Characterization of the LPS and 3OHFA Contents in the Lipoprotein Fractions and Lipoprotein Particles of Healthy Men
Abstract
:1. Introduction
2. Material and Methods
2.1. Volunteers
2.2. Biochemical Analyses
2.3. Lipoprotein Separation
2.4. LPS Determination
2.5. Liposcale® Test: Nuclear Magnetic Resonance (NMR) Lipoprotein Profile
2.6. Statistical Analysis
3. Results
3.1. LPS Was Found in All Lipoprotein Particles with High Interindividual Variability
3.2. LPS Molecules per Lipoprotein Particle
3.3. OHFAs
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lu, H.; Daugherty, A. Atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 2015, 35, 485–491. [Google Scholar] [CrossRef] [Green Version]
- Lusis, A.J. Atherosclerosis—Insight Review Articles. Nature 2000, 407, 233–241. [Google Scholar] [CrossRef] [PubMed]
- Kalayoglu, M.V.; Byrne, G.I. A Chlamydia pneumoniae component that induces macrophage foam cell formation is chlamydial lipopolysaccharide. Infect. Immun. 1998, 66, 5067–5072. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, F.; Wang, Y.; Xu, J.; Liu, F.; Hu, R.; Deng, H. Effects of Porphyromonas gingivalis lipopolysaccharide on the expression of key genes involved in cholesterol metabolism in macrophages. Arch. Med. Sci. 2016, 12, 959–967. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lehr, H.A.; Sagban, T.A.; Ihling, C.; Zähringer, U.; Hungerer, K.D.; Blumrich, M.; Reifenberg, K.; Bhakdi, S. Immunopathogenesis of atherosclerosis: Endotoxin accelerates atherosclerosis in rabbits on hypercholesterolemic diet. Circulation 2001, 104, 914–920. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Osborn, M.J.; Rosen, S.M.; Rothfield, L.; Zelenick, L.D.; Horecker, B.L. Lipopolysaccharide of the Gram-Negative Cell Wall: Biosynthesis of a complex heteropolysaccharide occurs by successive addition of specific sugar residues. Science 1964, 145, 783–789. [Google Scholar] [CrossRef] [PubMed]
- Hersoug, L.G.; Møller, P.; Loft, S. Gut microbiota-derived lipopolysaccharide uptake and trafficking to adipose tissue: Implications for inflammation and obesity. Obes. Rev. 2016, 17, 297–312. [Google Scholar] [CrossRef] [PubMed]
- Ghoshal, S.; Witta, J.; Zhong, J.; de Villiers, W.; Eckhardt, E. Chylomicrons promote intestinal absorption of lipopolysaccharides. J. Lipid Res. 2009, 50, 90–97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moreira, A.P.B.; Teixeira, T.F.S.; Alves, R.D.M.; Peluzio, M.C.G.; Costa, N.M.B.; Bressan, J.; Mattes, R.; Alfenas, R.C.G. Effect of a high-fat meal containing conventional or high-oleic peanuts on post-prandial lipopolysaccharide concentrations in overweight/obese men. J. Hum. Nutr. Diet. 2016, 29, 95–104. [Google Scholar] [CrossRef]
- Creely, S.J.; McTernan, P.G.; Kusminski, C.M.; Fisher, F.M.; Da Silva, N.F.; Khanolkar, M.; Evans, M.; Harte, A.L.; Kumar, S. Lipopolysaccharide activates an innate immune system response in human adipose tissue in obesity and type 2 diabetes. Am. J. Physiol. Endocrinol. Metab. 2007, 292, 740–747. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pussinen, P.J.; Havulinna, A.S.; Lehto, M.; Sundvall, J.; Salomaa, V. Endotoxemia is associated with an increased risk of incident diabetes. Diabetes Care 2011, 34, 392–397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kallio, K.A.E.; Hätönen, K.A.; Lehto, M.; Salomaa, V.; Männistö, S.; Pussinen, P.J. Endotoxemia, nutrition, and cardiometabolic disorders. Acta Diabetol. 2015, 52, 395–404. [Google Scholar] [CrossRef] [PubMed]
