Glycosylating Effectors of Legionella pneumophila: Finding the Sweet Spots for Host Cell Subversion
Abstract
:1. Introduction
2. L. pneumophila Glucosyltransferases 1-3 (Lgt1-3)
3. Subversion of Eukaryotic Vesicle Trafficking A (SetA)
4. L. pneumophila Translocated Protein M (LtpM)
5. Substrate of Icm/Dot Transporter I (SidI)
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- McDade, J.E.; Shepard, C.C.; Fraser, D.W.; Tsai, T.R.; Redus, M.A.; Dowdle, W.R. Legionnaires’ disease: Isolation of a bacterium and demonstration of its role in other respiratory disease. N. Engl. J. Med 1977, 297, 1197–1203. [Google Scholar] [CrossRef]
- Fraser, D.W.; Deubner, D.C.; Hill, D.L.; Gilliam, D.K. Nonpneumonic, short-incubation-period Legionellosis (Pontiac fever) in men who cleaned a steam turbine condenser. Science 1979, 205, 690–691. [Google Scholar] [CrossRef] [PubMed]
- Horwitz, M.A.; Silverstein, S.C. Legionnaires’ disease bacterium (Legionella pneumophila) multiples intracellularly in human monocytes. J. Clin. Investig. 1980, 66, 441–450. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berger, K.H.; Isberg, R.R. Two distinct defects in intracellular growth complemented by a single genetic locus in Legionella pneumophila. Mol. Microbiol. 1993, 7, 7–19. [Google Scholar] [CrossRef] [PubMed]
- Sadosky, A.B.; Wiater, L.A.; Shuman, H.A. Identification of Legionella pneumophila genes required for growth within and killing of human macrophages. Infect. Immun. 1993, 61, 5361–5373. [Google Scholar] [CrossRef] [Green Version]
- Kellermann, M.; Scharte, F.; Hensel, M. Manipulation of host cell organelles by intracellular pathogens. Int. J. Mol. Sci. 2021, 22, 6484. [Google Scholar] [CrossRef]
- Mondino, S.; Schmidt, S.; Rolando, M.; Escoll, P.; Gomez-Valero, L.; Buchrieser, C. Legionnaires’ Disease: State of the art knowledge of pathogenesis mechanisms of Legionella. Annu. Rev. Pathol. 2020, 15, 439–466. [Google Scholar] [CrossRef] [Green Version]
- Vozandychova, V.; Stojkova, P.; Hercik, K.; Rehulka, P.; Stulik, J. The ubiquitination system within bacterial host-pathogen interactions. Microorganisms 2021, 9, 638. [Google Scholar] [CrossRef]
- Omotade, T.O.; Roy, C.R. Manipulation of host cell organelles by intracellular pathogens. Microbiol. Spectr. 2019, 7, 7-2. [Google Scholar] [CrossRef]
- Best, A.; Abu Kwaik, Y. Evolution of the arsenal of Legionella pneumophila effectors to modulate protist hosts. mBio 2018, 9, e01313-18. [Google Scholar] [CrossRef] [Green Version]
- Joseph, A.M.; Shames, S.R. Affecting the effectors: Regulation of Legionella pneumophila effector function by metaeffectors. Pathogens 2021, 10, 108. [Google Scholar] [CrossRef] [PubMed]
- Brüggemann, H.; Hagman, A.; Jules, M.; Sismeiro, O.; Dillies, M.-A.; Gouyette, C.; Kunst, F.; Steinert, M.; Heuner, K.; Coppée, J.-Y.; et al. Virulence strategies for infecting phagocytes deduced from the in vivo transcriptional program of Legionella pneumophila. Cell. Microbiol. 2006, 8, 1228–1240. [Google Scholar] [CrossRef] [PubMed]
- Byrne, B.; Swanson, M.S. Expression of Legionella pneumophila virulence traits in response to growth conditions. Infect. Immun. 1998, 66, 3029–3034. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zusman, T.; Aloni, G.; Halperin, E.; Kotzer, H.; Degtyar, E.; Feldman, M.; Segal, G. The response regulator PmrA is a major regulator of the icm/dot type IV secretion system in Legionella pneumophila and Coxiella burnetii. Mol. Microbiol. 2007, 63, 1508–1523. [Google Scholar] [CrossRef]
- Ninio, S.; Roy, C.R. Effector proteins translocated by Legionella pneumophila: Strength in numbers. Trends Microbiol. 2007, 15, 372–380. [Google Scholar] [CrossRef]
