PEPscan: A Broad Spectrum Approach for the Characterization of Protein-Binder Interactions?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Protein-Protein Interactions for Complexes of Known Structures
2.2. Binding Assay on Cellulose-Bound Peptides (PEPscan)
2.3. Chondroitin Sulfate Binding Assay on Cellulose-Bound Peptides Containing VAR2CSA Sequence (PEPscan)
2.4. Peptide Synthesis and Sequence
2.5. VAR2CSA/CSA Interaction Competition In Vitro
2.6. FITC-labeled LRRK2 Peptide Binding Assay on Cellulose-Bound Peptides Containing PP1a Sequence (PEPscan)
3. Results
3.1. PEPscan for Protein-Protein Interactions
3.2. PEPscan for Protein-Polysaccharide Interactions: Identification of VAR2CSA Sequences Involved in Binding to CSA
3.3. PEPscan for the Identification of the Binding Site of Labeled Peptides
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gausepohl, H.; Boulin, C.; Kraft, M.; Frank, R.W. Automated Multiple Peptide Synthesis. Pept. Res. 1992, 5, 315–320. [Google Scholar] [PubMed]
- Luu, T.; Pham, S.; Deshpande, S. Automated Multiple Peptide Synthesis: Improvements in Obtaining Quality Peptides. Int. J. Pept. Protein Res. 1996, 47, 91–97. [Google Scholar] [CrossRef] [PubMed]
- Frank, R. The SPOT-Synthesis Technique: Synthetic Peptide Arrays on Membrane Supports—Principles and Applications. J. Immunol. Methods 2002, 267, 13–26. [Google Scholar] [CrossRef]
- Katz, C.; Levy-Beladev, L.; Rotem-Bamberger, S.; Rito, T.; Rüdiger, S.G.; Friedler, A. Studying protein–protein interactions using peptide arrays. Chem. Soc. Rev. 2011, 40, 2131–2145. [Google Scholar] [CrossRef] [PubMed]
- Frank, R.; Overwin, H. SPOT Synthesis: Epitope Analysis with Arrays of Synthetic Peptides Prepared on Cellulose Membranes. Methods Mol. Biol. Clifton NJ 1996, 66, 149–169. [Google Scholar] [CrossRef]
- Reineke, U.; Sabat, R.; Volk, H.-D.; Schneider-Mergener, J. Mapping of the Interleukin-10/Interleukin-10 Receptor Combining Site. Protein Sci. 1998, 7, 951–960. [Google Scholar] [CrossRef] [Green Version]
- Adler, S.; Frank, R.; Lanzavecchia, A.; Weiss, S. T Cell Epitope Analysis with Peptides Simultaneously Synthesized on Cellulose Membranes: Fine Mapping of Two DQ Dependent Epitopes. FEBS Lett. 1994, 352, 167–170. [Google Scholar] [CrossRef] [Green Version]
- Kato, R.; Kaga, C.; Kunimatsu, M.; Kobayashi, T.; Honda, H. Peptide Array-Based Interaction Assay of Solid-Bound Peptides and Anchorage-Dependant Cells and Its Effectiveness in Cell-Adhesive Peptide Design. J. Biosci. Bioeng. 2006, 101, 485–495. [Google Scholar] [CrossRef]
