Sequence Properties of an Intramolecular Interaction that Inhibits p53 DNA Binding
Abstract
:1. Introduction
2. Materials and Methods
2.1. Protein Expression
2.2. Preparation of DNA
2.3. Fluorescence Anisotropy
2.4. Estimating Counterion Release
2.5. Size Exclusion Chromatography
3. Results
3.1. Salt Dependence of p53 DBD Binding DNA
3.2. DBD, ND, and ND Mutants Binding to Consensus and Scrambled DNA at Physiological IS
3.3. Effects of IS on Binding Specificity of DBD, ND WT, and the ND Mutants
3.4. Estimating Ion Release Using Counterion Condensation Theory
3.5. The Intramolecular Interaction Affects Stokes Radius and Apparent Molecular Weight
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tishler, R.B.; Calderwood, S.K.; Coleman, C.N.; Price, B.D. Increases in sequence specific DNA binding by p53 following treatment with chemotherapeutic and DNA damaging agents. Cancer Res. 1993, 53 (Suppl. 10), 2212–2216. [Google Scholar] [PubMed]
- Zhan, Q.; Carrier, F.; Fornace, A.J., Jr. Induction of cellular p53 activity by DNA-damaging agents and growth arrest. Mol. Cell. Biol. 1993, 13, 4242–4250. [Google Scholar] [PubMed] [Green Version]
- Beckerman, R.; Prives, C. Transcriptional regulation by p53. Cold Spring Harb. Perspect. Biol. 2010, 2, a000935. [Google Scholar] [CrossRef] [Green Version]
- Picksley, S.M.; Lane, D.P. p53 and Rb: Their cellular roles. Curr. Opin. Cell Biol. 1994, 6, 853–858. [Google Scholar] [CrossRef]
- Hainaut, P.; Hollstein, M. p53 and human cancer: The first ten thousand mutations. Adv. Cancer Res. 2000, 77, 81–137. [Google Scholar] [PubMed]
- Hupp, T.R.; Meek, D.; Midgley, C.; Lane, D. Regulation of the Specific DNA-Binding Function of P53. Cell 1992, 71, 875–886. [Google Scholar] [CrossRef]
- Kruse, J.P.; Gu, W. Modes of p53 Regulation. Cell 2009, 137, 609–622. [Google Scholar] [CrossRef] [Green Version]
- Arbely, E.; Natan, E.; Brandt, T.; Allen, M.D.; Veprintsev, D.B.; Robinson, C.V.; Chin, J.W.; Joerger, A.C.; Fersht, A.R. Acetylation of lysine 120 of p53 endows DNA-binding specificity at effective physiological salt concentration. Proc. Natl. Acad. Sci. USA 2011, 108, 8251–8256. [Google Scholar] [CrossRef] [Green Version]
- Shaw, P.; Freeman, J.; Bovey, R.; Iggo, R. Regulation of specific DNA binding by p53: Evidence for a role for O-glycosylation and charged residues at the carboxy-terminus. Oncogene 1996, 12, 921–930. [Google Scholar]
- Riley, T.; Sontag, E.; Chen, P.A.; Levine, A. Transcriptional control of human p53-regulated genes. Nat. Rev. Mol. Cell Biol. 2008, 9, 402–412. [Google Scholar] [CrossRef]
- El-Deiry, W.S.; Kern, S.E.; Pietenpol, J.A.; Kinzler, K.W.; Vogelstein, B. Definition of a consensus binding site for p53. Nat. Genet. 1992, 1, 45–49. [Google Scholar] [CrossRef] [PubMed]
- Menendez, D.; Inga, A.; Resnick, M.A. The expanding universe of p53 targets. Nat. Rev. Cancer 2009, 9, 724–737. [Google Scholar] [CrossRef] [PubMed]
- Weinberg, R.L.; Veprintsev, D.B.; Fersht, A.R. Cooperative binding of tetrameric p53 to DNA. J. Mol. Biol. 2004, 341, 1145–1159. [Google Scholar] [CrossRef] [PubMed]