- Huang, L.; Boyd, D.; Amyot, W.M.; Hempstead, A.D.; Luo, Z.Q.; O’Connor, T.J.; Chen, C.; Machner, M.; Montminy, T.; Isberg, R.R. The E Block motif is associated with Legionella pneumophila translocated substrates. Cell. Microbiol. 2011, 13, 227–245. [Google Scholar] [CrossRef]
- Burstein, D.; Zusman, T.; Degtyar, E.; Viner, R.; Segal, G.; Pupko, T. Genome-scale identification of Legionella pneumophila effectors using a machine learning approach. PLoS Pathogens 2009, 5, e1000508. [Google Scholar] [CrossRef]
- Zhu, W.; Banga, S.; Tan, Y.; Zheng, C.; Stephenson, R.; Gately, J.; Luo, Z.-Q. Comprehensive identification of protein substrates of the Dot/Icm type IV transporter of Legionella pneumophila. PLoS ONE 2011, 6, e17638. [Google Scholar] [CrossRef] [Green Version]
- Gaspar, A.H.; Machner, M.P. VipD is a Rab5-activated phospholipase A1 that protects Legionella pneumophila from endosomal fusion. Proc. Natl. Acad. Sci. USA 2014, 111, 4560–4565. [Google Scholar] [CrossRef] [Green Version]
- Hervet, E.; Charpentier, X.; Vianney, A.; Lazzaroni, J.C.; Gilbert, C.; Atlan, D.; Doublet, P. Protein kinase LegK2 is a type IV secretion system effector involved in endoplasmic reticulum recruitment and intracellular replication of Legionella pneumophila. Infect. Immun. 2011, 79, 1936–1950. [Google Scholar] [CrossRef] [Green Version]
- Ge, J.; Xu, H.; Li, T.; Zhou, Y.; Zhang, Z.; Li, S.; Liu, L.; Shao, F. A Legionella type IV effector activates the NF-kappaB pathway by phosphorylating the IkappaB family of inhibitors. Proc. Natl. Acad. Sci. USA 2009, 106, 13725–13730. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Black, M.H.; Osinski, A.; Park, G.J.; Gradowski, M.; Servage, K.A.; Pawlowski, K.; Tagliabracci, V.S. A Legionella effector ADP-ribosyltransferase inactivates glutamate dehydrogenase. J. Biol. Chem. 2021, 296, 100301. [Google Scholar] [CrossRef]
- Kim, L.; Kwon, D.H.; Kim, B.H.; Kim, J.; Park, M.R.; Park, Z.-Y.; Song, H.K. Structural and biochemical study of the mono-ADP-ribosyltransferase domain of SdeA, a ubiquitylating/deubiquitylating enzyme from Legionella pneumophila. J. Mol. Biol. 2018, 430, 2843–2856. [Google Scholar] [CrossRef] [PubMed]
- Michard, C.; Doublet, P. Post-translational modifications are key players of the Legionella pneumophila infection strategy. Front. Microbiol. 2015, 6, 87. [Google Scholar] [CrossRef]
- Sulpizio, A.G.; Minelli, M.E.; Mao, Y. Glutamylation of bacterial ubiquitin ligases by a Legionella pseudokinase. Trends Microbiol. 2019, 27, 967–969. [Google Scholar] [CrossRef] [PubMed]
- Price, C.T.D.; Abu Kwaik, Y. Evolution and adaptation of Legionella pneumophila to manipulate the ubiquitination machinery of Its amoebae and mammalian hosts. Biomolecules 2021, 11, 112. [Google Scholar] [CrossRef]
- Hilbi, H.; Weber, S.; Finsel, I. Anchors for effectors: Subversion of phosphoinositide lipids by Legionella. Front. Microbiol. 2011, 2, 91. [Google Scholar] [CrossRef] [Green Version]
- Hilbi, H.; Nagai, H.; Kubori, T.; Roy, C.R. Subversion of host membrane dynamics by the Legionella Dot/Icm type IV secretion system. In Type IV Secretion in Gram-Negative and Gram-Positive Bacteria; Backert, S., Grohmann, E., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 221–242. [Google Scholar]
- Shi, X.; Halder, P.; Yavuz, H.; Jahn, R.; Shuman, H.A. Direct targeting of membrane fusion by SNARE mimicry: Convergent evolution of Legionella effectors. Proc. Natl. Acad. Sci. USA 2016, 113, 8807–8812. [Google Scholar] [CrossRef] [Green Version]
- Just, I.; Fritz, G.; Aktories, K.; Giry, M.; Popoff, M.R.; Boquet, P.; Hegenbarth, S.; von Eichel-Streiber, C. Clostridium difficile toxin B acts on the GTP-binding protein Rho. J. Biol. Chem. 1994, 269, 10706–10712. [Google Scholar] [CrossRef]