- Askoxylakis, V.; Zitzmann, S.; Mier, W.; Graham, K.; Krämer, S.; Von Wegner, F.; Fink, R.H.; Schwab, M.; Eisenhut, M.; Haberkorn, U. Preclinical Evaluation of the Breast Cancer Cell-Binding Peptide, P160. Clin. Cancer Res. 2005, 11, 6705–6712. [Google Scholar] [CrossRef] [Green Version]
- Geysen, H.M.; Meloen, R.H.; Barteling, S.J. Use of Peptide Synthesis to Probe Viral Antigens for Epitopes to a Resolution of a Single Amino Acid. Proc. Natl. Acad. Sci. USA 1984, 81, 3998–4002. [Google Scholar] [CrossRef] [Green Version]
- Scott, J.K.; Smith, G.P. Searching for Peptide Ligands with an Epitope Library. Science 1990, 249, 386–390. [Google Scholar] [CrossRef]
- Bruzzoni-Giovanelli, H.; Alezra, V.; Wolff, N.; Dong, C.-Z.; Tuffery, P.; Rebollo, A. Interfering Peptides Targeting Protein–Protein Interactions: The next Generation of Drugs? Drug Discov. Today 2018, 23, 272–285. [Google Scholar] [CrossRef]
- Dong, C.Z.; Bruzzoni-Giovanelli, H.; Yu, Y.; Dorgham, K.; Parizot, C.; Zini, J.M.; Brossas, J.Y.; Tuffery, P.; Rebollo, A. Identification of Peptides Interfering with the LRRK2/PP1 Interaction. PLoS ONE 2020, 15, e0237110. [Google Scholar] [CrossRef]
- Rebollo, A.; Savier, E.; Tuffery, P. Pepscan Approach for the Identification of Protein-Protein Interfaces: Lessons from Experiment. Biomolecules 2021, 11, 772. [Google Scholar] [CrossRef]
- Hwang, H.; Vreven, T.; Janin, J.; Weng, Z. Protein–protein docking benchmark version 4.0. Proteins 2010, 78, 3111–3114. [Google Scholar] [CrossRef] [Green Version]
- Lapouge, K.; Smith, S.J.; Walker, P.A.; Gamblin, S.J.; Smerdon, S.J.; Rittinger, K. Structure of the TPR Domain of p67phox in Complex with Rac GTP. Mol. Cell 2000, 6, 899–907. [Google Scholar] [CrossRef]
- Chan, B.; Lanyi, A.; Song, H.K.; Griesbach, J.; Simarro-Grande, M.; Poy, F.; Howie, C.; Sumegi, J.; Terhorst, C.; Eck, M.J. SAP couples Fyn to SLAM immune receptors. Nat. Cell Biol. 2003, 5, 155–160. [Google Scholar] [CrossRef]
- Huang, L.; Hofer, F.; Martin, G.S.; Kim, S.H. Structural basis for the interaction of Ras with RaIGDS. Nat. Struct. Biol. 1998, 5, 422–426. [Google Scholar] [CrossRef]
- Iyer, S.; Wei, S.; Brew, K.; Acharya, K.R. Crystal structure of the catalytic domain of matrix metalloproteinase-1 in complex with the inhibitory domain of tissue inhibitor of metalloproteinase-1. J. Biol. Chem. 2007, 282, 364–371. [Google Scholar] [CrossRef] [Green Version]
- Hart, P.J.; Deep, S.; Taylor, A.B.; Shu, Z.; Hinck, C.S.; Hinck, A.P. Crystal structure of the human TGF-beta type II receptor extracellular domain in complex with TGF-beta3. Nat. Struct. Biol. 2002, 9, 203–208. [Google Scholar]