- Balagurumoorthy, P.; Sakamoto, H.; Lewis, M.S.; Zambrano, N.; Clore, G.M.; Gronenborn, A.M.; Appella, E.; Harrington, E.R. 4 P53 DNA-Binding Domain Peptides Bind Natural P53-Response Elements and Bend the DNA. Proc. Natl. Acad. Sci. USA 1995, 92, 8591–8595. [Google Scholar] [CrossRef] [Green Version]
- McLure, K.G.; Lee, P.W.K. How p53 binds DNA as a tetramer. EMBO J. 1998, 17, 3342–3350. [Google Scholar] [CrossRef]
- Jordan, J.J.; Menendez, D.; Inga, A.; Nourredine, M.; Bell, D.; Resnick, M.A. Noncanonical DNA motifs as transactivation targets by wild type and mutant p53. PLoS Genet. 2008, 4, e1000104. [Google Scholar] [CrossRef]
- Weinberg, R.L.; Veprintsev, D.B.; Bycroft, M.; Fersht, A.R. Comparative binding of p53 to its promoter and DNA recognition elements. J. Mol. Biol. 2005, 348, 589–596. [Google Scholar] [CrossRef]
- Vousden, K.H.; Lu, X. Live or let die: The cell’s response to p53. Nat. Rev. Cancer 2002, 2, 594–604. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Ko, L.J.; Jayaraman, L.; Prives, C. p53 levels, functional domains, and DNA damage determine the extent of the apoptotic response of tumor cells. Genes Dev. 1996, 10, 2438–2451. [Google Scholar] [CrossRef] [Green Version]
- Senitzki, A.; Safieh, J.; Sharma, V.; Golovenko, D.; Danin-Poleg, Y.; Inga, A.; Haran, E.T. The complex architecture of p53 binding sites. Nucleic Acids Res. 2021, 49, 1364–1382. [Google Scholar] [CrossRef]
- Szak, S.T.; Mays, D.; Pietenpol, J.A. Kinetics of p53 binding to promoter sites in vivo. Mol. Cell. Biol. 2001, 21, 3375–3386. [Google Scholar] [CrossRef] [PubMed]
- He, F.; Borcherds, W.; Song, T.; Wei, X.; Das, M.; Chen, L.; Daughdrill, G.W.; Chen, J. Interaction between p53 N terminus and core domain regulates specific and nonspecific DNA binding. Proc. Natl. Acad. Sci. USA 2019, 116, 8859–8868. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krois, A.S.; Dyson, H.J.; Wright, P.E. Long-range regulation of p53 DNA binding by its intrinsically disordered N-terminal transactivation domain. Proc. Natl. Acad. Sci. USA 2018, 115, E11302–E11310. [Google Scholar] [CrossRef] [Green Version]
- Sun, X.; Dyson, H.J.; Wright, P.E. A phosphorylation-dependent switch in the disordered p53 transactivation domain regulates DNA binding. Proc. Natl. Acad. Sci. USA 2021, 118, e2021456118. [Google Scholar] [CrossRef]
- Tompa, P.; Fuxreiter, M. Fuzzy complexes: Polymorphism and structural disorder in protein-protein interactions. Trends Biochem. Sci. 2008, 33, 2–8. [Google Scholar] [CrossRef] [PubMed]
- Arbesu, M.; Iruela, G.; Fuentes, H.; Teixeira, J.M.C.; Pons, M. Intramolecular Fuzzy Interactions Involving Intrinsically Disordered Domains. Front. Mol. Biosci. 2018, 5, 39. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Greenblatt, H.M.; Bigman, L.S.; Yu, B.; Pletka, C.C.; Levy, Y.; Iwahara, J. Dynamic Autoinhibition of the HMGB1 Protein via Electrostatic Fuzzy Interactions of Intrinsically Disordered Regions. J. Mol. Biol. 2021, 433, 167122. [Google Scholar] [CrossRef]
