Enzymatic Synthesis of Maltitol and Its Inhibitory Effect on the Growth of Streptococcus mutans DMST 18777
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Bacterial Cultivation and Enzyme Purification
2.3. Assay of CGTase
2.3.1. Dextrinizing Activity
2.3.2. Coupling Activity
2.4. Determination of Polyol-Acceptor Specificity of CGTase
2.5. Optimum Conditions for Maltitol Production
2.6. Detection of Maltitol Product
2.6.1. Thin Layer Chromatography (TLC) Analysis
2.6.2. High-Performance Liquid Chromatography (HPLC) Analysis
2.7. Scale-Up Preparation and Purification of Synthesized Maltitol
2.8. Mass Spectrometry (MS) Analysis
2.9. NMR Analysis
2.10. Physiochemical and Biological Properties of Synthesized Maltitol
2.10.1. Relative Sweetness
2.10.2. Growth-Inhibitory Effect of Streptococcus mutans DMST 18777 by Maltitol in Agar Media
2.10.3. Antibacterial Activity
- Disc Diffusion Technique
- Minimal Inhibitory Concentration (MIC)
- Minimal Bactericidal Concentration (MBC)
3. Results and Discussion
3.1. Purification and Acceptor Specificity of Recombinant CGTase
3.2. Optimal Condition for the Production of Maltitol
3.3. Upscale Production and HPLC Analysis
3.4. Mass Spectrometry (MS) Analysis
3.5. NMR Analysis
3.6. Characterization of the Synthesized Maltitol Product
3.6.1. Relative Sweetness
3.6.2. Growth Inhibitory Effect of the Synthesized Maltitol on Streptococcus mutans DMST 18777
3.6.3. Antibacterial Activity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jung, S.-W.; Kim, T.-K.; Lee, K.-W.; Lee, Y.-H. Catalytic properties of β-cyclodextrin glucanotransferase from alkalophilic Bacillus sp. BL-12 and intermolecular transglycosylation of stevioside. Biotechnol. Bioprocess Eng. 2007, 12, 207. [Google Scholar] [CrossRef]
- Jaitak, V.; Kaul, V.; Bandna; Kumar, N.; Singh, B.; Savergave, L.; Jogdand, V.; Nene, S. Simple and efficient enzymatic transglycosylation of stevioside by β-cyclodextrin glucanotransferase from Bacillus firmus. Biotechnol. Lett. 2009, 31, 1415–1420. [Google Scholar] [CrossRef] [PubMed]
- Svensson, D.; Ulvenlund, S.; Adlercreutz, P. Efficient synthesis of a long carbohydrate chain alkyl glycoside catalyzed by cyclodextrin glycosyltransferase (CGTase). Biotechnol. Bioeng. 2009, 104, 854–861. [Google Scholar] [CrossRef]
- Okada, S. Studies on cyclomaltodextrin glucanotransferase and coupling sugar. J. Jpn. Soc. Starch Sci. 1987, 34, 75–82. [Google Scholar] [CrossRef]
- Sato, M.; Matsuo, T.; Orita, N.; Yagi, Y. Synthesis of novel sugars, oligoglucosyl-inositols, and their growth stimulating effect for Bifidobacterium. Biotechnol. Lett. 1991, 13, 69–74. [Google Scholar] [CrossRef]
- Yoon, J.W.; Jeon, E.J.; Jung, I.H.; Min, M.J.; Lee, H.Y.; Kim, M.J.; Baek, J.S.; Lee, H.S.; Park, C.S.; Oh, S.; et al. Maltosyl-erythritol, a major transglycosylation product of erythritol by Bacillus stearothermophilus maltogenic amylase. Biosci. Biotechnol. Biochem. 2003, 67, 525–531. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, T.-K.; Park, D.-C.; Lee, Y.-H. Synthesis of glucosyl-sugar alcohols using glycosyltransferases and structural identification of glucosyl-maltitol. J. Microbiol. Biotechnol. 1997, 7, 310–317. [Google Scholar]
- Kim, T.-K.; Park, D.-C.; Lee, Y.-H. Synthesis of transglucosylated xylitol using cyclodextrin glucanotransferase and its stimulating effect on the growth of Bifidobacterium. Kor. J. Appl. Microbiol. Biotechnol. 1998, 26, 442–449. [Google Scholar]
