Fullerenes’ Interactions with Plasma Membranes: Insight from the MD Simulations
Abstract
:1. Introduction
2. Methodology
2.1. Unbiased Molecular Dynamics Simulations
2.2. Biased Molecular Dynamics Simulations
2.3. Calculation of Potential of Mean Force Profiles
3. Results and Discussion
3.1. Fullerene Translocation in Asymmetric Plasma Membrane
3.2. Fullerenes Prefer the Inner Leaflet
3.3. The Relations of Fullerene Location and Lipid Saturation Levels
3.4. Potential of Mean Force Profiles for Fullerene Translocation into Bilayers
3.5. Fullerene Aggregation and the Plasma Membrane Damage
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kroto, H.W.; Heath, J.R.; O’Brien, S.C.; Curl, R.F.; Smalley, R.E. C60: Buckminsterfullerene. Nature 1985, 318, 162–163. [Google Scholar] [CrossRef]
- Bakry, R.; Vallant, R.M.; Najam-ul-Haq, M.; Rainer, M.; Szabo, Z.; Huck, C.W.; Bonn, G.K. Medicinal Applications of Fullerenes. Int. J. Nanomed. J. 2007, 2, 639–649. [Google Scholar]
- Goodarzi, S.; Da Ros, T.; Conde, J.; Sefat, F.; Mozafari, M. Fullerene: Biomedical Engineers Get to Revisit an Old Friend. Mater. Today 2017, 20, 460–480. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Florkowski, W.; Gerhardt, R.; Moon, K.-S.; Wong, C.-P. Shear Modulated Percolation in Carbon Nanotube Composites. J. Phys. Chem. B 2006, 110, 12289–12292. [Google Scholar] [CrossRef] [PubMed]
- Anilkumar, P.; Lu, F.; Cao, L.; Luo, P.G.; Liu, J.-H.; Sahu, S.; Tackett, K.N.; Wang, Y.; Sun, Y.-P. Fullerenes for Applications in Biology and Medicine. Curr. Med. Chem. 2011, 18, 2045–2059. [Google Scholar] [CrossRef] [PubMed]
- Dellinger, A.; Zhou, Z.; Connor, J.; Madhankumar, A.B.; Pamujula, S.; Sayes, C.M.; Kepley, C.L. Application of Fullerenes in Nanomedicine: An Update. Nanomed. J. 2013, 8, 1191–1208. [Google Scholar] [CrossRef] [Green Version]
- Castro, E.; Hernandez Garcia, A.; Zavala, G.; Echegoyen, L. Fullerenes in Biology and Medicine. J. Mater. Chem. B Mater. Biol. Med. 2017, 5, 6523–6535. [Google Scholar] [CrossRef]
- Li, Q.; Hong, L.; Li, H.; Liu, C. Graphene Oxide-Fullerene C60 (GO-C60) Hybrid for Photodynamic and Photothermal Therapy Triggered by near-Infrared Light. Biosens. Bioelectron. 2017, 89, 477–482. [Google Scholar] [CrossRef]
- Minami, K.; Song, J.; Shrestha, L.K.; Ariga, K. Nanoarchitectonics for Fullerene Biology. Appl. Mater. Today 2021, 23, 100989. [Google Scholar] [CrossRef]
- Johnston, H.J.; Hutchison, G.R.; Christensen, F.M.; Aschberger, K.; Stone, V. The Biological Mechanisms and Physicochemical Characteristics Responsible for Driving Fullerene Toxicity. Toxicol. Sci. 2010, 114, 162–182. [Google Scholar] [CrossRef] [Green Version]