- Desjardins, G.; Meeker, C.A.; Bhachech, N.; Currie, S.L.; Okon, M.; Graves, B.J.; McIntosh, L.P. Synergy of aromatic residues and phosphoserines within the intrinsically disordered DNA-binding inhibitory elements of the Ets-1 transcription factor. Proc. Natl. Acad. Sci. USA 2014, 111, 11019–11024. [Google Scholar] [CrossRef] [Green Version]
- Bourgeois, B.; Gui, T.; Hoogeboom, D.; Hocking, H.G.; Richter, G.; Spreitzer, E.; Viertler, M.; Richter, K.; Madl, T.; Burgering, B.M. Multiple regulatory intrinsically disordered motifs control FOXO4 transcription factor binding and function. Cell Rep. 2021, 36, 109446. [Google Scholar] [CrossRef]
- Gong, W.B.; Liang, Q.; Tong, Y.; Perrett, S.; Feng, Y. Structural Insight into Chromatin Recognition by Multiple Domains of the Tumor Suppressor RBBP1. J. Mol. Biol. 2021, 433, 167224. [Google Scholar] [CrossRef]
- Liu, J.; Perumal, N.B.; Oldfield, C.J.; Su, E.W.; Uversky, V.N.; Dunker, A.K. Intrinsic disorder in transcription factors. Biochemistry 2006, 45, 6873–6888. [Google Scholar] [CrossRef] [PubMed]
- Minezaki, Y.; Homma, K.; Kinjo, A.R.; Nishikawa, K. Human transcription factors contain a high fraction of intrinsically disordered regions essential for transcriptional regulation. J. Mol. Biol. 2006, 359, 1137–1149. [Google Scholar] [CrossRef]
- Singh, G.P.; Dash, D. Intrinsic disorder in yeast transcriptional regulatory network. Proteins 2007, 68, 602–605. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Matthews, K.S.; Bondos, S.E. Multiple intrinsically disordered sequences alter DNA binding by the homeodomain of the Drosophila hox protein ultrabithorax. J. Biol. Chem. 2008, 283, 20874–20887. [Google Scholar] [CrossRef] [Green Version]
- Brodsky, S.; Matthews, K.S.; Bondos, S.E. Intrinsically Disordered Regions Direct Transcription Factor In Vivo Binding Specificity. Mol. Cell 2020, 79, 459–471.e4. [Google Scholar] [CrossRef] [PubMed]
- Spreitzer, E.; Alderson, T.R.; Bourgeois, B.; Eggenreich, L.; Habacher, H.; Bramerdorfer, G.; Pritišanac, I.; Sánchez-Murcia, P.A.; Madl, T. FOXO transcription factors differ in their dynamics and intra/intermolecular interactions. Curr. Res. Struct. Biol. 2022, 4, 118–133. [Google Scholar] [CrossRef]
- Katan-Khaykovich, Y.; Shaul, Y. Nuclear import and DNA-binding activity of RFX1. Evidence for an autoinhibitory mechanism. Eur. J. Biochem. 2001, 268, 3108–3116. [Google Scholar] [CrossRef] [Green Version]
- Ueshima, S.; Nagata, K.; Okuwaki, M. Internal Associations of the Acidic Region of Upstream Binding Factor Control Its Nucleolar Localization. Mol. Cell. Biol. 2017, 37, e00218-17. [Google Scholar] [CrossRef] [Green Version]
- Wiebe, M.S.; Nowling, T.K.; Rizzino, A. Identification of novel domains within Sox-2 and Sox-11 involved in autoinhibition of DNA binding and partnership specificity. J. Biol. Chem. 2003, 278, 17901–17911. [Google Scholar] [CrossRef] [Green Version]
- Wijeratne, T.U.; Guiley, K.Z.; Lee, H.-W.; Müller, G.A.; Rubin, S.M. Cyclin-dependent kinase-mediated phosphorylation and the negative regulatory domain of transcription factor B-Myb modulate its DNA binding. J. Biol. Chem. 2022, 298, 102319. [Google Scholar] [CrossRef]