- Radhika, G.S.; Moorthy, S.N. Sugar alcohols-a review. Trends Carbohydr. Res. 2009, 1, 71–79. [Google Scholar]
- Prosdocimi, E.M.; Kistler, J.O.; Moazzez, R.; Thabuis, C.; Perreau, C.; Wade, W.G. Effect of maltitol-containing chewing gum use on the composition of dental plaque microbiota in subjects with active dental caries. J. Oral Microbiol. 2017, 9, 1374152. [Google Scholar] [CrossRef] [Green Version]
- Livesey, G. Health potential of polyols as sugar replacers, with emphasis on low glycaemic properties. Nutr. Res. Rev. 2003, 16, 163–191. [Google Scholar] [CrossRef] [Green Version]
- Mouradian, W.E.; Wehr, E.; Crall, J.J. Disparities in children’s oral health and access to dental care. J. Am. Med. Assoc. 2000, 284, 2625–2631. [Google Scholar] [CrossRef] [PubMed]
- Dashper, S.G.; Reynolds, E.C. Lactic acid excretion by Streptococcus mutans. Microbiology 1996, 142, 33–39. [Google Scholar] [CrossRef] [Green Version]
- Vadeboncoeur, C.; Pelletier, M. The phosphoenolpyruvate:sugar phosphotransferase system of oral streptococci and its role in the control of sugar metabolism. FEMS Microbiol. Rev. 1997, 19, 187–207. [Google Scholar] [CrossRef]
- Jenkins, G.N. Review of fluoride research since 1959. Arch. Oral Biol. 1999, 44, 985–992. [Google Scholar] [CrossRef]
- Linossier, A.; Carvajal, P.; Donoso, E.; Orrego, M. Dental fluorosis: Quantification of Streptococcus mutans in school children from Mamiña, Chile. A longitudinal study. Rev. Med. Chil. 1999, 127, 1462–1468. [Google Scholar]
- Saraiva, A.; Carrascosa, C.; Raheem, D.; Ramos, F.; Raposo, A. Maltitol: Analytical determination methods, applications in the food industry, metabolism and health impacts. Int. J. Environ. Res. Public Health 2020, 17, 5227. [Google Scholar] [CrossRef] [PubMed]
- Keijser, B.J.; van den Broek, T.J.; Slot, D.E.; van Twillert, L.; Kool, J.; Thabuis, C.; Ossendrijver, M.; van der Weijden, F.A.; Montijn, R.C. The impact of maltitol-sweetened chewing gum on the dental plaque biofilm microbiota composition. Front. Microbiol. 2018, 9, 381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grembecka, M. Sugar alcohols—their role in the modern world of sweeteners: A review. Eur. Food Res. Technol. 2015, 241, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Rimphanitchayakit, V.; Tonozuka, T.; Sakano, Y. Construction of chimeric cyclodextrin glucanotransferases from Bacillus circulans A11 and Paenibacillus macerans IAM1243 and analysis of their product specificity. Carbohydr. Res. 2005, 340, 2279–2289. [Google Scholar] [CrossRef] [PubMed]
- Kaulpiboon, J.; Prasong, W.; Rimphanitchayakit, V.; Murakami, S.; Aoki, K.; Pongsawasdi, P. Expression and characterization of a fusion protein-containing cyclodextrin glycosyltransferase from Paenibacillussp. A11. J. Basic Microbiol. 2010, 50, 427–435. [Google Scholar] [CrossRef] [PubMed]
- Charoensapyanan, R.; Ito, K.; Rudeekulthamrong, P.; Kaulpiboon, J. Enzymatic synthesis of propyl-α-glycosides and their application as emulsifying and antibacterial agents. Biotechnol. Bioprocess Eng. 2016, 21, 389–401. [Google Scholar] [CrossRef]
- Fuwa, H. A new method for microdetermination of amylase activity by the use of amylose as the substrate. J. Biochem. 1954, 41, 583–603. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Weber, K.; Osborn, M. Proteins and sodium dodecyl sulfate: Molecular weight determination on polyacrylamide gels and related procedures. In The Proteins; Neurath, H., Hill, R.L., Border, C., Eds.; Academic Press: Cambridge, MA, USA, 1975; pp. 179–223. [Google Scholar]
