead levels and cause-specific mortality of inorganic lead-exposed workers in South Korea. PLoS ONE 2015, 10, e0140360. [Google Scholar] [CrossRef]
- Rhee, J.; Vance, T.M.; Lim, R.; Christiani, D.C.; Qureshi, A.A.; Cho, E. Association of blood mercury levels with nonmelanoma skin cancer in the U.S.A. using National Health and Nutrition Examination Survey data (2003–2016). Br. J. Dermatol. 2020, 183, 480–487. [Google Scholar] [CrossRef]
- Boffetta, P.; Garcia-Gómez, M.; Pompe-Kirn, V.; Zaridze, D.; Bellander, T.; Bulbulyan, M.; Caballero, J.D.; Ceccarelli, F.; Colin, D.; Dizdarevic, T.; et al. Cancer occurrence among European mercury miners. Cancer Causes Control 1998, 9, 591–599. [Google Scholar] [CrossRef] [PubMed]
- Coogan, T.P.; Achanzar, W.E.; Waalkes, M.P. Spontaneous transformation of cultured rat liver (TRL1215) cells is associated with down-regulation of metallothionein: Implications for sensitivity to cadmium cytotoxicity and genotoxicity. J. Environ. Pathol. Toxicol. Oncol. 2000, 19, 261–273. [Google Scholar] [PubMed]
N | % | |
---|---|---|
Sex | ||
Male | 222 | 66.07 |
Female | 114 | 33.93 |
Age, mean (range) | 63.71 (43–86) | |
Packyears, mean (range) | 32.59 (0–110) | |
Smoking status | ||
Yes | 315 | 93.75 |
No | 21 | 6.25 |
Stage | ||
I | 153 | 45.54 |
IA | 89 | 26.49 |
IB | 64 | 19.05 |
II | 91 | 27.08 |
IIA | 28 | 8.33 |
IIB | 63 | 18.75 |
III | 76 | 22.62 |
IIIA | 55 | 16.37 |
IIIB | 20 | 5.95 |
IIIC | 1 | 0.30 |
IV | 16 | 4.76 |
IVA | 15 | 4.46 |
IVB | 1 | 0.30 |
Radiotherapy | ||
Yes | 102 | 30.36 |
No | 234 | 69.94 |
Chemotherapy | ||
Yes | 101 | 30.06 |
No | 235 | 69.94 |
Histology | ||
Non-small cell carcinoma | 314 | 93.45 |
Adenocarcinoma | 148 | 44.05 |
Squamous cell carcinoma | 140 | 41.67 |
Large cell carcinoma | 26 | 7.74 |
Combined large cell—small cell carcinoma | 7 | 2.08 |
Small cell carcinoma | 5 | 1.49 |
Other | 9 | 2.68 |
Multivariate Cox Regression Models | ||||
---|---|---|---|---|
Quartile No. | Heavy Metal Level [µg/L] | Hazard Ratio | 95% CI | p-Value |
As | ||||
I | 0.25–0.60 | 1.00 | - | - |
II | >0.60–0.79 | 1.01 | 0.68–1.52 | 0.95 |
III | >0.79–1.15 | 1.11 | 0.76–1.64 | 0.59 |
IV | >1.15–6.69 | 0.99 | 0.66–1.48 | 0.94 |
Cd | ||||
I | 0.23–0.67 | 1.00 | - | - |
II | >0.67–1.13 | 1.39 | 0.91–2.11 | 0.13 |
III | >1.13–1.86 | 1.56 | 1.02–2.36 | 0.04 |
IV | >1.86–7.77 | 1.37 | 0.89–2.10 | 0.15 |
Hg | ||||
I | 0.01–0.44 | 1.55 | 1.03–2.34 | 0.04 |
II | >0.44–0.74 | 1.20 | 0.80–1.79 | 0.38 |
III | >0.74–1.30 | 1.49 | 0.99–2.22 | 0.05 |
IV | >1.30–6.09 | 1.00 | - | - |
Pb | ||||
I | 5.91–15.57 | 1.00 | - | - |
II | >15.57–20.80 | 1.37 | 0.90–2.10 | 0.14 |
III | >20.80–30.32 | 1.25 | 0.81–1.93 | 0.32 |
IV | >30.32–149.44 | 1.18 | 0.76–1.82 | 0.47 |
Univariate Cox Regression Models | Multivariate Cox Regression Models | ||||||
---|---|---|---|---|---|---|---|
Quartile No | Cd Level [µg/L] | Hazard Ratio | 95% CI | p-Value | Hazard Ratio | 95% CI | p-Value |
I | 0.23–0.57 | 1 | 1 | ||||
II | >0.57–1.11 | 1.24 | 0.48–3.21 | 0.66 | 3.55 | 1.02–12.35 | 0.05 1 |
III | >1.11–1.97 | 0.96 | 0.35–2.66 | 0.94 | 2.41 | 0.64–9.06 | 0.19 1 |
IV | >1.97–7.77 | 2.74 | 1.15–6.50 | 0.02 | 7.36 | 2.14–25.25 | <0.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pietrzak, S.; Wójcik, J.; Baszuk, P.; Marciniak, W.; Wojtyś, M.; Dębniak, T.; Cybulski, C.; Gronwald, J.; Alchimowicz, J.; Masojć, B.; et al. Influence of the Levels of Arsenic, Cadmium, Mercury and Lead on Overall Survival in Lung Cancer. Biomolecules 2021, 11, 1160. https://doi.org/10.3390/biom11081160
Pietrzak S, Wójcik J, Baszuk P, Marciniak W, Wojtyś M, Dębniak T, Cybulski C, Gronwald J, Alchimowicz J, Masojć B, et al. Influence of the Levels of Arsenic, Cadmium, Mercury and Lead on Overall Survival in Lung Cancer. Biomolecules. 2021; 11(8):1160. https://doi.org/10.3390/biom11081160
Chicago/Turabian StylePietrzak, Sandra, Janusz Wójcik, Piotr Baszuk, Wojciech Marciniak, Małgorzata Wojtyś, Tadeusz Dębniak, Cezary Cybulski, Jacek Gronwald, Jacek Alchimowicz, Bartłomiej Masojć, and et al. 2021. "Influence of the Levels of Arsenic, Cadmium, Mercury and Lead on Overall Survival in Lung Cancer" Biomolecules 11, no. 8: 1160. https://doi.org/10.3390/biom11081160
APA StylePietrzak, S., Wójcik, J., Baszuk, P., Marciniak, W., Wojtyś, M., Dębniak, T., Cybulski, C., Gronwald, J., Alchimowicz, J., Masojć, B., Waloszczyk, P., Gajić, D., Grodzki, T., Jakubowska, A., Scott, R. J., Lubiński, J., & Lener, M. R. (2021). Influence of the Levels of Arsenic, Cadmium, Mercury and Lead on Overall Survival in Lung Cancer. Biomolecules, 11(8), 1160. https://doi.org/10.3390/biom11081160