- Ning, S.; Chao, H.-J.; Li, S.; Zhou, R.; Zou, L.; Zhang, X.; Liu, J.; Yan, D.; Duan, M. The auto-inhibition mechanism of transcription factor Ets-1 induced by phosphorylation on the intrinsically disordered region. Comput. Struct. Biotechnol. J. 2022, 20, 1132–1141. [Google Scholar] [CrossRef] [PubMed]
- Dosztanyi, Z.; Csizmok, V.; Tompa, P.; Simon, I. IUPred: Web server for the prediction of intrinsically unstructured regions of proteins based on estimated energy content. Bioinformatics 2005, 21, 3433–3434. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Munoz, V.; Serrano, L. Elucidating the folding problem of helical peptides using empirical parameters. Nat. Struct. Biol. 1994, 1, 399–409. [Google Scholar] [CrossRef] [PubMed]
- Mittag, T.; Orlicky, S.; Choy, W.-Y.; Tang, X.; Lin, H.; Sicheri, F.; Kay, L.E.; Tyers, M.; Forman-Kay, J.D. Dynamic equilibrium engagement of a polyvalent ligand with a single-site receptor. Proc. Natl. Acad. Sci. USA 2008, 105, 17772–17777. [Google Scholar] [CrossRef] [Green Version]
- Nikolova, P.V.; Henckel, J.; Lane, D.; Fersht, A.R. Semirational design of active tumor suppressor p53 DNA binding domain with enhanced stability. Proc. Natl. Acad. Sci. USA 1998, 95, 14675–14680. [Google Scholar] [CrossRef] [Green Version]
- LiCata, V.J.; Wowor, A.J. Applications of fluorescence anisotropy to the study of protein-DNA interactions. Methods Cell Biol. 2008, 84, 243–262. [Google Scholar]
- Zou, Y.; Bassett, H.; Walker, R.; Bishop, A.; Amin, S.; Geacintov, N.E.; Van Houten, B. Hydrophobic forces dominate the thermodynamic characteristics of UvrA-DNA damage interactions. J. Mol. Biol. 1998, 281, 107–119. [Google Scholar] [CrossRef]
- Manning, G.S. Limiting Laws and Counterion Condensation in Polyelectrolyte Solutions. 1. Colligative properties. J. Chem. Phys. 1969, 51, 922–934. [Google Scholar] [CrossRef]
- Record, M.T., Jr.; Lohman, M.L.; De Haseth, P. Ion effects on ligand-nucleic acid interactions. J. Mol. Biol. 1976, 107, 145–158. [Google Scholar] [CrossRef]
- Privalov, P.L.; Dragan, A.I.; Crane-Robinson, C. Interpreting protein/DNA interactions: Distinguishing specific from non-specific and electrostatic from non-electrostatic components. Nucleic Acids Res. 2011, 39, 2483–2491. [Google Scholar] [CrossRef] [Green Version]
- Fogolari, F.; Elcock, A.; Esposito, G.; Viglino, P.; Briggs, J.; McCammon, J. Electrostatic effects in homeodomain-DNA interactions. J. Mol. Biol. 1997, 267, 368–381. [Google Scholar] [CrossRef] [PubMed]
- Sharp, K.A.; Friedman, R.A.; Misra, V.; Hecht, J.; Honig, B. Salt Effects on Polyelectrolyte-Ligand Binding—Comparison of Poisson-Boltzmann, and Limiting Law Counterion Binding Models. Biopolymers 1995, 36, 245–262. [Google Scholar] [CrossRef] [PubMed]
- Olmsted, M.C.; Bond, J.; Anderson, C.; Record, M. Grand-Canonical Monte-Carlo Molecular and Thermodynamic Predictions of Ion Effects on Binding of an Oligocation (L(8+)) to the Center of DNA Oligomers. Biophys. J. 1995, 68, 634–647. [Google Scholar] [CrossRef] [Green Version]