- Jank, T.; Belyi, Y.; Aktories, K. Bacterial glycosyltransferase toxins. Cell. Microbiol. 2015, 17, 1752–1765. [Google Scholar] [CrossRef] [Green Version]
- Jank, T.; Lang, A.E.; Aktories, K. Rho-modifying bacterial protein toxins from Photorhabdus species. Toxicon 2016, 116, 17–22. [Google Scholar] [CrossRef] [PubMed]
- Belyi, I.; Popoff, M.R.; Cianciotto, N.P. Purification and characterization of a UDP-glucosyltransferase produced by Legionella pneumophila. Infect. Immun. 2003, 71, 181–186. [Google Scholar] [CrossRef] [Green Version]
- Belyi, Y.; Niggeweg, R.; Opitz, B.; Vogelsgesang, M.; Hippenstiel, S.; Wilm, M.; Aktories, K. Legionella pneumophila glucosyltransferase inhibits host elongation factor 1A. Proc. Natl. Acad. Sci. USA 2006, 103, 16953–16958. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nau, G.J.; Horzempa, J.; O’Dee, D.; Brown, M.J.; Russo, B.C.; Hernandez, A.; Dillon, S.T.; Cheng, J.; Kane, L.P.; Sanker, S.; et al. A predicted Francisella tularensis DXD-motif glycosyltransferase blocks immune activation. Virulence 2019, 10, 643–656. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Zhang, L.; Yao, Q.; Li, L.; Dong, N.; Rong, J.; Gao, W.; Ding, X.; Sun, L.; Chen, X.; et al. Pathogen blocks host death receptor signalling by arginine GlcNAcylation of death domains. Nature 2013, 501, 242–246. [Google Scholar] [CrossRef] [PubMed]
- Pearson, J.S.; Giogha, C.; Ong, S.Y.; Kennedy, C.L.; Kelly, M.; Robinson, K.S.; Lung, T.W.; Mansell, A.; Riedmaier, P.; Oates, C.V.; et al. A type III effector antagonizes death receptor signalling during bacterial gut infection. Nature 2013, 501, 247–251. [Google Scholar] [CrossRef] [PubMed]
- Brown, N.F.; Coombes, B.K.; Bishop, J.L.; Wickham, M.E.; Lowden, M.J.; Gal-Mor, O.; Goode, D.L.; Boyle, E.C.; Sanderson, K.L.; Finlay, B.B. Salmonella phage ST64B encodes a member of the SseK/NleB effector family. PLoS ONE 2011, 6, e17824. [Google Scholar] [CrossRef] [Green Version]
- Jank, T.; Eckerle, S.; Steinemann, M.; Trillhaase, C.; Schimpl, M.; Wiese, S.; van Aalten, D.M.; Driever, W.; Aktories, K. Tyrosine glycosylation of Rho by Yersinia toxin impairs blastomere cell behaviour in zebrafish embryos. Nat. Commun. 2015, 6, 7807. [Google Scholar] [CrossRef] [Green Version]
- Araujo-Garrido, J.L.; Bernal-Bayard, J.; Ramos-Morales, F. Type III secretion effectors with arginine N-glycosyltransferase activity. Microorganisms 2020, 8, 357. [Google Scholar] [CrossRef]
- Pan, X.; Luo, J.; Li, S. Bacteria-catalyzed arginine glycosylation in pathogens and host. Front. Cell. Infect. Microbiol. 2020, 10, 185. [Google Scholar] [CrossRef]
- Koh, E.; Cho, H.-S. NleB/SseKs ortholog effectors as a general bacterial monoglycosyltransferase for eukaryotic proteins. Curr. Opin. Struct. Biol. 2021, 68, 215–223. [Google Scholar] [CrossRef] [PubMed]
- Just, I.; Wilm, M.; Selzer, J.; Rex, G.; von Eichel-Streiber, C.; Mann, M.; Aktories, K. The enterotoxin from Clostridium difficile (ToxA) monoglucosylates the Rho proteins. J. Biol. Chem. 1995, 270, 13932–13936. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, Y.; Willis, L.M.; Batchelder, H.R.; Nitz, M. Site specific protein O-glucosylation with bacterial toxins. Chem. Commun. (Camb) 2016, 52, 13024–13026. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Just, I.; Selzer, J.; Hofmann, F.; Green, G.A.; Aktories, K. Inactivation of Ras by Clostridium sordellii lethal toxin-catalyzed glucosylation. J. Biol. Chem. 1996, 271, 10149–10153. [Google Scholar] [CrossRef] [Green Version]