- Schönfeld, D.; Matschiner, G.; Chatwell, L.; Trentmann, S.; Gille, H.; Hülsmeyer, M.; Brown, N.; Kaye, P.M.; Schlehuber, S.; Hohlbaum, A.M.; et al. An engineered lipocalin specific for CTLA-4 reveals a combining site with structural and conformational features similar to antibodies. Proc. Natl. Acad. Sci. USA 2009, 106, 8198–8203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Syed, R.S.; Reid, S.W.; Li, C.; Cheetham, J.C.; Aoki, K.H.; Liu, B.; Zhan, H.; Osslund, T.D.; Chirino, A.J.; Zhang, J.; et al. Efficiency of signalling through cytokine receptors depends critically on receptor orientation. Nature 1998, 395, 511–516. [Google Scholar] [CrossRef] [PubMed]
- Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; et al. Highly accurate protein structure prediction with AlphaFold. Nature 2021, 596, 583–589. [Google Scholar] [CrossRef] [PubMed]
Complex | PDB Id. | PDB Chain | PDB Size | Protein | Uniprot Id. | Full Size |
---|---|---|---|---|---|---|
NCF2/Rac1 | 1e96 [16] | A | 178 | Rac1 | P63000 | 192 |
B | 185 | NCF2 | P19878 | 526 | ||
SAP/FynSH3 | 1m27 [17] | A | 105 | SAP | O60880 | 128 |
C | 61 | FynSH3 | P06241 | 537 | ||
RalGDS/Ras | 1lfd [18] | A | 87 | RalGDS | Q03386 | 895 |
B | 167 | Ras | P01112 | 189 | ||
MMP-1/TIMP1 | 2j0t [19] | A | 161 | MMP-1 | P03956 | 469 |
D | 124 | TIMP-1 | P01033 | 207 | ||
TGFbetaR2/TGF-beta3 | 1ktz [20] | B | 106 | TGFbetaR2 | P37173 | 567 |
A | 82 | TGF-beta3 | P10600 | 412 | ||
NGAL/CTLA-4 | 3bx7 [21] | A | 173 | NGAL | P80188 | 198 |
C | 120 | CTLA-4 | P16410 | 223 | ||
EPO/EPOR | 1eer [22] | A | 166 | EPO | P01588 | 193 |
B | 213 | EPOR | P19235 | 508 |
PPI | Fragments | PPI | Fragments | ||
---|---|---|---|---|---|
NCF2 | 3:14 | KSEPRHSKIDKA | TGFR2 | 1:26–27 2:20–22 3:13–14 4:26–27 5:19 6:5–7 6:20–23 7:15–17 | CKFCDVRFSTCDNQ * CHDPKLPYHDFILEDA FSEEYNTSNPDLLL HNTELLPIELDTLV (no 3D) SWKTEKDIFSD (no 3D) KQYWLITAFHAKGNLQ (no 3D) KLGSSLARGIAHLHSDHT (no 3D) SLRLDPTLSVDDLANS (no 3D) |
4:13–14 | QDSFSGFAPLQPQAAE (no 3D) | ||||
5:23 | YLEPVELRIHPQ (no 3D) | ||||
6:7–9 | SKAPGRPQLSPGQKQK (no 3D) | ||||
7:12 | RPRDSNELVPLS (no 3D) | ||||
8:20 | PEDLEFQEGDII (no 3D) | ||||
9:8 | VEDCATTDLEST (no 3D) | ||||
RAC1 | 1:11–14 | ISYTTNAFPGEYIPTVFD * | TGFβ3 | 1:12–14 1:23–25 3:3–6 3:24–25 4:1–3 4:10–14 4:20–22 5:12–14 5:16–19 6:6–9 6:15–16 6:18–20 | SLSTCTTLDFGHIKKK (no 3D) GQILSKLRLTSPPEPT (no 3D) SKVFRFNVSSVEKNRT (no 3D) FQILRPDEHIAKQR (no 3D) GGKNLPTRGTAEWLSF (no 3D) TDTVREWLLRRESNLGLEIS (no 3D) IHCPCHTFQPNGDILE (no 3D) KDHHNPHLILMMIPPH (no 3D) ILMMIPPHRLDNPGQGRK (no 3D) YIDFRQDLGWKWVHEPKG * YYANFCSGPCPYLR SGPCPYLRSADTTHST |