- Ha, J.H.; Capp, M.W.; Hohenwalter, M.D.; Baskerville, M.; Record, M.T., Jr. Thermodynamic stoichiometries of participation of water, cations and anions in specific and non-specific binding of lac repressor to DNA. Possible thermodynamic origins of the “glutamate effect” on protein-DNA interactions. J. Mol. Biol. 1992, 228, 252–264. [Google Scholar] [CrossRef]
- Misra, V.K.; Hecht, J.L.; Yang, A.S.; Honig, B. Electrostatic contributions to the binding free energy of the lambdacI repressor to DNA. Biophys. J. 1998, 75, 2262–2273. [Google Scholar] [CrossRef] [Green Version]
- Grucza, R.A.; Bradshaw, J.M.; Mitaxov, V.; Waksman, G. Role of electrostatic interactions in SH2 domain recognition: Salt-dependence of tyrosyl-phosphorylated peptide binding to the tandem SH2 domain of the Syk kinase and the single SH2 domain of the Src kinase. Biochemistry 2000, 39, 10072–10081. [Google Scholar] [CrossRef]
- Cravens, S.L.; Hobson, M.; Stivers, J.T. Electrostatic properties of complexes along a DNA glycosylase damage search pathway. Biochemistry 2014, 53, 7680–7692. [Google Scholar] [CrossRef] [Green Version]
- Fenley, M.O.; Russo, C.; Manning, G.S. Theoretical assessment of the oligolysine model for ionic interactions in protein-DNA complexes. J. Phys. Chem. B 2011, 115, 9864–9872. [Google Scholar] [CrossRef] [Green Version]
- Kunji, E.R.; Harding, M.; Butler, P.J.G.; Akamine, P. Determination of the molecular mass and dimensions of membrane proteins by size exclusion chromatography. Methods 2008, 46, 62–72. [Google Scholar] [CrossRef]
- Rodbard, D.; Chrambach, A. Unified theory for gel electrophoresis and gel filtration. Proc. Natl. Acad. Sci. USA 1970, 65, 970–977. [Google Scholar] [CrossRef] [Green Version]
- Langridge, T.D.; Tarver, M.J.; Whitten, S.T. Temperature effects on the hydrodynamic radius of the intrinsically disordered N-terminal region of the p53 protein. Proteins 2014, 82, 668–678. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Schwedes, J.F.; Parks, D.; Mann, K.; Tegtmeyer, P. Interaction of p53 with its consensus DNA-binding site. Mol. Cell. Biol. 1995, 15, 2157–2165. [Google Scholar] [CrossRef]
- Misra, V.K.; Honig, B. On the magnitude of the electrostatic contribution to ligand-DNA interactions. Proc. Natl. Acad. Sci. USA 1995, 92, 4691–4695. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Record, M.T., Jr.; Ha, J.H.; Fisher, M.A. Analysis of equilibrium and kinetic measurements to determine thermodynamic origins of stability and specificity and mechanism of formation of site-specific complexes between proteins and helical DNA. Methods Enzym. 1991, 208, 291–343. [Google Scholar]
- Beno, I.; Rosenthal, K.; Levitine, M.; Shaulov, L.; Haran, T.E. Sequence-dependent cooperative binding of p53 to DNA targets and its relationship to the structural properties of the DNA targets. Nucleic Acids Res. 2011, 39, 1919–1932. [Google Scholar] [CrossRef] [Green Version]
- Zhu, J.; Zhou, W.; Jiang, J.; Chen, X. Identification of a novel p53 functional domain that is necessary for mediating apoptosis. J. Biol. Chem. 1998, 273, 13030–13036. [Google Scholar] [CrossRef] [Green Version]
