Current Strategies for Real-Time Enzyme Activation
Abstract
:1. Introduction
2. Near-Infrared Strategy
2.1. Mechanism
2.2. NIR-Responsive Nanomaterials
2.3. Applications
3. Microwave Radiation Strategy
3.1. Mechanism
3.2. Applications
4. Ultrasound Strategy
4.1. Mechanism
4.2. Applications
5. Alternating Magnetic Field Strategy
5.1. Mechanism
5.2. Applications
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Madhavan, A.; Sindhu, R.; Binod, P. Strategies for design of improved biocatalysts for industrial applications. Bioresour. Technol. 2017, 245, 1304–1313. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Yang, X.; Yang, S. Technology prospecting on enzymes: Application, marketing and engineering. Comput. Struct. Biotec. 2012, 2, e201209017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, S.; Snajdrova, R.; Moore, J.C.; Baldenius, K.; Bornscheuer, U.T. Biocatalysis: Enzymatic Synthesis for Industrial Applications. Angew. Chem. Int. Ed. 2021, 60, 88–119. [Google Scholar] [CrossRef] [PubMed]
- Arbige, M.V.; Shetty, J.K.; Chotani, G.K. Industrial Enzymology: The Next Chapter. Biotechnol. Trends. Biotechnol. 2019, 37, 1355–1366. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Zheng, B.; Wang, Y. The conserved N-terminal helix of acylpeptide hydrolase from archaeon Aeropyrum pernix K1 is important for its hyperthermophilic activity. BBA Proteins. Proteom. 2008, 1784, 1176–1183. [Google Scholar] [CrossRef] [PubMed]
- Rueda, N.; Dos Santos, J.C.S.; Ortiz, C. Chemical modification in the design of immobilized enzyme biocatalysts: Drawbacks and opportunities. Chem. Rec. 2016, 16, 1436–1455. [Google Scholar] [CrossRef]
- Nguyen, H.H.; Lee, S.H.; Lee, U.J. Immobilized enzymes in biosensor applications. Materials 2019, 12, 121. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Z.; Hartmann, M. Progress in enzyme immobilization in ordered mesoporous materials and related applications. Chem. Soc. Rev. 2013, 42, 3894–3912. [Google Scholar] [CrossRef]
- Borzouee, F.; Varshosaz, J.; Cohan, R.A. A Comparative Analysis of Different Enzyme Immobilization Nanomaterials: Progress, Constraints, and Recent Trends. Curr. Med. Chem. 2021, 28, 3980–4003. [Google Scholar] [CrossRef]
- Wu, D.; Chen, X.; Zhou, J. A synergistic optical strategy for enhanced deep-tumor penetration and therapy in the second near-infrared window. Mater. Horiz. 2020, 7, 2929–2935. [Google Scholar] [CrossRef]
- Wang, F.; Owusu-Fordjour, M.; Xu, L. Immobilization of laccase on magnetic chelator nanoparticles for apple juice clarification in magnetically stabilized fluidized bed. Front. Bioeng. Biotech. 2020, 8, 589. [Google Scholar] [CrossRef] [PubMed]
- Soares, A.D.; Leite, B.R.D.; Tribst, A.A.L.; Augusto, P.E.D.; Ramos, A.M. Effect of ultrasound on goat cream hydrolysis by lipase: Evaluation on enzyme, substrate and assisted reaction. LWT Food Sci. Technol. 2020, 130, 109636. [Google Scholar] [CrossRef]
- Yu, D.; Wang, C.; Yin, Y. A synergistic effect of microwave irradiation and ionic liquids on enzyme-catalyzed biodiesel production. Green. Chem. 2011, 13, 1869. [Google Scholar] [CrossRef]
- De Barros, H.R.; Garcia, I.; Kuttner, C. Mechanistic insights into the light-driven catalysis of an immobilized lipase on plasmonic nanomaterials. ACS Catal. 2020, 11, 414–423. [Google Scholar] [CrossRef]
- Mosquera, J.; Zhao, Y.; Jang, H.J. Plasmonic nanoparticles with supramolecular recognition. Adv. Funct. Mater. 2020, 30, 1902082. [Google Scholar] [CrossRef]
- Liz-Marzán, L.M.; Murphy, C.J.; Wang, J. Nanoplasmonics. Chem. Soc. Rev. 2014, 43, 3820–3822. [Google Scholar] [CrossRef]
- Linic, S.; Aslam, U.; Boerigter, C. Photochemical transformations on plasmonic metal nanoparticles. Nat. Mater. 2015, 14, 567–576. [Google Scholar] [CrossRef]
- Brown, K.A.; Harris, D.F.; Wilker, M.B. Light-driven dinitrogen reduction catalyzed by a CdS: Nitrogenase MoFe protein biohybrid. Science 2016, 352, 448–450. [Google Scholar] [CrossRef]