- Genth, H.; Hofmann, F.; Selzer, J.; Rex, G.; Aktories, K.; Just, I. Difference in protein substrate specificity between hemorrhagic toxin and lethal toxin from Clostridium sordellii. Biochem. Biophys. Res. Commun. 1996, 229, 370–374. [Google Scholar] [CrossRef]
- Amimoto, K.; Noro, T.; Oishi, E.; Shimizu, M. A novel toxin homologous to large clostridial cytotoxins found in culture supernatant of Clostridium perfringens type C. Microbiology (Reading) 2007, 153, 1198–1206. [Google Scholar] [CrossRef] [Green Version]
- Selzer, J.; Hofmann, F.; Rex, G.; Wilm, M.; Mann, M.; Just, I.; Aktories, K. Clostridium novyi alpha-toxin-catalyzed incorporation of GlcNAc into Rho subfamily proteins. J. Biol. Chem. 1996, 271, 25173–25177. [Google Scholar] [CrossRef] [Green Version]
- Jank, T.; Bogdanovic, X.; Wirth, C.; Haaf, E.; Spoerner, M.; Bohmer, K.E.; Steinemann, M.; Orth, J.H.; Kalbitzer, H.R.; Warscheid, B.; et al. A bacterial toxin catalyzing tyrosine glycosylation of Rho and deamidation of Gq and Gi proteins. Nat. Struct. Molec. Biol. 2013, 20, 1273–1280. [Google Scholar] [CrossRef]
- Ost, G.S.; Wirth, C.; Bogdanović, X.; Kao, W.C.; Schorch, B.; Aktories, P.J.K.; Papatheodorou, P.; Schwan, C.; Schlosser, A.; Jank, T.; et al. Inverse control of Rab proteins by Yersinia ADP-ribosyltransferase and glycosyltransferase related to clostridial glucosylating toxins. Sci. Adv. 2020, 6, eaaz2094. [Google Scholar] [CrossRef] [Green Version]
- Belyi, Y.; Stahl, M.; Sovkova, I.; Kaden, P.; Luy, B.; Aktories, K. Region of elongation factor 1A1 involved in substrate recognition by Legionella pneumophila glucosyltransferase Lgt1: Identification of Lgt1 as a retaining glucosyltransferase. J. Biol. Chem. 2009, 284, 20167–20174. [Google Scholar] [CrossRef] [Green Version]
- Gao, L.; Song, Q.; Liang, H.; Zhu, Y.; Wei, T.; Dong, N.; Xiao, J.; Shao, F.; Lai, L.; Chen, X. Legionella effector SetA as a general O-glucosyltransferase for eukaryotic proteins. Nat. Chem. Biol. 2019, 15, 213–216. [Google Scholar] [CrossRef]
- Heidtman, M.; Chen, E.J.; Moy, M.-Y.; Isberg, R.R. Large-scale identification of Legionella pneumophila Dot/Icm substrates that modulate host cell vesicle trafficking pathways. Cell. Microbiol. 2009, 11, 230–248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Levanova, N.; Mattheis, C.; Carson, D.; To, K.N.; Jank, T.; Frankel, G.; Aktories, K.; Schroeder, G.N. The Legionella effector LtpM is a new type of phosphoinositide-activated glucosyltransferase. J. Biol. Chem. 2019, 294, 2862–2879. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, J.B.; Kim, Y.H.; Yoo, Y.; Kim, J.; Jun, S.H.; Cho, J.W.; El Qaidi, S.; Walpole, S.; Monaco, S.; Garcia-Garcia, A.A.; et al. Structural basis for arginine glycosylation of host substrates by bacterial effector proteins. Nat. Commun. 2018, 9, 4283. [Google Scholar] [CrossRef] [PubMed]
- El Qaidi, S.; Chen, K.; Halim, A.; Siukstaite, L.; Rueter, C.; Hurtado-Guerrero, R.; Clausen, H.; Hardwidge, P.R. NleB/SseK effectors from Citrobacter rodentium, Escherichia coli, and Salmonella enterica display distinct differences in host substrate specificity. J. Biol. Chem. 2017, 292, 11423–11430. [Google Scholar] [CrossRef] [Green Version]
- Levanova, N.; Tabakova, I.; Jank, T.; Belyi, Y. Purification and analysis of effector glucosyltransferase Lgt1 from Legionella pneumophila. Methods Mol. Biol. 2019, 1921, 277–287. [Google Scholar]
- Just, I.; Selzer, J.; Wilm, M.; von Eichel-Streiber, C.; Mann, M.; Aktories, K. Glucosylation of Rho proteins by Clostridium difficile toxin B. Nature 1995, 375, 500–503. [Google Scholar] [CrossRef]
- Belyi, Y.; Jank, T.; Aktories, K. Effector glycosyltransferases in Legionella. Front. Microbiol. 2011, 2, 76. [Google Scholar] [CrossRef] [Green Version]