- Miller Jenkins, L.M.; Feng, H.; Durell, S.R.; Tagad, H.D.; Mazur, S.J.; Tropea, J.E.; Bai, Y.; Appella, E. Characterization of the p300 Taz2-p53 TAD2 complex and comparison with the p300 Taz2-p53 TAD1 complex. Biochemistry 2015, 54, 2001–2010. [Google Scholar] [CrossRef] [PubMed]
- Teufel, D.P.; Freund, S.M.; Bycroft, M.; Fersht, A.R. Four domains of p300 each bind tightly to a sequence spanning both transactivation subdomains of p53. Proc. Natl. Acad. Sci. USA 2007, 104, 7009–7014. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Von Hippel, P.H.; Berg, O.G. On the specificity of DNA-protein interactions. Proc. Natl. Acad. Sci. USA 1986, 83, 1608–1612. [Google Scholar] [CrossRef] [Green Version]
- Eaton, B.E.; Gold, L.; Zichi, D.A. Let’s get specific: The relationship between specificity and affinity. Chem. Biol. 1995, 2, 633–638. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Sun, Y. Modeling of the salt effects on hydrophobic adsorption equilibrium of protein. J. Chromatogr. A 2003, 992, 29–40. [Google Scholar] [CrossRef]
- Zangi, R.; Hagen, M.; Berne, B.J. Effect of ions on the hydrophobic interaction between two plates. J. Am. Chem. Soc. 2007, 129, 4678–4686. [Google Scholar] [CrossRef] [PubMed]
- Fried, M.G.; Stickle, D.F. Ion-exchange reactions of proteins during DNA binding. Eur. J. Biochem. 1993, 218, 469–475. [Google Scholar] [CrossRef] [PubMed]
- Kitayner, M.; Rozenberg, H.; Kessler, N.; Rabinovich, D.; Shaulov, L.; Haran, T.E.; Shakked, Z. Structural basis of DNA recognition by p53 tetramers. Mol. Cell 2006, 22, 741–753. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Zhang, X.; Machado, A.C.D.; Ding, Y.; Chen, Z.; Qin, P.Z.; Rohs, R.; Chen, L. Structure of p53 binding to the BAX response element reveals DNA unwinding and compression to accommodate base-pair insertion. Nucleic Acids Res. 2013, 41, 8368–8376. [Google Scholar] [CrossRef]
- Zhukov, A.; Karlsson, R. Statistical aspects of van’t Hoff analysis: A simulation study. J. Mol. Recognit. 2007, 20, 379–385. [Google Scholar] [CrossRef]
- Moraitis, M.I.; Xu, H.; Matthews, K.S. Ion concentration and temperature dependence of DNA binding: Comparison of PurR and LacI repressor proteins. Biochemistry 2001, 40, 8109–8117. [Google Scholar] [CrossRef]
- Oda, M.; Furukawa, K.; Ogata, K.; Sarai, A.; Nakamura, H. Thermodynamics of specific and non-specific DNA binding by the c-Myb DNA-binding domain. J. Mol. Biol. 1998, 276, 571–590. [Google Scholar] [CrossRef]
- Winter, R.B.; von Hippel, P.H. Diffusion-driven mechanisms of protein translocation on nucleic acids. 2. The Escherichia coli repressor--operator interaction: Equilibrium measurements. Biochemistry 1981, 20, 6948–6960. [Google Scholar] [CrossRef]
- DeHaseth, P.L.; Lohman, T.M.; Record, M.T., Jr. Nonspecific interaction of lac repressor with DNA: An association reaction driven by counterion release. Biochemistry 1977, 16, 4783–4790. [Google Scholar] [CrossRef]
- Chakraborty, M.; Sengupta, A.; Bhattacharya, D.; Banerjee, S.; Chakrabarti, A. DNA binding domain of RFX5: Interactions with X-box DNA and RFXANK. Biochim. Biophys. Acta 2010, 1804, 2016–2024. [Google Scholar] [CrossRef]