- Guo, S.; Li, H.; Liu, J. Visible-light-induced effects of Au nanoparticle on laccase catalytic activity. ACS Appl. Mater. Interfaces 2015, 7, 20937–20944. [Google Scholar] [CrossRef]
- Li, W.; Liu, D.; Geng, X. Real-time regulation of catalysis by remote-controlled enzyme-conjugated gold nanorod composites for aldol reaction-based applications. Catal. Sci. Technol. 2019, 9, 2221–2230. [Google Scholar] [CrossRef]
- Tadepalli, S.; Yim, J.; Madireddi, K. Gold nanorod-mediated photothermal enhancement of the biocatalytic activity of a polymer-encapsulated enzyme. Chem. Mater. 2017, 29, 6308–6314. [Google Scholar]
- Su, J.; Chen, H.; Xu, Z. Near-Infrared-Induced Contractile Proteinosome Microreactor with a Fast Control on Enzymatic Reactions. ACS Appl. Mater. Interfaces 2020, 12, 41079–41087. [Google Scholar] [CrossRef] [PubMed]
- Tadepalli, S.; Yim, J.; Cao, S. Metal–organic framework encapsulation for the preservation and photothermal enhancement of enzyme activity. Small 2018, 14, 1702382. [Google Scholar] [CrossRef] [PubMed]
- Thompson, S.A.; Paterson, S.; Azab, M.M.M. Light-Triggered Inactivation of Enzymes with Photothermal Nanoheaters. Small 2017, 13, 1603195. [Google Scholar] [CrossRef] [Green Version]
- Blankschien, M.D.; Pretzer, L.A.; Huschka, R. Light-triggered biocatalysis using thermophilic enzyme–gold nanoparticle complexes. Acs Nano 2013, 7, 654–663. [Google Scholar] [CrossRef]
- Kang, P.; Chen, Z.; Nielsen, S.O. Molecular hyperthermia: Spatiotemporal protein unfolding and inactivation by nanosecond plasmonic heating. Small 2017, 13, 1700841. [Google Scholar] [CrossRef] [Green Version]
- Bretschneider, J.C.; Reismann, M.; von Plessen, G.; Simon, U. Photothermal Control of the Activity of HRP-Functionalized Gold Nanoparticles. Small 2009, 5, 2549–2553. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, Q.; Wang, X. Dynamic Modulation of Enzyme Activity by Near-Infrared Light. Angew. Chem. Int. Ed. 2017, 129, 6871–6876. [Google Scholar] [CrossRef]
- Hedison, T.M.; Heyes, D.J.; Scrutton, N.S. Making molecules with photodecarboxylases: A great start or a false dawn. Curr. Res. Chem. Biol. 2022, 2, 100017. [Google Scholar] [CrossRef]
- Weber, S. Light-driven enzymatic catalysis of DNA repair: A review of recent biophysical studies on photolyase. Biochim. Biophys. Acta Bioenerg. 2005, 1707, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Sorigué, D.; Légeret, B.; Cuiné, S.; Blangy, S.; Moulin, S.; Billon, E.; Richaud, P.; Brugière, S.; Couté, Y.; Nurizzo, D. An algal photoenzyme converts fatty acids to hydrocarbons. Science 2017, 907, 903–907. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heyes, D.J.; Zhang, S.; Taylor, A.; Johannissen, L.O.; Hardman, S.J.O.; Hay, S.; Scrutton, N.S. Photocatalysis as the ‘master switch’ of photomorphogenesis in early plant development. Nativ. Plants 2021, 7, 268–276. [Google Scholar] [CrossRef] [PubMed]
- Emmanuel, M.A.; Greenberg, N.R.; Oblinsky, D.G.; Hyster, T.K. Accessing non-natural reactivity by irradiating nicotinamide-dependent enzymes with light. Nature 2016, 540, 414–417. [Google Scholar] [CrossRef] [PubMed]
- Khiavi, M.A.; Safary, A.; Aghanejad, A. Enzyme-conjugated gold nanoparticles for combined enzyme and photothermal therapy of colon cancer cells. Colloid. Surface. A 2019, 572, 333–344. [Google Scholar] [CrossRef]
- Yang, S.; Yao, D.; Wang, Y.; Yang, W.; Zhang, B.; Wang, D. Enzyme-triggered self-assembly of gold nanoparticles for enhanced retention effects and photothermal therapy of prostate cancer. Chemical Communications. Chem. Commun. 2018, 54, 9841–9844. [Google Scholar] [CrossRef] [PubMed]
- Sun, M.; Xu, H. A novel application of plasmonics: Plasmon-driven surface-catalyzed reactions. Small 2012, 8, 2777–2786. [Google Scholar] [CrossRef]
- Breger, J.C.; Oh, E.; Susumu, K. Nanoparticle size influences localized enzymatic enhancement—A case study with Phosphotriesterase. Bioconjugate Chem. 2019, 30, 2060–2074. [Google Scholar] [CrossRef]