- Sadretdinova, O.V.; Liuk, K.; Karpova, T.I.; Belyi, I.F.; Tartakovskii, I.S. Prevalence of glucosyl transferase Lgt among Legionella pneumophila strains isolated from various sources. Zhurnal Mikrobiol. Epidemiol. Immunobiol. 2012, 3, 8–12. [Google Scholar]
- de Felipe, K.S.; Glover, R.T.; Charpentier, X.; Anderson, O.R.; Reyes, M.; Pericone, C.D.; Shuman, H.A. Legionella eukaryotic-like type IV substrates interfere with organelle trafficking. PLoS. Pathog. 2008, 4, e1000117. [Google Scholar] [CrossRef]
- de Felipe, K.S.; Pampou, S.; Jovanovic, O.S.; Pericone, C.D.; Ye, S.F.; Kalachikov, S.; Shuman, H.A. Evidence for acquisition of Legionella type IV secretion substrates via interdomain horizontal gene transfer. J. Bacteriol. 2005, 187, 7716–7726. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hurtado-Guerrero, R.; Zusman, T.; Pathak, S.; Ibrahim, A.F.; Shepherd, S.; Prescott, A.; Segal, G.; van Aalten, D.M. Molecular mechanism of elongation factor 1A inhibition by a Legionella pneumophila glycosyltransferase. Biochem. J. 2010, 426, 281–292. [Google Scholar] [CrossRef] [Green Version]
- Belyi, Y.; Tabakova, I.; Stahl, M.; Aktories, K. Lgt: A family of cytotoxic glucosyltransferases produced by Legionella pneumophila. J. Bacteriol. 2008, 190, 3026–3035. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramakrishnan, V. Ribosome structure and the mechanism of translation. Cell 2002, 108, 557–572. [Google Scholar] [CrossRef] [Green Version]
- Belyi, Y.; Tartakovskaya, D.; Tais, A.; Fitzke, E.; Tzivelekidis, T.; Jank, T.; Rospert, S.; Aktories, K. Elongation factor 1A is the target of growth inhibition in yeast caused by Legionella pneumophila glucosyltransferase Lgt1. J. Biol. Chem. 2012, 287, 26029–26037. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tzivelekidis, T.; Jank, T.; Pohl, C.; Schlosser, A.; Rospert, S.; Knudsen, C.R.; Rodnina, M.V.; Belyi, Y.; Aktories, K. Aminoacyl-tRNA-charged eukaryotic elongation factor 1A is the bona fide substrate for Legionella pneumophila effector glucosyltransferases. PLoS ONE 2011, 6, e29525. [Google Scholar] [CrossRef] [Green Version]
- Andersen, G.R.; Pedersen, L.; Valente, L.; Chatterjee, I.; Kinzy, T.G.; Kjeldgaard, M.; Nyborg, J. Structural basis for nucleotide exchange and competition with tRNA in the yeast elongation factor complex eEF1A:eEF1Balpha. Mol. Cell 2000, 6, 1261–1266. [Google Scholar] [CrossRef]
- Crepin, T.; Shalak, V.F.; Yaremchuk, A.D.; Vlasenko, D.O.; McCarthy, A.; Negrutskii, B.S.; Tukalo, M.A.; El’skaya, A.V. Mammalian translation elongation factor eEF1A2: X-ray structure and new features of GDP/GTP exchange mechanism in higher eukaryotes. Nucleic Acids Res. 2014, 42, 12939–12948. [Google Scholar] [CrossRef] [Green Version]
- Piazzi, M.; Bavelloni, A.; Faenza, I.; Blalock, W.; Urbani, A.; D’Aguanno, S.; Fiume, R.; Ramazzotti, G.; Maraldi, N.M.; Cocco, L. eEF1A phosphorylation in the nucleus of insulin-stimulated C2C12 myoblasts: Ser⁵³ is a novel substrate for protein kinase C βI. Mol. Cell. Proteom. 2010, 9, 2719–2728. [Google Scholar] [CrossRef] [Green Version]
- Mateyak, M.K.; He, D.; Sharma, P.; Kinzy, T.G. Mutational analysis reveals potential phosphorylation sites in eukaryotic elongation factor 1A that are important for its activity. FEBS Lett. 2021, 595, 2208–2220. [Google Scholar] [CrossRef]
- Mills, A.; Gago, F. On the need to tell apart fraternal twins eEF1A1 and eEF1A2, and their respective outfits. Int. J. Mol. Sci. 2021, 22, 6973. [Google Scholar] [CrossRef]
- Carriles, A.A.; Mills, A.; Munoz-Alonso, M.J.; Gutierrez, D.; Dominguez, J.M.; Hermoso, J.A.; Gago, F. Structural cues for understanding eEF1A2 moonlighting. ChemBioChem 2021, 22, 374–391. [Google Scholar] [CrossRef] [PubMed]