- Miwa, I.; Okuda, J.; Maeua, K.; Okuda, G. Mutarotase effect on colorimetric determination of blood glucose with β-D-glucose oxidase. Clin. Chim. Acta 1972, 37, 538–540. [Google Scholar] [CrossRef]
- Chaisin, T.; Kaulpiboon, J.; Poomipark, N. Acceptor specificity of recombinant cyclodextrin glycosyltransferase from Bacillus circulans A11. Sci. Technol. Asia 2018, 23, 86–97. [Google Scholar]
- Kaulpiboon, J.; Rudeekulthamrong, P. Biosynthesis of methyl glucoside and its antibacterial activity against Staphylococcus aureus and Escherichia coli. Bioact. Carbohydr. Diet. Fibre. 2019, 20, 100197. [Google Scholar] [CrossRef]
- Khummanee, N.; Rudeekulthamrong, P.; Kaulpiboon, J. Enzymatic synthesis of functional xylose glucoside and its application to prebiotic. Appl. Biochem. Microbiol. 2021, 57, 212–218. [Google Scholar] [CrossRef]
- Kaulpiboon, J.; Rudeekulthamrong, P.; Watanasatitarpa, S.; Ito, K.; Pongsawasdi, P. Synthesis of long-chain isomaltooligosaccharides from tapioca starch and an in vitro investigation of their prebiotic properties. J. Mol. Catal. B Enzym. 2015, 120, 127–135. [Google Scholar] [CrossRef]
- Yun, E.J.; Lee, A.R.; Kim, J.H.; Cho, K.M.; Kim, K.H. 3,6-Anhydro-L-galactose, a rare sugar from agar, a new anticariogenic sugar to replace xylitol. Food Chem. 2017, 221, 976–983. [Google Scholar] [CrossRef] [PubMed]
- Clinical and Laboratory Standard Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing, S.M., 31st ed.; Wayne, P., Ed.; Clinical and Laboratory Standard Institute: Wayne, PA, USA, 2021. [Google Scholar]
- Kitahata, S. Synthesis of oligosaccharides using microbial enzymes. J. Jap. Soc. Starch Sci. 1990, 37, 59–67. [Google Scholar] [CrossRef]
- Mäkinen, K.K. Sugar alcohols, caries incidence, and remineralization of caries lesions: A literature review. Int. J. Dent. 2010, 2010, 981072. [Google Scholar] [CrossRef] [Green Version]
- Wongsangwattana, W.; Kaulpiboon, J.; Ito, K.; Pongsawasdi, P. Synthesis of cellobiose-containing oligosaccharides by intermolecular transglucosylation of cyclodextrin glycosyltransferase from Paenibacillus sp. A11. Process. Biochem. 2010, 45, 947–953. [Google Scholar] [CrossRef]
- Kim, P.-S.; Shin, H.-D.; Park, J.-K.; Lee, Y.-H. Immobilization of cyclodextrin glucanotransferase on amberlite IRA-900 for biosynthesis of transglycosylated xylitol. Biotechnol. Bioprocess Eng. 2000, 5, 174–180. [Google Scholar] [CrossRef]
- Hu, X.; Song, L.; Yang, Y.; Wang, L.; Li, Y.; Miao, M. Biosynthesis, structural characteristics and prebiotic properties of maltitol-based acceptor products. J. Funct. Foods 2021, 78, 104374. [Google Scholar] [CrossRef]
- Paul, D.; Bloom, C.C.M.; Kevin, M. Continuous Process for Hydrogenation of Maltose to Maltitol. US Patent WO2018118854A1, 28 June 2018. [Google Scholar]
- Haghgoo, R.; Afshari, E.; Ghanaat, T.; Aghazadeh, S. Comparing the efficacy of xylitol-containing and conventional chewing gums in reducing salivary counts of Streptococcus mutans: An in vivo study. J. Int. Soc. Prev. Community Dent. 2015, 5, S112–S117. [Google Scholar] [CrossRef] [PubMed]
- Jeon, E.J.; Jung, I.H.; Cho, K.S.; Seo, E.; Kim, D.; Lee, S.; Park, K.H.; Moon, T.W. Low cariogenicity of maltosyl-erythritol, major transglycosylation product of erythritol, by Bacillus stearothermophilus maltogenic amylase. J. Microbiol. Biotechnol. 2003, 13, 815–818. [Google Scholar]