- Poon, G.M.; Gross, P.; Macgregor, R.B., Jr. The sequence-specific association of the ETS domain of murine PU.1 with DNA exhibits unusual energetics. Biochemistry 2002, 41, 2361–2371. [Google Scholar] [CrossRef] [PubMed]
- Koblan, K.S.; Ackers, G.K. Site-specific enthalpic regulation of DNA transcription at bacteriophage lambda OR. Biochemistry 1992, 31, 57–65. [Google Scholar] [CrossRef] [PubMed]
- Misra, V.K.; Hecht, J.L.; Sharp, K.A.; Friedman, R.A.; Honig, B. Salt effects on protein-DNA interactions. The lambda cI repressor and EcoRI endonuclease. J. Mol. Biol. 1994, 238, 264–280. [Google Scholar] [CrossRef] [PubMed]
- Klein, C.; Georges, G.; Künkele, K.-P.; Huber, R.; Engh, R.A.; Hansen, S. High thermostability and lack of cooperative DNA binding distinguish the p63 core domain from the homologous tumor suppressor p53. J. Biol. Chem. 2001, 276, 37390–37401. [Google Scholar] [CrossRef] [Green Version]
- Wilkins, D.K.; Grimshaw, S.B.; Receveur, V.; Dobson, C.M.; Jones, J.A.; Smith, L.J. Hydrodynamic radii of native and denatured proteins measured by pulse field gradient NMR techniques. Biochemistry 1999, 38, 16424–16431. [Google Scholar] [CrossRef]
- Marsh, J.A.; Forman-Kay, J.D. Sequence Determinants of Compaction in Intrinsically Disordered Proteins. Biophys. J. 2010, 98, 2383–2390. [Google Scholar] [CrossRef] [Green Version]
- Yu, B.; Pettitt, B.M.; Iwahara, J. Dynamics of Ionic Interactions at Protein-Nucleic Acid Interfaces. Acc. Chem. Res. 2020, 53, 1802–1810. [Google Scholar] [CrossRef]
- Kussie, P.H.; Gorina, S.; Marechal, V.; Elenbaas, B.; Moreau, J.; Levine, A.J.; Pavletich, N.P. Structure of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation domain. Science 1996, 274, 948–953. [Google Scholar] [CrossRef]
- Ferreon, J.C.; Lee, C.W.; Arai, M.; Martinez-Yamout, M.A.; Dyson, H.J.; Wright, P.E. Cooperative regulation of p53 by modulation of ternary complex formation with CBP/p300 and HDM2. Proc. Natl. Acad. Sci. USA 2009, 106, 6591–6596. [Google Scholar] [CrossRef] [Green Version]
- Di Lello, P.; Jenkins, L.M.M.; Jones, T.N.; Nguyen, B.D.; Hara, T.; Yamaguchi, H.; Dikeakos, J.D.; Appella, E.; Legault, P.; Omichinski, J.G. Structure of the Tfb1/p53 complex: Insights into the interaction between the p62/Tfb1 subunit of TFIIH and the activation domain of p53. Mol. Cell 2006, 22, 731–740. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Ouyang, Y.; Li, Q.; Zhang, Z. Modulation of p53 N-terminal transactivation domain 2 conformation ensemble and kinetics by phosphorylation. J. Biomol. Struct. Dyn. 2020, 38, 2613–2623. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Sturtevant, J.M. Significant discrepancies between van't Hoff and calorimetric enthalpies. II. Protein Sci. 1995, 4, 2559–2561. [Google Scholar]
- Datta, K.; Wowor, A.J.; Richard, A.J.; LiCata, V.J. Temperature dependence and thermodynamics of Klenow polymerase binding to primed-template DNA. Biophys. J. 2006, 90, 1739–1751. [Google Scholar]