- Wiedermann, C.J.; Kiechl, S.; Dunzendorfer, S.; Schratzberger, P.; Egger, G.; Oberhollenzer, F.; Willeit, J. Association of endotoxemia with carotid atherosclerosis and cardiovascular disease: Prospective results from the Bruneck Study. J. Am. Coll. Cardiol. 1999, 34, 1975–1981. [Google Scholar] [CrossRef] [Green Version]
- Levels, J.H.M.; Abraham, P.R.; Van den Ende, A.; Van Deventer, S.J.H. Distribution and kinetics of lipoprotein-bound endotoxin. Infect. Immun. 2001, 69, 2821–2828. [Google Scholar] [CrossRef] [Green Version]
- Hersoug, L.G.; Møller, P.; Loft, S. Role of microbiota-derived lipopolysaccharide in adipose tissue inflammation, adipocyte size and pyroptosis during obesity. Nutr. Res. Rev. 2018, 31, 153–163. [Google Scholar] [CrossRef]
- Vreugdenhil, A.C.E.; Snoek, A.M.P.; van’t Veer, C.; Greve, J.W.M.; Buurman, W.A. LPS-binding protein circulates in association with apoB-containing lipoproteins and enhances endotoxin-LDL/VLDL interaction. J. Clin. Investig. 2001, 107, 225–234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vreugdenhil, A.C.E.; Rousseau, C.H.; Hartung, T.; Greve, J.W.M.; van’t Veer, C.; Buurman, W.A. Lipopolysaccharide (LPS)-Binding Protein Mediates LPS Detoxification by Chylomicrons. J. Immunol. 2003, 170, 1399–1405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Lenten, B.J.; Fogelman, A.M.; Haberland, M.E.; Edwards, P.A. The role of lipoproteins and receptor-mediated endocytosis in the transport of bacterial lipopolysaccharide. Proc. Natl. Acad. Sci. USA 1986, 83, 2704–2708. [Google Scholar] [CrossRef] [Green Version]
- Vergès, B.; Duvillard, L.; Lagrost, L.; Vachoux, C.; Garret, C.; Bouyer, K.; Courtney, M.; Pomié, C.; Burcelin, R. Changes in lipoprotein kinetics associated with type 2 diabetes affect the distribution of lipopolysaccharides among lipoproteins. J. Clin. Endocrinol. Metab. 2014, 99, 1245–1253. [Google Scholar] [CrossRef] [Green Version]
- Pais De Barros, J.P.; Gautier, T.; Sali, W.; Adrie, C.; Choubley, H.; Charron, E.; Lalande, C.; Le Guern, N.; Deckert, V.; Monchi, M.; et al. Quantitative lipopolysaccharide analysis using HPLC/MS/MS and its combination with the limulus amebocyte lysate assay. J. Lipid Res. 2015, 56, 1363–1369. [Google Scholar] [CrossRef] [Green Version]
- Friedewald, W.T.; Levy, R.I.; Fredrickson, D.S. Estimation of the c oncentration of Low-Density Lipoprotein Cholesterol in Plasma, Without Use of the Preparative Ultracentrifuge. Clin. Chem. 1972, 18, 499–502. [Google Scholar] [CrossRef]
- Kraśnik, L.; Szponar, B.; Walczak, M.; Larsson, L.; Gamian, A. Routine clinical laboratory tests correspond to increased serum levels of 3-hydroxy fatty acids, markers of endotoxins, in cardiosurgery patients. Arch. Immunol. Ther. Exp. 2006, 54, 55–60. [Google Scholar] [CrossRef]
- Szponar, B.; Norin, E.; Midtvedt, T.; Larsson, L. Limitations in the use of 3-hydroxy fatty acid analysis to determine endotoxin in mammalian samples. J. Microbiol. Methods 2002, 50, 283–289. [Google Scholar] [CrossRef]
- Reynolds, S.J.; Milton, D.K.; Heederik, D.; Thorne, P.S.; Donham, K.J.; Croteau, E.A.; Kelly, K.M.; Douwes, J.; Lewis, D.; Whitmer, M.; et al. Interlaboratory evaluation of endotoxin analyses in agricultural dusts—Comparison of LAL assay and mass spectrometry. J. Environ. Monit. 2005, 7, 1371–1377. [Google Scholar] [CrossRef]
- Mallol, R.; Amigo, N.; Rodriguez, M.A.; Heras, M.; Vinaixa, M.; Plana, N.; Rock, E.; Ribalta, J.; Yanes, O.; Masana, L.; et al. Liposcale: A novel advanced lipoprotein test based on 2D diffusion-ordered 1H NMR spectroscopy. J. Lipid Res. 2015, 56, 737–746. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mihaleva, V.V.; van Schalkwijk, B.; De Graaf, A.A.; Van Duynhoven, J.; van Dorsten, F.A.; Vervoort, J.; Smilde, A.; Westerhuis, J.A.; Jacobs, D.M. A Systematic Approach to Obtain Validated Partial Least Square Models for Predicting Lipoprotein Subclasses from Serum NMR Spectra. Anal. Chem. 2014, 86, 543–550. [Google Scholar] [CrossRef]