- Burda, C.; Chen, X.; Narayanan, R. Chemistry and properties of nanocrystals of different shapes. Chem. Rev. 2005, 105, 1025–1102. [Google Scholar] [CrossRef]
- Xia, Y.; Halas, N.J. Shape-controlled synthesis and surface plasmonic properties of metallic nanostructures. MRS Bull. 2005, 30, 338–348. [Google Scholar] [CrossRef] [Green Version]
- Ye, T.; Dai, Z.; Mei, F. Synthesis and optical properties of gold nanorods with controllable morphology. J. Phys. Condens. Mat. 2016, 28, 434002. [Google Scholar] [CrossRef]
- Liu, D.; Li, W.; Jiang, X.; Bai, S.; Liu, J.; Liu, X.; Shi, Y.; Kuai, Z.; Kong, W.; Gao, R.; et al. Using near-infrared enhanced thermozyme and scFv dual-conjugated Au nanorods for detection and targeted photothermal treatment of Alzheimer’s disease. Theranostics 2019, 9, 2268–2281. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Wang, C.; Chang, H. Off-on switching of enzyme activity by near-infrared light-induced photothermal phase transition of nanohybrids. Sci. Adv. 2019, 5, eaaw4252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ding, C.; Liang, J.; Zhou, Z. Photothermal enhanced enzymatic activity of lipase covalently immobilized on functionalized Ti3C2TX nanosheets. Chem. Eng. J. 2019, 378, 122816. [Google Scholar] [CrossRef]
- Cao, G.; Sun, D.; Gu, T. Photoswitching enzymatic activity of horseradish peroxidase by graphene oxide for colorimetric immunoassay. Biosens. Bioelectron. 2019, 145, 111707. [Google Scholar] [CrossRef] [PubMed]
- Kamada, K. Photo-manipulation of activity of enzymes bound to inorganic nanomaterials. J. Solid State Chem. 2019, 280, 210–214. [Google Scholar] [CrossRef]
- Sheng, S.; Liu, F.; Lin, L. Nanozyme-mediated cascade reaction based on metal-organic framework for synergetic chemo-photodynamic tumor therapy. J. Control. Release 2020, 328, 631–639. [Google Scholar] [CrossRef]
- Bai, J.; Liu, Y.; Jiang, X. Multifunctional PEG-GO/CuS nanocomposites for near-infrared chemo-photothermal therapy. Biomaterials 2014, 35, 5805–5813. [Google Scholar] [CrossRef]
- Zhang, L.; Su, H.; Cai, J. A multifunctional platform for tumor angiogenesis-targeted chemo-thermal therapy using polydopamine-coated gold nanorods. ACS Nano 2016, 10, 10404–10417. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, K.; Zhao, J. Multifunctional mesoporous silica-coated graphene nanosheet used for chemo-photothermal synergistic targeted therapy of glioma. J. Am. Chem. Soc. 2013, 135, 4799–4804. [Google Scholar] [CrossRef]
- Kim, N.; Lee, H.J. Target Enzymes Considered for the Treatment of Alzheimer’s Disease and Parkinson’s Disease. Biomed. Res. Int. 2020, 2020, 2010728. [Google Scholar] [CrossRef]
- Fuentes-Baile, M.; García-Morales, P.; Pérez-Valenciano, E. Cell Death Mechanisms Induced by CLytA-DAAO Chimeric Enzyme in Human Tumor Cell Lines. Int. J. Mol. Sci. 2020, 21, 8522. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Li, J.; Zhen, X. Dual-peak absorbing semiconducting copolymer nanoparticles for first and second near-infrared window photothermal therapy: A comparative study. Adv. Mater. 2018, 30, 1705980. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Jiang, Y.; Hou, S. Compact plasmonic blackbody for cancer theranosis in the near-infrared II window. Acs Nano 2018, 12, 2643–2651. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Chen, Y.; Xin, H. Near-infrared optogenetic engineering of photothermal nanoCRISPR for programmable genome editing. Proc. Natl. Acad. Sci. USA 2020, 117, 2395–2405. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Fei, J.; Du, C. Assembly of catalase-based bioconjugates for enhanced anticancer efficiency of photodynamic therapy in vitro. Chem. Commun. 2013, 49, 10733–10735. [Google Scholar] [CrossRef]
- Cho, Y.; Kim, H.; Choi, Y. A graphene oxide–photosensitizer complex as an enzyme-activatable theranostic agent. Chem. Commun. 2013, 49, 1202–1204. [Google Scholar] [CrossRef]