- Abbas, W.; Kumar, A.; Herbein, G. The eEF1A proteins: At the crossroads of oncogenesis, apoptosis, and viral infections. Front. Oncol. 2015, 5, 75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lamberti, A.; Caraglia, M.; Longo, O.; Marra, M.; Abbruzzese, A.; Arcari, P. The translation elongation factor 1A in tumorigenesis, signal transduction and apoptosis: Review article. Amino Acids 2004, 26, 443–448. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Liu, H.; Luo, Z.Q.; Qiu, J. Modulation of phagosome phosphoinositide dynamics by a Legionella phosphoinositide 3-kinase. EMBO Rep. 2021, 22, e51163. [Google Scholar] [CrossRef]
- Swart, A.L.; Hilbi, H. Phosphoinositides and the fate of Legionella in phagocytes. Front. Immunol. 2020, 11, 25. [Google Scholar] [CrossRef] [Green Version]
- Nelson, R.J.; Ziegelhoffer, T.; Nicolet, C.; Werner-Washburne, M.; Craig, E.A. The translation machinery and 70 kd heat shock protein cooperate in protein synthesis. Cell 1992, 71, 97–105. [Google Scholar] [CrossRef]
- Buskirk, A.R.; Green, R. Ribosome pausing, arrest and rescue in bacteria and eukaryotes. Philos. Trans. R. Soc. B Biol. Sci. 2017, 372, 20160183. [Google Scholar] [CrossRef] [Green Version]
- Belyi, Y.; Jank, T.; Aktories, K. Cytotoxic glucosyltransferases of Legionella pneumophila. Curr. Top. Microbiol. Immunol. 2013, 376, 211–226. [Google Scholar]
- de Jesús-Díaz, D.A.; Murphy, C.; Sol, A.; Dorer, M.; Isberg, R.R. Host cell S phase restricts Legionella pneumophila intracellular replication by destabilizing the membrane-bound replication compartment. mBio 2017, 8, e02345-16. [Google Scholar] [CrossRef] [Green Version]
- Sol, A.; Lipo, E.; de Jesus-Diaz, D.A.; Murphy, C.; Devereux, M.; Isberg, R.R. Legionella pneumophila translocated translation inhibitors are required for bacterial-induced host cell cycle arrest. Proc. Natl. Acad. Sci. USA 2019, 116, 3221–3228. [Google Scholar] [CrossRef] [Green Version]
- Treacy-Abarca, S.; Mukherjee, S. Legionella suppresses the host unfolded protein response via multiple mechanisms. Nat. Commun. 2015, 6, 7887. [Google Scholar] [CrossRef] [Green Version]
- Hempstead, A.D.; Isberg, R.R. Inhibition of host cell translation elongation by Legionella pneumophila blocks the host cell unfolded protein response. Proc. Natl. Acad. Sci. USA 2015, 112, E6790–E6797. [Google Scholar] [CrossRef] [Green Version]
- Fontana, M.F.; Banga, S.; Barry, K.C.; Shen, X.; Tan, Y.; Luo, Z.-Q.; Vance, R.E. Secreted bacterial effectors that inhibit host protein synthesis are critical for induction of the innate immune response to virulent Legionella pneumophila. PLoS Pathog. 2011, 7, e1001289. [Google Scholar] [CrossRef] [PubMed]
- Fontana, M.F.; Shin, S.; Vance, R.E. Activation of host mitogen-activated protein kinases by secreted Legionella pneumophila effectors that inhibit host protein translation. Infect. Immun. 2012, 80, 3570–3575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Asrat, S.; Dugan, A.S.; Isberg, R.R. , The frustrated host response to Legionella pneumophila is bypassed by MyD88-dependent translation of pro-inflammatory cytokines. PLoS Pathog. 2014, 10, e1004229. [Google Scholar] [CrossRef]
- Belyi, Y. Targeting Eukaryotic mRNA Translation by Legionella pneumophila. Front. Mol. Biosci. 2020, 7, 80. [Google Scholar] [CrossRef] [PubMed]
- Park, J.M.; Ghosh, S.; O’Connor, T.J. Combinatorial selection in amoebal hosts drives the evolution of the human pathogen Legionella pneumophila. Nat. Microbiol. 2020, 5, 599–609. [Google Scholar] [CrossRef]