- Brinkworth, J.F.; Valizadegan, N. Sepsis and the evolution of human increased sensitivity to lipopolysaccharide. Evol. Anthropol. 2021, 30, 141–157. [Google Scholar] [CrossRef] [PubMed]
- Carnevale, R.; Nocella, C.; Petrozza, V.; Cammisotto, V.; Pacini, L.; Sorrentino, V.; Martinelli, O.; Irace, L.; Sciarretta, S.; Frati, G.; et al. Localization of lipopolysaccharide from Escherichia coli into human atherosclerotic plaque. Sci. Rep. 2018, 8, 3598. [Google Scholar] [CrossRef]
- Eggesbø, J.B.; Lyberg, T.; Aspelin, T.; Hjermann, I.; Kierulf, P. Different binding of 125I-LPS to plasma proteins from persons with high or low HDL. Scand. J. Clin. Lab. Investig. 1996, 56, 533–543. [Google Scholar] [CrossRef]
- Balling, M.; Afzal, S.; Varbo, A.; Langsted, A.; Davey Smith, G.; Nordestgaard, B.G. VLDL Cholesterol Accounts for One-Half of the Risk of Myocardial Infarction Associated With apoB-Containing Lipoproteins. J. Am. Coll. Cardiol. 2020, 76, 2725–2735. [Google Scholar] [CrossRef]
- Kitchens, R.L.; Thompson, P.A. Modulatory effects of sCD14 and LBP on LPS-host cell interactions. J. Endotoxin Res. 2005, 11, 225–229. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.C.; Yeh, W.C.; Ohashi, P.S. LPS/TLR4 signal transduction pathway. Cytokine 2008, 42, 145–151. [Google Scholar] [CrossRef] [PubMed]
- Munford, R.S. Endotoxemia-menace, marker, or mistake? J. Leukoc. Biol. 2016, 100, 687–698. [Google Scholar] [CrossRef] [PubMed]
- Brandenburg, K.; Howe, J.; Gutsman, T.; Garidel, P. The Expression of Endotoxic Activity in the Limulus Test as Compared to Cytokine Production in Immune Cells. Curr. Med. Chem. 2009, 16, 2653–2660. [Google Scholar] [CrossRef] [PubMed]
Age, years | 25.7 ± 5.6 |
Body Mass Index, kg/m2 | 23.3 ± 2.2 |
Smokers, n | 6/25 |
Cholesterol, mg/dL | 169.8 ± 23.1 |
LDLc, mg/dL | 91.7 ± 22.1 |
HDLc, mg/dL | 57.9 (52.3–68.5) |
Triglycerides, mg/dL | 80.5 (65.0–102.2) |
ApoA1, mg/dL | 140.0 ± 18.5 |
ApoB100, mg/dL | 80.0 ± 17.1 |
ApoC-III, mg/dL | 7.8 ± 3.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rehues, P.; Rodríguez, M.; Álvarez, J.; Jiménez, M.; Melià, A.; Sempere, M.; Balsells, C.; Castillejo, G.; Guardiola, M.; Castro, A.; et al. Characterization of the LPS and 3OHFA Contents in the Lipoprotein Fractions and Lipoprotein Particles of Healthy Men. Biomolecules 2022, 12, 47. https://doi.org/10.3390/biom12010047
Rehues P, Rodríguez M, Álvarez J, Jiménez M, Melià A, Sempere M, Balsells C, Castillejo G, Guardiola M, Castro A, et al. Characterization of the LPS and 3OHFA Contents in the Lipoprotein Fractions and Lipoprotein Particles of Healthy Men. Biomolecules. 2022; 12(1):47. https://doi.org/10.3390/biom12010047
Chicago/Turabian StyleRehues, Pere, Marina Rodríguez, Judith Álvarez, Marta Jiménez, Alba Melià, Mar Sempere, Clara Balsells, Gemma Castillejo, Montse Guardiola, Antoni Castro, and et al. 2022. "Characterization of the LPS and 3OHFA Contents in the Lipoprotein Fractions and Lipoprotein Particles of Healthy Men" Biomolecules 12, no. 1: 47. https://doi.org/10.3390/biom12010047
APA StyleRehues, P., Rodríguez, M., Álvarez, J., Jiménez, M., Melià, A., Sempere, M., Balsells, C., Castillejo, G., Guardiola, M., Castro, A., & Ribalta, J. (2022). Characterization of the LPS and 3OHFA Contents in the Lipoprotein Fractions and Lipoprotein Particles of Healthy Men. Biomolecules, 12(1), 47. https://doi.org/10.3390/biom12010047