- Du, B.; Tung, C.H. Enzyme-assisted photodynamic therapy based on nanomaterials. ACS Biomater. Sci. Eng. 2020, 6, 2506–2517. [Google Scholar] [CrossRef]
- Chen, Q.; Chen, J.; Yang, Z. NIR-II light activated photodynamic therapy with protein-capped gold nanoclusters. Nano Res. 2018, 11, 5657–5669. [Google Scholar] [CrossRef]
- Hamley, I.W. The amyloid beta peptide: A chemist’s perspective. Role in Alzheimer’s and fibrillization. Chem. Rev. 2012, 112, 5147–5192. [Google Scholar] [CrossRef]
- Viola, K.L.; Klein, W.L. Amyloid β oligomers in Alzheimer’s disease pathogenesis, treatment, and diagnosis. Acta Neuropathol. 2015, 129, 183–206. [Google Scholar] [CrossRef]
- Li, M.; Howson, S.E.; Dong, K. Chiral metallohelical complexes enantioselectively target amyloid β for treating Alzheimer’s disease. J. Am. Chem. Soc. 2014, 136, 11655–11663. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, G.; Luo, W.; Li, P.; Remmers, C.; Netzer, W.J.; Hendrick, J. Gamma-secretase activating protein is a therapeutic target for Alzheimer’s disease. Nature 2010, 2, 95–98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pan, S.; Ren, J.; Ma, E.; Wang, K.; Yang, S.; Wang, H. Dual-Propelled Sporopollenin-Exine-Capsule Micromotors for Near-Infrared Light Triggered Degradation of Organic Pollutants. Chem. Nano Mat. 2021, 7, 483–487. [Google Scholar] [CrossRef]
- Banik, S.; Bandyopadhyay, S.; Ganguly, S. Bioeffects of microwave—A brief review. Bioresour. Technol. 2003, 87, 155–159. [Google Scholar] [CrossRef]
- Horikoshi, S.; Serpone, N. Microwave flow chemistry as a methodology in organic syntheses, enzymatic reactions, and nanoparticle syntheses. Chem. Rec. 2019, 19, 118–139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Z.; Zhang, Y.; Zheng, L.; Cui, X.; Huang, H.; Geng, X.; Xie, X. Regioselective acylation of resveratrol catalyzed by lipase under microwave. Green Chem. Lett. Rev. 2018, 11, 312–317. [Google Scholar] [CrossRef] [Green Version]
- Khan, N.R.; Rathod, V.K. Microwave mediated lipase-catalyzed synthesis of n-butyl palmitate and thermodynamic studies. Biocatal. Agric. Biotechnol. 2020, 29, 101741. [Google Scholar] [CrossRef]
- Mazinani, S.A.; DeLong, B.; Yan, H. Microwave radiation accelerates trypsin-catalyzed peptide hydrolysis at constant bulk temperature. Tetrahedron Lett. 2015, 56, 5804–5807. [Google Scholar] [CrossRef]
- Zhang, X.; Cao, T.; Tian, X. Effect of microwave irradiation on the structure of glucoamylase. Process Biochem. 2012, 47, 2323–2328. [Google Scholar] [CrossRef]
- Yu, D.; Wang, Y.; Wang, C. Combination use of microwave irradiation and ionic liquid in enzymatic isomerization of xylose to xylulose. J. Mol. Catal. B Enzym. 2012, 79, 8–14. [Google Scholar] [CrossRef]
- Liu, N.; Wang, L.; Wang, Z. Microwave-assisted resolution of α-lipoic acid catalyzed by an ionic liquid co-lyophilized lipase. Molecules 2015, 20, 9949–9960. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shinde, S.D.; Yadav, G.D. Insight into microwave-assisted lipase catalyzed synthesis of geranyl cinnamate: Optimization and kinetic modeling. Appl. Biochem. Biotech. 2015, 175, 2035–2049. [Google Scholar] [CrossRef] [PubMed]
- Rokhati, N.; Pramudono, B.; Istirokhatun, T. Microwave Irradiation-Assisted Chitosan Hydrolysis Using Cellulase Enzyme. Bull. Chem. React. Eng. 2018, 13, 466–474. [Google Scholar] [CrossRef]
- Siguemoto, É.S.; Pereira, L.J.; Gut, J.A.W. Inactivation kinetics of pectin methylesterase, polyphenol oxidase, and peroxidase in cloudy apple juice under microwave and conventional heating to evaluate non-thermal microwave effects. Food Bioprocess Technol. 2018, 11, 1359–1369. [Google Scholar] [CrossRef]
- Jiao, X.; Fan, D. Non-thermal microwave effects: Conceptual and methodological problems. Food Chem. 2022, 372, 131217. [Google Scholar] [CrossRef]