- Nachmias, N.; Zusman, T.; Segal, G. Study of Legionella effector domains revealed novel and prevalent phosphatidylinositol 3-phosphate binding domains. Infect. Immun. 2019, 87, e00153-19. [Google Scholar] [CrossRef] [Green Version]
- Jank, T.; Bohmer, K.E.; Tzivelekidis, T.; Schwan, C.; Belyi, Y.; Aktories, K. Domain organization of Legionella effector SetA. Cel. Microbiol. 2012, 14, 852–868. [Google Scholar] [CrossRef]
- Levanova, N.; Steinemann, M.; Bohmer, K.E.; Schneider, S.; Belyi, Y.; Schlosser, A.; Aktories, K.; Jank, T. Characterization of the glucosyltransferase activity of Legionella pneumophila effector SetA. Naunyn-Schmiedeberg Arch. Pharmacol. 2019, 392, 69–79. [Google Scholar] [CrossRef] [PubMed]
- Beck, W.H.J.; Kim, D.; Das, J.; Yu, H.; Smolka, M.B.; Mao, Y. Glucosylation by the Legionella effector SetA promotes the nuclear localization of the transcription factor TFEB. iScience 2020, 23, 101300. [Google Scholar] [CrossRef]
- Wang, Z.; McCloskey, A.; Cheng, S.; Wu, M.; Xue, C.; Yu, Z.; Fu, J.; Liu, Y.; Luo, Z.Q.; Liu, X. Regulation of the small GTPase Rab1 function by a bacterial glucosyltransferase. Cell. Discov. 2018, 4, 53. [Google Scholar] [CrossRef] [PubMed]
- Norris, A.; Grant, B.D. Endosomal microdomains: Formation and function. Curr. Opin. Cell Biol. 2020, 65, 86–95. [Google Scholar] [CrossRef] [PubMed]
- Bärlocher, K.; Welin, A.; Hilbi, H. Formation of the Legionella replicative compartment at the crossroads of retrograde trafficking. Front. Cell. Infect. Microbiol. 2017, 7, 482. [Google Scholar] [CrossRef]
- Finsel, I.; Ragaz, C.; Hoffmann, C.; Harrison, C.F.; Weber, S.; van Rahden, V.A.; Johannes, L.; Hilbi, H. The Legionella effector RidL inhibits retrograde trafficking to promote intracellular replication. Cell Host Microbe 2013, 14, 38–50. [Google Scholar] [CrossRef] [Green Version]
- Itzen, A.; Goody, R.S. Covalent coercion by Legionella pneumophila. Cell Host Microbe 2011, 10, 89–91. [Google Scholar] [CrossRef] [Green Version]
- Goody, P.R.; Heller, K.; Oesterlin, L.K.; Muller, M.P.; Itzen, A.; Goody, R.S. Reversible phosphocholination of Rab proteins by Legionella pneumophila effector proteins. EMBO J. 2012, 31, 1774–1784. [Google Scholar] [CrossRef] [Green Version]
- Hardiman, C.A.; Roy, C.R. AMPylation is critical for Rab1 localization to vacuoles containing Legionella pneumophila. mBio 2014, 5, e01035-13. [Google Scholar] [CrossRef] [Green Version]
- Levin, R.S.; Hertz, N.T.; Burlingame, A.L.; Shokat, K.M.; Mukherjee, S. Innate immunity kinase TAK1 phosphorylates Rab1 on a hotspot for posttranslational modifications by host and pathogen. Proc. Natl. Acad. Sci. USA 2016, 113, E4776–E4783. [Google Scholar] [CrossRef] [Green Version]
- Lombard, V.; Golaconda Ramulu, H.; Drula, E.; Coutinho, P.M.; Henrissat, B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucl. Acids Res. 2014, 42, D490–D495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, X.; Banga, S.; Liu, Y.; Xu, L.; Gao, P.; Shamovsky, I.; Nudler, E.; Luo, Z.-Q. Targeting eEF1A by a Legionella pneumophila effector leads to inhibition of protein synthesis and induction of host stress response. Cell. Microbiol. 2009, 11, 911–926. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joseph, A.M.; Pohl, A.E.; Ball, T.J.; Abram, T.G.; Johnson, D.K.; Geisbrecht, B.V.; Shames, S.R. The Legionella pneumophila metaeffector Lpg2505 (MesI) regulates SidI-mediated translation inhibition and novel glycosyl hydrolase activity. Infect. Immun. 2020, 88, e00853-19. [Google Scholar] [CrossRef]