- Söderling, E.M.; Hietala-Lenkkeri, A.M. Xylitol and erythritol decrease adherence of polysaccharide-producing oral streptococci. Curr. Microbiol. 2010, 60, 25–29. [Google Scholar] [CrossRef]
- Miyasawa-Hori, H.; Aizawa, S.; Takahashi, N. Difference in the xylitol sensitivity of acid production among Streptococcus mutans strains and the biochemical mechanism. Oral Microbiol. Immunol. 2006, 21, 201–205. [Google Scholar] [CrossRef]
- Front matter. In Textbook of Natural Medicine, 5th ed.; Pizzorno, J.E.; Murray, M.T. (Eds.) Churchill Livingstone: St. Louis, MO, USA, 2020. [Google Scholar]
Acceptor | C-Atom | Chemical Formula | Synonym | Chemical Structure | Relative Activity a (%) |
---|---|---|---|---|---|
Maltitol | 12 | C12H24O11 | 4-O-α-Glucopyranosyl-D-sorbitol | 48.7 ± 5.3 | |
Sorbitol | 6 | C6H14O6 | D-Glucitol, D-Sorbitol | 45.6 ± 3.7 | |
Mannitol | 6 | C6H14O6 | Mannite, D-Mannitol | 44.2 ± 2.4 | |
Galactitol | 6 | C6H14O6 | Dulcitol, Dulcite | 42.4 ± 2.3 | |
Xylitol | 5 | C5H12O5 | Xylite | 41.6 ± 2.4 | |
Arabitol | 5 | C5H12O5 | D-(+)-Arabitol | 35.1 ± 1.9 | |
Erythritol | 4 | C4H10O4 | meso-Erythritol, meso-1,2,3,4-Tetrahydroxybutane, 1,2,3,4-Butanetetrol, i-Erythritol | 33.9 ± 2.0 |
Carbon Atom | 13C-NMR (δ a, ppm) | |||
---|---|---|---|---|
Sorbitol | Glucose | Maltitol | ||
C-sorbitol | 1 | 63.81 | 63.26 | |
2 | 74.18 | 74.30 | ||
3 | 71.09 | 72.10 | ||
4 | 72.61 | 82.05 | ||
5 | 72.53 | 72.56 | ||
6 | 64.23 | 62.53 | ||
C-glucose | 1′ | 92.77 | 100.42 | |
2′ | 72.15 | 71.89 | ||
3′ | 73.43 | 72.86 | ||
4′ | 70.32 | 70.27 | ||
5′ | 72.10 | 71.98 | ||
6′ | 61.27 | 61.08 |
Streptococcus mutans DMST 18777 | Total Amount |
Zone of Inhibition in mm of Diameter a |
---|---|---|
Ampicillin | 10 μg | 24.0 ± 2.0 |
Sorbitol | 10 mg | 0.0 |
20 mg | 0.0 | |
30 mg | 0.0 | |
40 mg | 8.0 ± 2.0 | |
Std. maltitol | 10 mg | 0.0 |
20 mg | 7.2 ± 2.0 | |
30 mg | 9.0 ± 2.0 | |
40 mg | 14.0 ± 2.0 | |
Syn. maltitol | 10 mg | 0.0 |
20 mg | 7.9 ± 2.0 | |
30 mg | 10.0 ± 1.0 | |
40 mg | 14.0 ± 3.0 |
S. mutans DMST 18777 | Ampicillin (µg/mL) | Sorbitol (mg/mL) |
Standard Maltitol (mg/mL) |
Synthesized Maltitol (mg/mL) |
---|---|---|---|---|
MIC a | 0.156 ± 0 | 40 ± 0 | 20 ± 0 | 20 ± 0 |
MBC a | 0.625 ± 0 | 80 ± 0 | 40 ± 0 | 40 ± 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haewpetch, P.; Rudeekulthamrong, P.; Kaulpiboon, J. Enzymatic Synthesis of Maltitol and Its Inhibitory Effect on the Growth of Streptococcus mutans DMST 18777. Biomolecules 2022, 12, 167. https://doi.org/10.3390/biom12020167
Haewpetch P, Rudeekulthamrong P, Kaulpiboon J. Enzymatic Synthesis of Maltitol and Its Inhibitory Effect on the Growth of Streptococcus mutans DMST 18777. Biomolecules. 2022; 12(2):167. https://doi.org/10.3390/biom12020167
Chicago/Turabian StyleHaewpetch, Patinya, Prakarn Rudeekulthamrong, and Jarunee Kaulpiboon. 2022. "Enzymatic Synthesis of Maltitol and Its Inhibitory Effect on the Growth of Streptococcus mutans DMST 18777" Biomolecules 12, no. 2: 167. https://doi.org/10.3390/biom12020167
APA StyleHaewpetch, P., Rudeekulthamrong, P., & Kaulpiboon, J. (2022). Enzymatic Synthesis of Maltitol and Its Inhibitory Effect on the Growth of Streptococcus mutans DMST 18777. Biomolecules, 12(2), 167. https://doi.org/10.3390/biom12020167