1:26–29 | VNLGLWDTAGQEDYDR | ||||
2:17–19 | AKWYPEVRHHCPNTPI | ||||
3:15–18 | KYLECSALTQRGLKTVFD * | ||||
SAP | 1:3–6 | AVYHGKISRETGEKLLLA | NGAL | 1:13–16 1:30–31 2:2–6 2:11–16 2:23:27 3:5–10 3:13–17 3:22–24 | SDLIPAPPLSKVPLQQNF NAILREDKDPQKMY * DKDPQKMYATIYELKEDKSY SYNVTSVLFRKKKCDYWIRTFV * CQPGEFTLGNIKSYPGLTSY TNYNQHAMVFFKKVSQNREYFK * NREYFKITLYGRTKELTSEL * ELKENFIRFSKSLGLP |
1:13–15 | LDGSYLLRDSESVPGV | ||||
2:8–10 | FRKIKNLISAFQKPDQ * | ||||
2:20–23 | PVEKKSSARSTQGTTGIR | ||||
FSYN-SH3 | 1:14–16 | GYRYGTDPTPQHYPSF (no 3D) | CTLA4 | 1:30–31 2:3–5 | EYASPGKATEVRVT * TEVRVTVLRQADSQVT * |
2:14–16 | ALYDYEARTEDDLSFH * | ||||
3:14–16 | FGKLGRKDAERQLLSF (no 3D) | ||||
9:3–5 | HCWKKDPEERPTFEYL (no 3D) | ||||
RAS | 1:6–9 | AGGVGKSALTIQLIQN | EPO | 1:11 | LGLPVLGAPPRL (no full 3D) |
1:20–23 | SYRKQVVIDGETCLLD * | ||||
2:1–8 | EYSAMRDQYMRTGEGFLCVFAINNTK | ||||
2:15–18 | EDIHQYREQIKRVKDSDD | ||||
2:23–28 | DDVPMVLVGNKCDLAARTVESR | ||||
3:6–9 | RSYGIPYIETSAKTRQGV | ||||
3:24–28 | LNPPDESGPGCMSCKCVLLS (no 3D) | ||||
RAL | 6:3–7 | PTLAPAPELDPTVSQSLHLE (no 3D) | EPOR | 1:10 1:16 2:1 2:14–16 3:6–8 4:8–9 4:17–18 5:13–16 | LAGAAWAPPPNL (no 3D) PDPKFESKAALL FWEEAASAGVGP KLCRLHQAPTARGAVR RVIHINEVVLLDAPVG * GRTECVLSNLRGRT AVRARMAEPSFGGF * SHRRALKQKIWPGIPSPE (no 3D) |
13:18–20 | DCCIIRVSLDVDNGNM * | ||||
TIMP1 | 2:6–11 | QALGDAADIRFVYTPAMESVCG * MESVCGYFHRSHNRSEEF | |||
2:14–17 | |||||
MMP1 | 3:3 | DVDHAIEKAFQL | |||
4:1 | PGPGIGGDAHFD | ||||
4:11–14 | FREYNLHRVAAHELGHSL * | ||||
4:28 | LMYPSYTFSGDV | ||||
7:19–20 | PGYPKMIAHDFPGI (no 3D) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rebollo, A.; Fliedel, L.; Tuffery, P. PEPscan: A Broad Spectrum Approach for the Characterization of Protein-Binder Interactions? Biomolecules 2022, 12, 178. https://doi.org/10.3390/biom12020178
Rebollo A, Fliedel L, Tuffery P. PEPscan: A Broad Spectrum Approach for the Characterization of Protein-Binder Interactions? Biomolecules. 2022; 12(2):178. https://doi.org/10.3390/biom12020178
Chicago/Turabian StyleRebollo, Angelita, Louise Fliedel, and Pierre Tuffery. 2022. "PEPscan: A Broad Spectrum Approach for the Characterization of Protein-Binder Interactions?" Biomolecules 12, no. 2: 178. https://doi.org/10.3390/biom12020178
APA StyleRebollo, A., Fliedel, L., & Tuffery, P. (2022). PEPscan: A Broad Spectrum Approach for the Characterization of Protein-Binder Interactions? Biomolecules, 12(2), 178. https://doi.org/10.3390/biom12020178