- Demir, O.; Ieong, P.U.; Amaro, R.E. Full-length p53 tetramer bound to DNA and its quaternary dynamics. Oncogene 2007, 36, 1451–1460. [Google Scholar]
- Lambrughi, M.; De Gioia, L.; Gervasio, F.L.; Lindorff-Larsen, K.; Nussinov, R.; Urani, C.; Bruschi, M.; Papaleo, E. DNA-binding protects p53 from interactions with cofactors involved in transcription-independent functions. Nucleic Acids Res. 2016, 44, 9096–9109. [Google Scholar]
- Melero, R.; Rajagopalan, S.; Lázaro, M.; Joerger, A.C.; Brandt, T.; Veprintsev, D.B.; Lasso, G.; Gil, D.; Scheres, S.H.; Carazo, J.M. Electron microscopy studies on the quaternary structure of p53 reveal different binding modes for p53 tetramers in complex with DNA. Proc. Natl. Acad. Sci. USA 2011, 108, 557–562. [Google Scholar]
- Takeda, Y.; Ross, P.D.; Mudd, C.P. Thermodynamics of Cro protein-DNA interactions. Proc. Natl. Acad. Sci. USA 1992, 89, 8180–8184. [Google Scholar]
Consensus DNA | |||||
---|---|---|---|---|---|
DBD | ND DE | ND NP | ND QS | ND WT | |
DBD | 0.00 | 1.03 | 1.13 | 1.49 | 3.02 |
ND DE | −1.03 | 0.00 | 0.10 | 0.46 | 1.99 |
ND NP | −1.13 | −0.10 | 0.00 | 0.36 | 1.89 |
ND QS | −1.49. | −0.46 | −0.36 | 0.00 | 1.53 |
ND WT | −3.02 | −1.99 | −1.89 | −1.53 | 0.00 |
Scrambled DNA | |||||
DBD | ND DE | ND NP | ND QS | ND WT | |
DBD | 0.00 | 0.46 | 0.64 | 0.63 | 0.97 |
ND DE | −0.46 | 0.00 | 0.18 | 0.17 | 0.51 |
ND NP | −0.64 | −0.18 | 0.00 | −0.01 | 0.32 |
ND QS | −0.63 | −0.17 | 0.01 | 0.00 | 0.33 |
ND WT | −0.97 | −0.51 | −0.32 | −0.33 | 0.00 |
Slope, N, with Consensus DNA | Predicted Excess Ions released | Slope, N, with Scrambled DNA | Predicted Excess Ions released | |
---|---|---|---|---|
DBD | −7.39 | 3.9 | −4.09 | 0.6 |
ND DE | −7.08 | 3.6 | −3.89 | 0.5 |
ND NP | −5.94 | 2.4 | −6.91, −2.35 | 3.4, 0.0 |
ND QS | −7.16 | 3.6 | −3.90 | 0.4 |
ND WT | −5.99 | 2.5 | −4.15 | 0.7 |
Stokes Radius (nm) | Elution Volume (mL) | Apparent Molecular Weight (kDa) | Actual Molecular Weight (kDa) | |
---|---|---|---|---|
DBD | 2.74 ± 0.004 | 63.78 ± 0.05 | 34.76 ± 0.13 | 24.55 |
ND DE | 3.71 ± 0.001 | 52.41 ±0.01 | 67.89 ± 0.07 | 34.23 |
ND NP | 3.65 ± 0.004 | 52.90 ± 0.04 | 65.98 ± 0.17 | 34.13 |
ND QS | 3.65 ± 0.004 | 52.90 ± 0.02 | 65.98 ± 0.17 | 34.45 |
ND WT | 3.55 ± 0.004 | 53.82 ± 0.04 | 62.46 ± 0.19 | 34.57 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gregory, E.; Daughdrill, G.W. Sequence Properties of an Intramolecular Interaction that Inhibits p53 DNA Binding. Biomolecules 2022, 12, 1558. https://doi.org/10.3390/biom12111558
Gregory E, Daughdrill GW. Sequence Properties of an Intramolecular Interaction that Inhibits p53 DNA Binding. Biomolecules. 2022; 12(11):1558. https://doi.org/10.3390/biom12111558
Chicago/Turabian StyleGregory, Emily, and Gary W. Daughdrill. 2022. "Sequence Properties of an Intramolecular Interaction that Inhibits p53 DNA Binding" Biomolecules 12, no. 11: 1558. https://doi.org/10.3390/biom12111558
APA StyleGregory, E., & Daughdrill, G. W. (2022). Sequence Properties of an Intramolecular Interaction that Inhibits p53 DNA Binding. Biomolecules, 12(11), 1558. https://doi.org/10.3390/biom12111558