- Gutmann, B.; Schwan, A.M.; Reichart, B. Activation and deactivation of a chemical transformation by an electromagnetic field: Evidence for specific microwave effects in the formation of Grignard reagents. Angew. Chem. Int. Ed. 2011, 123, 7778–7782. [Google Scholar] [CrossRef]
- Dudley, G.B.; Stiegman, A.E.; Rosana, M.R. Correspondence on microwave effects in organic synthesis. Angew. Chem. Int. Ed. 2013, 52, 7918–7923. [Google Scholar] [CrossRef]
- Kappe, C.O. Reply to the correspondence on microwave effects in organic synthesis. Angew. Chem. Int. Ed. 2013, 125, 8080–8084. [Google Scholar] [CrossRef]
- Nagashima, I.; Sugiyama, J.; Sakuta, T. Efficiency of 2.45 and 5.80 GHz microwave irradiation for a hydrolysis reaction by thermostable β-Glucosidase HT1. Biosci. Biotech. Bioch. 2014, 78, 758–760. [Google Scholar] [CrossRef]
- Young, D.D.; Nichols, J.; Kelly, R.M. Microwave activation of enzymatic catalysis. J. Am. Chem. Soc. 2008, 130, 10048–10049. [Google Scholar] [CrossRef]
- Kubo, M.T.K.; Siguemoto, E.S.; Funcia, E.S. Non-thermal effects of microwave and ohmic processing on microbial and enzyme inactivation: A critical review. Curr. Opin. Food Sci. 2020, 35, 36–48. [Google Scholar] [CrossRef]
- Yang, J.; Chen, X.; Yu, D. Microwave-assisted synthesis of butyl galactopyranoside catalyzed by β-galactosidase from Thermotoga naphthophila RKU-10. Process Biochem. 2016, 51, 53–58. [Google Scholar] [CrossRef]
- Kappe, C.O. Controlled microwave heating in modern organic synthesis. Angew. Chem. Int. Ed. 2004, 43, 6250–6284. [Google Scholar] [CrossRef] [PubMed]
- Meriles, S.P.; Steffolani, M.E.; Penci, M.C.; Curet, S.; Boillereaux, L.; Ribotta, P.D. Effects of low-temperature microwave treatment of wheat germ. J. Sci. Food Agric. 2021, 102, 2538–2544. [Google Scholar] [CrossRef]
- Jaiswal, K.S.; Rathod, V.K. Process Intensification of Enzymatic Synthesis of Flavor Esters: A Review. Chem. Rec. 2021, 22, e202100213. [Google Scholar] [CrossRef]
- Dill, L.P.; Kochepka, D.M.; Krieger, N. Synthesis of fatty acid ethyl esters with conventional and microwave heating systems using the free lipase B from Candida antarctica. Biocatal. Biotransfor. 2019, 37, 25–34. [Google Scholar] [CrossRef]
- Xie, Z.B.; Fu, L.H.; Meng, J. Efficient biocatalytic strategy for one-pot Biginelli reaction via enhanced specific effects of microwave in a circulating reactor. Bioorg. Chem. 2020, 101, 103949. [Google Scholar] [CrossRef]
- Yu, D.; Ma, D.; Wang, Z. Microwave-assisted enzymatic resolution of (R,S)-2-octanol in ionic liquid. Process Biochem. 2012, 47, 479–484. [Google Scholar] [CrossRef]
- Klibanov, A.M. Improving enzymes by using them in organic solvents. Nature 2001, 409, 241–246. [Google Scholar] [CrossRef]
- Bansode, S.R.; Rathod, V.K. Enzymatic sythesis of Isoamyl butyrate under microwave irradiation. Chem. Eng. Process. 2018, 129, 71–76. [Google Scholar] [CrossRef]
- Capela, E.V.; Valente, A.I.; Nunes, J.C.F. Insights on the laccase extraction and activity in ionic-liquid-based aqueous biphasic systems. Sep. Purif. Technol. 2020, 248, 117052. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, N.; Xie, Z.B. Ionic liquid as a recyclable and efficient medium for lipase-catalyzed asymmetric cross aldol reaction. J. Mol. Catal. B Enzym. 2014, 110, 100–110. [Google Scholar] [CrossRef]
- Zhao, H.; Baker, G.A.; Song, Z. Effect of ionic liquid properties on lipase stabilization under microwave irradiation. J. Mol. Catal. B Enzym. 2009, 57, 149–157. [Google Scholar] [CrossRef]
- Guimarães, M.; Mateus, N.; de Freitas, V. Microwave-Assisted Synthesis and Ionic Liquids: Green and Sustainable Alternatives toward Enzymatic Lipophilization of Anthocyanin Monoglucosides. J. Agric. Food Chem. 2020, 68, 7387–7392. [Google Scholar] [CrossRef]
- Novilla, A.; Djamhuri, D.S.; Nurhayati, B. Anti-inflammatory properties of oolong tea (Camellia sinensis) ethanol extract and epigallocatechin gallate in LPS-induced RAW 264.7 cells. Asian. Pac. J. Trop. Biomed. 2017, 7, 1005–1009. [Google Scholar] [CrossRef]