- Shames, S.R.; Liu, L.; Havey, J.C.; Schofield, W.B.; Goodman, A.L.; Roy, C.R. Multiple Legionella pneumophila effector virulence phenotypes revealed through high-throughput analysis of targeted mutant libraries. Proc. Natl. Acad. Sci. USA 2017, 114, E10446–E10454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCloskey, A.; Perri, K.; Chen, T.; Han, A.; Luo, Z.Q. The metaeffector MesI regulates the activity of the Legionella effector SidI through direct protein-protein interactions. Microbes Infect. 2021, 23, 104794. [Google Scholar] [CrossRef]
- Machtens, D.A.; Willerding, J.M.; Eschenburg, S.; Reubold, T.F. Crystal structure of the metaeffector MesI (Lpg2505) from Legionella pneumophila. Biochem. Biophys. Res. Commun. 2020, 527, 696–701. [Google Scholar] [CrossRef]
- Iyer, S.; Das, C. The unity of opposites: Strategic interplay between bacterial effectors to regulate cellular homeostasis. J. Biol. Chem. 2021, 297, 101340. [Google Scholar] [CrossRef]
Protein Superfamily | Protein Name | Donor Substrate | CAZY Classification, Reaction Type | Acceptor Protein Target (Amino Acid Residue) | Peptide Recognition Sequence | First Discovery Citation |
---|---|---|---|---|---|---|
Secreted toxins | TcdA of C. difficile | UDP-Glc | GT-A, GT44, retaining, O-linked | Small GTPases Rho/Ras/Rac/Rap (Threonine) | Unknown | [43] |
TcdB of C. difficile | UDP-Glc | GT-A, GT44, retaining O-linked | Small GTPases Rho/Ras/Rac/Rap/Ral (Threonine) | YAPVFDAY [44] | [30] | |
TcsL of C. sordellii | UDP-Glc | GT-A, GT44, retaining O-linked | Small GTPases Rho/Ras/Rac/Rap/Ral (Threonine) | Unknown | [45] | |
TcsH of C. sordellii | UDP-Glc | GT-A, GT44, retaining O-linked | Small GTPases Rho/Ras/Rac (Threonine) | Unknown | [46] | |
TpeL of C. pefringens | UDP-GlcNAc/ UDP-Glc | GT-A, GT44, retaining O-linked | Small GTPases Ras/Rac/Rap/Ral (Threonine) | Unknown | [47] | |
TcnA of C. novyi | UDP-GlcNAc | GT-A, GT44, retaining O-linked | Small GTPases Rho/Rac (Threonine) | Unknown | [48] | |
PaTox of P. asymbiotica | UDP-GlcNAc | GT-A, retaining O-linked | Rho/Ras family of small GTPases (Tyrosine) | Unknown | [49] | |
YGT of Y. mollaretii | UDP-GlcNAc | GT-A O-linked | Rab5, Rab31 (Threonine) | Unknown | [50] | |
Translocated effectors | Lgt1-3 of L. pneumophila | UDP-Glc | GT-A, GT88 retaining O-linked | eEF1A, Hbs1 (Serine) | “X-K-X-S-F-K-Y/F-A-W-X” [51] | [33] |
SetA of L. pneumophila | UDP-Glc | GT-A, retaining O-linked | Multiple Rab1A, Snx1 (Serine/Threonine) | “S/T-X-L-P/G” [52] | [53] | |
LtpM of L. pneumophila | UDP-Glc | Not assigned | unknown | Unknown | [54] | |
SidI of L. pneumophila | GDP-mannose | Not assigned | unknown | Unknown | [53] | |
NleB of C. rodentium, pathogenic E. coli | UDP-GlcNAc | GT-A, GT8, retaining N-linked | Death domain proteins (Arginine) | “WR” motif [55] | [36] | |
SseK of S. typhimurium | UDP-GlcNAc | GT-A, GT8, retaining N-linked | Death domain proteins (Arginine) | “WR” motif [55] | [56] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Belyi, Y.; Levanova, N.; Schroeder, G.N. Glycosylating Effectors of Legionella pneumophila: Finding the Sweet Spots for Host Cell Subversion. Biomolecules 2022, 12, 255. https://doi.org/10.3390/biom12020255
Belyi Y, Levanova N, Schroeder GN. Glycosylating Effectors of Legionella pneumophila: Finding the Sweet Spots for Host Cell Subversion. Biomolecules. 2022; 12(2):255. https://doi.org/10.3390/biom12020255
Chicago/Turabian StyleBelyi, Yury, Nadya Levanova, and Gunnar N. Schroeder. 2022. "Glycosylating Effectors of Legionella pneumophila: Finding the Sweet Spots for Host Cell Subversion" Biomolecules 12, no. 2: 255. https://doi.org/10.3390/biom12020255
APA StyleBelyi, Y., Levanova, N., & Schroeder, G. N. (2022). Glycosylating Effectors of Legionella pneumophila: Finding the Sweet Spots for Host Cell Subversion. Biomolecules, 12(2), 255. https://doi.org/10.3390/biom12020255