- Guo, Q.; Sun, D.W.; Cheng, J.H. Microwave processing techniques and their recent applications in the food industry. Trends Food Sci. Technol. 2017, 67, 236–247. [Google Scholar] [CrossRef]
- Grossmann, L.; Wefers, D.; Bunzel, M. Accessibility of transglutaminase to induce protein crosslinking in gelled food matrices-Influence of network structure. LWT Food Sci. Technol. 2017, 75, 271–278. [Google Scholar] [CrossRef]
- Cao, H.W.; Fan, D.; Jiao, X. Intervention of transglutaminase in surimi gel under microwave irradiation. Food Chem. 2018, 268, 378–385. [Google Scholar] [CrossRef]
- Cao, H.; Jiao, X.; Fan, D. Catalytic effect of transglutaminase mediated by myofibrillar protein crosslinking under microwave irradiation. Food Chem. 2019, 284, 45–52. [Google Scholar] [CrossRef]
- Prashanth, K.V.H.; Tharanathan, R.N. Chitin/chitosan: Modifications and their unlimited application potential—An overview. Trends Food Sci. Technol. 2007, 18, 117–131. [Google Scholar] [CrossRef]
- Huang, K.S.; Wu, W.J.; Chen, J.B. Application of low-molecular-weight chitosan in durable press finishing. Carbohydr. Polym. 2008, 73, 254–260. [Google Scholar] [CrossRef]
- Gogate, P.R.; Kabadi, A.M. A review of applications of cavitation in biochemical engineering/biotechnology. Biochem. Eng. J. 2009, 44, 60–72. [Google Scholar] [CrossRef]
- Aldrich, J.E. Basic physics of ultrasound imaging. Crit. Care Med. 2007, 35, S131–S137. [Google Scholar] [CrossRef]
- Sancheti, S.V.; Gogate, P.R. A review of engineering aspects of intensification of chemical synthesis using ultrasound. Ultrason. Sonochem. 2017, 36, 527–543. [Google Scholar] [CrossRef]
- Córdova, A.; Henríquez, P.; Nuñez, H.; Guerrero, C.; Illanes, A. Recent Advances in the Application of Enzyme Processing Assisted by Ultrasound in Agri-Foods: A Review. Catalysts 2022, 12, 107. [Google Scholar] [CrossRef]
- Umego, E.; He, R.; Ren, W. Ultrasonic-Assisted Enzymolysis: Principle and Applications. Process Biochem. 2021, 100, 59–68. [Google Scholar] [CrossRef]
- Subhedar, P.B.; Gogate, P.R. Enhancing the activity of cellulase enzyme using ultrasonic irradiations. J. Mol. Catal. B Enzym. 2014, 101, 108–114. [Google Scholar] [CrossRef]
- Ma, H.; Huang, L.; Jia, J. Effect of energy-gathered ultrasound on Alcalase. Ultrason. Sonochem. 2011, 18, 419–424. [Google Scholar] [CrossRef]
- Ma, X.; Wang, W.; Zou, M. Properties and structures of commercial polygalacturonase with ultrasound treatment: Role of ultrasound in enzyme activation. RSC Adv. 2015, 5, 107591–107600. [Google Scholar] [CrossRef]
- Lan, W.; Chen, S. Chemical kinetics, thermodynamics and inactivation kinetics of dextransucrase activity by ultrasound treatment. React. Kinet. Mech. Catal. 2020, 129, 843–864. [Google Scholar] [CrossRef]
- Jadhav, S.H.; Gogate, P.R. Intensification in the Activity of Lipase Enzyme Using Ultrasonic Irradiation and Stability Studies. Ind. Eng. Chem. Res. 2014, 53, 1377–1385. [Google Scholar] [CrossRef]
- Khan, A.; Beg, M.R.; Waghmare, P. Intensification of biokinetics of enzymes using ultrasound-assisted methods: A critical review. Biophys. Rev. 2021, 13, 417–423. [Google Scholar] [CrossRef] [PubMed]
- Priya; Gogate, P.R. Ultrasound-Assisted Intensification of Activity of Free and Immobilized Enzymes: A Review. Ind. Eng. Chem. Res. 2021, 60, 9650–9668. [Google Scholar] [CrossRef]
- Wang, Z.; Lin, X.; Li, P. Effects of low intensity ultrasound on cellulase pretreatment. Bioresour. Technol. 2012, 117, 222–227. [Google Scholar] [CrossRef]
- De Carvalho Silvello, M.A.; Martínez, J.; Goldbeck, R. Low-frequency ultrasound with short application time improves cellulase activity and reducing sugars release. Appl. Biochem. Biotech. 2020, 191, 1042–1055. [Google Scholar] [CrossRef]
- Vartolomei, A.; Calinescu, I.; Vinatoru, M.; Gavrila, A.I. A parameter study of ultrasound assisted enzymatic esterification. Sci. Rep. 2022, 12, 1421. [Google Scholar] [CrossRef]
- Li, H.; Xu, M.; Yao, X. The promoted hydrolysis effect of cellulase with ultrasound treatment is reflected on the sonicated rather than native brown rice. Ultrason. Sonochem. 2022, 83, 105920. [Google Scholar] [CrossRef]
- De Souza Soares, A.; Júnior, B.R.C.L.; Augusto, P.E.D. Ultrasound processing of amyloglucosidase: Impact on enzyme activity, stability and possible industrial applications. Acta. Sci. Technol. 2021, 43, e48929. [Google Scholar] [CrossRef]
- Sun, J.; Zhang, Z.; Xiao, F. Production of xylooligosaccharides from corncobs using ultrasound-assisted enzymatic hydrolysis. Food Sci. Biotechnol. 2015, 24, 2077–2081. [Google Scholar] [CrossRef]
- Parikh, D.T.; Lanjekar, K.J.; Rathod, V.K. Ultrasound-assisted lipase catalyzed synthesis of propyl caprate: Process optimization, kinetic, and thermodynamic evaluation. Chem. Eng. Process. 2021, 169, 106833. [Google Scholar] [CrossRef]
- Hristov, J. Magnetic field assisted fluidization–A unified approach. Part Mass transfer: Magnetically assisted bioprocesses. Rev. Chem. Eng. 2010, 26, 55–128. [Google Scholar] [CrossRef]
- Ma, H.; Huang, L.; Zhu, C. The effect of pulsed magnetic field on horseradish peroxidase. J. Food Process Eng. 2011, 34, 1609–1622. [Google Scholar] [CrossRef]
- Portaccio, M.; De Luca, P.; Durante, D. In vitro studies of the influence of ELF electromagnetic fields on the activity of soluble and insoluble peroxidase. Bioelectromagnetics 2003, 24, 449–456. [Google Scholar] [CrossRef] [PubMed]
- Xiong, R.; Zhang, W.; Zhang, Y.; Chen, Y.; He, Y.; Fan, H. Remote and real time control of an FVIO–enzyme hybrid nanocatalyst using magnetic stimulation. Nanoscale 2019, 11, 18081–18089. [Google Scholar] [CrossRef] [PubMed]
- Portaccio, M.; De Luca, P.; Durante, D. Modulation of the catalytic activity of free and immobilized peroxidase by extremely low frequency electromagnetic fields: Dependence on frequency. Bioelectromagnetics 2005, 26, 145–152. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, S.; Xu, B. Effect of alternating magnetic field treatments on enzymatic parameters of cellulase. J. Sci. Food Agr. 2012, 92, 1384–1388. [Google Scholar] [CrossRef]
- Wasak, A.; Drozd, R.; Jankowiak, D. The influence of rotating magnetic field on bio-catalytic dye degradation using the horseradish peroxidase. Biochem. Eng. J. 2019, 147, 81–88. [Google Scholar] [CrossRef]
- Blanchard, J.P.; Blackman, C.F. Clarification and application of an ion parametric resonance model for magnetic field interactions with biological systems. Bioelectromagnetics 1994, 15, 217–238. [Google Scholar] [CrossRef]
- Caliga, R.; Maniu, C.L.; Mihăşan, M. ELF-EMF exposure decreases the peroxidase catalytic efficiency in vitro. Open Life Sci. 2016, 11, 71–77. [Google Scholar] [CrossRef]
- Kotani, M. Paramagnetic properties and electronic structure of iron in heme proteins. Adv. Quantum. Chem. 1968, 4, 227–266. [Google Scholar]
- Ovejero, J.G.; Armenia, I.; Serantes, D. Selective Magnetic Nanoheating: Combining Iron Oxide Nanoparticles for Multi-Hot-Spot Induction and Sequential Regulation. Nano Lett. 2021, 21, 7213–7220. [Google Scholar] [CrossRef] [PubMed]
- Knecht, L.D.; Ali, N.; Wei, Y. Nanoparticle-mediated remote control of enzymatic activity. ACS Nano 2012, 6, 9079–9086. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coffey, W.T.; Fannin, P.C. Internal and Brownian mode-coupling effects in the theory of magnetic relaxation and ferromagnetic resonance of ferrofluids. J. Phys. Condens. Mat. 2002, 14, 3677. [Google Scholar] [CrossRef]
- Xia, T.T.; Lin, W.; Liu, C.Z. Improving catalytic activity of laccase immobilized on the branched polymer chains of magnetic nanoparticles under alternating magnetic field. J. Chem. Technol. Biot. 2018, 93, 88–93. [Google Scholar] [CrossRef]
- Armenia, I.; Bonavia, M.V.G.; De Matteis, L. Enzyme activation by alternating magnetic field: Importance of the bioconjugation methodology. J. Colloid Interface Sci. 2019, 537, 615–628. [Google Scholar] [CrossRef]
- Zheng, M.; Su, Z.; Ji, X. Magnetic field intensified bi-enzyme system with in situ cofactor regeneration supported by magnetic nanoparticles. J. Biotechnol. 2013, 168, 212–217. [Google Scholar] [CrossRef]
- Liu, Y.; Guo, C.; Liu, C.Z. Enhancing the resolution of (R,S)-2-octanol catalyzed by magnetic cross-linked lipase aggregates using an alternating magnetic field. Chem. Eng. J. 2015, 280, 36–40. [Google Scholar] [CrossRef]
- Sun, J.; Sun, F.; Xu, B. The quasi-one-dimensional assembly of horseradish peroxidase molecules in presence of the alternating magnetic field. Colloid Surf. A 2010, 360, 94–98. [Google Scholar] [CrossRef]
- Xia, T.T.; Feng, M.; Liu, C.L. Efficient phenol degradation by laccase immobilized on functional magnetic nanoparticles in fixed bed reactor under high-gradient magnetic field. Eng. Life Sci. 2021, 21, 374–381. [Google Scholar] [CrossRef]
- Cui, J.; Li, L.; Kou, L. Comparing Immobilized Cellulase Activity in a Magnetic Three-Phase Fluidized Bed Reactor under Three Types of Magnetic Field. Ind. Eng. Chem. Res. 2018, 57, 10841–10850. [Google Scholar] [CrossRef]
- Tang, W.; Ma, T.; Zhou, L. Polyamine-induced tannic acid co-deposition on magnetic nanoparticles for enzyme immobilization and efficient biodiesel production catalysed by an immobilized enzyme under an alternating magnetic field. Catal. Sci. Technol. 2019, 9, 6015–6026. [Google Scholar] [CrossRef]
- José, C.; Toledo, M.V.; Briand, L.E. Enzymatic kinetic resolution of racemic ibuprofen: Past, present and future. Crit. Rev. Biotechnol. 2016, 36, 891–903. [Google Scholar] [CrossRef] [PubMed]
- Salgın, S.; Çakal, M.; Salgın, U. Kinetic resolution of racemic naproxen methyl ester by magnetic and non-magnetic cross-linked lipase aggregates. Prep. Biochem. Biotech. 2020, 50, 148–155. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, Y.; Zhou, Q.; Chen, X.; Jiao, W.; Li, G.; Peng, M.; Liu, X.; He, Y.; Fan, H. Precise Regulation of Enzyme−Nanozyme Cascade Reaction Kinetics by Magnetic Actuation toward Efficient Tumor Therapy. ACS Appl. Mater. Interfaces 2021, 13, 52395–52405. [Google Scholar] [CrossRef]
- Bashari, M.; Jin, Z.Y.; Wang, J.P. A novel technique to improve the biodegradation efficiency of dextranase enzyme using the synergistic effects of ultrasound combined with microwave shock. Innov. Food Sci. Emerg. 2016, 35, 125–132. [Google Scholar] [CrossRef]
Material | Enzyme | Application | Ref. |
---|---|---|---|
Gold nanorod | Dextran hydrolase, glucose oxidase, horseradish peroxidase | Microreactor | [22] |
Polydopamine-coated gold nanorods | Papain | Deep-tumor therapy | [10] |
Gold nanorods | Acylpeptide hydrolase ST0779 | Alzheimer’s disease therapy | [41] |
Gold nanoparticles | Bovine pancreatic ribonuclease | Colon cancer therapy | [34] |
Ultrasmall platinum nanoparticle | Glucoamylase (GA), ProteinaseK, Deoxyribonuclease I | Off-on control of enzyme activity. | [42] |
Ti3C2TX nanosheets | Lipase | Improve the hydrolysis activity | [43] |
Gold nanorod | Acylpeptide hydrolase, Pig pancreatic lipase | Aldol reaction | [20] |
Gold nanoparticle | Alkaline phosphatase | Prostate cancer therapy | [35] |
Graphene oxide | Horseradish peroxidase | Colorimetric immunoassay | [44] |
CdS | Nitrogenase MoFe | Dinitrogen reduction | [18] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, F.; Liu, Y.; Du, C.; Gao, R. Current Strategies for Real-Time Enzyme Activation. Biomolecules 2022, 12, 599. https://doi.org/10.3390/biom12050599
Wang F, Liu Y, Du C, Gao R. Current Strategies for Real-Time Enzyme Activation. Biomolecules. 2022; 12(5):599. https://doi.org/10.3390/biom12050599
Chicago/Turabian StyleWang, Fang, Yuchen Liu, Chang Du, and Renjun Gao. 2022. "Current Strategies for Real-Time Enzyme Activation" Biomolecules 12, no. 5: 599. https://doi.org/10.3390/biom12050599
APA StyleWang, F., Liu, Y., Du, C., & Gao, R. (2022). Current Strategies for Real-Time Enzyme Activation. Biomolecules, 12(5), 599. https://doi.org/10.3390/biom12050599