- Jia, G.; Wang, H.; Yan, L.; Wang, X.; Pei, R.; Yan, T.; Zhao, Y.; Guo, X. Cytotoxicity of Carbon Nanomaterials: Single-Wall Nanotube, Multi-Wall Nanotube, and Fullerene. Environ. Sci. Technol. 2005, 39, 1378–1383. [Google Scholar] [CrossRef] [PubMed]
- Isakovic, A.; Markovic, Z.; Todorovic-Markovic, B.; Nikolic, N.; Vranjes-Djuric, S.; Mirkovic, M.; Dramicanin, M.; Harhaji, L.; Raicevic, N.; Nikolic, Z.; et al. Distinct Cytotoxic Mechanisms of Pristine versus Hydroxylated Fullerene. Toxicol. Sci. 2006, 91, 173–183. [Google Scholar] [CrossRef]
- Gharbi, N.; Pressac, M.; Hadchouel, M.; Szwarc, H.; Wilson, S.R.; Moussa, F. Fullerene Is a Powerful Antioxidant in Vivo with No Acute or Subacute Toxicity. Nano Lett. 2005, 5, 2578–2585. [Google Scholar] [CrossRef] [PubMed]
- Sayes, C.M.; Fortner, J.D.; Guo, W.; Lyon, D.; Boyd, A.M.; Ausman, K.D.; Tao, Y.J.; Sitharaman, B.; Wilson, L.J.; Hughes, J.B.; et al. The Differential Cytotoxicity of Water-Soluble Fullerenes. Nano Lett. 2004, 4, 1881–1887. [Google Scholar] [CrossRef]
- Sayes, C.M.; Gobin, A.M.; Ausman, K.D.; Mendez, J.; West, J.L.; Colvin, V.L. Nano-C60 Cytotoxicity Is due to Lipid Peroxidation. Biomaterials 2005, 26, 7587–7595. [Google Scholar] [CrossRef] [PubMed]
- Oberdörster, G.; Sharp, Z.; Atudorei, V.; Elder, A.; Gelein, R.; Kreyling, W.; Cox, C. Translocation of Inhaled Ultrafine Particles to the Brain. Inhal. Toxicol. 2004, 16, 437–445. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.; Oberdörster, E.; Haasch, M.L. Toxicity of an Engineered Nanoparticle (fullerene, C60) in Two Aquatic Species, Daphnia and Fathead Minnow. Mar. Environ. Res. 2006, 62, S5–S9. [Google Scholar] [CrossRef]
- Porter, A.E.; Gass, M.; Muller, K.; Skepper, J.N.; Midgley, P.; Welland, M. Visualizing the Uptake of C60 to the Cytoplasm and Nucleus of Human Monocyte-Derived Macrophage Cells Using Energy-Filtered Transmission Electron Microscopy and Electron Tomography. Environ. Sci. Technol. 2007, 41, 3012–3017. [Google Scholar] [CrossRef]
- Salonen, E.; Lin, S.; Reid, M.L.; Allegood, M.; Wang, X.; Rao, A.M.; Vattulainen, I.; Ke, P.C. Real-Time Translocation of Fullerene Reveals Cell Contraction. Small 2008, 4, 1986–1992. [Google Scholar] [CrossRef]
- Zupanc, J.; Drobne, D.; Drasler, B.; Valant, J.; Iglic, A.; Kralj-Iglic, V.; Makovec, D.; Rappolt, M.; Sartori, B.; Kogej, K. Experimental Evidence for the Interaction of C-60 Fullerene with Lipid Vesicle Membranes. Carbon N. Y. 2012, 50, 1170–1178. [Google Scholar] [CrossRef]
- Russ, K.A.; Elvati, P.; Parsonage, T.L.; Dews, A.; Jarvis, J.A.; Ray, M.; Schneider, B.; Smith, P.J.S.; Williamson, P.T.F.; Violi, A.; et al. C60 Fullerene Localization and Membrane Interactions in RAW 264.7 Immortalized Mouse Macrophages. Nanoscale 2016, 8, 4134–4144. [Google Scholar] [CrossRef] [Green Version]
- Nisoh, N.; Jarerattanachat, V.; Karttunen, M.; Wong-ekkabut, J. Formation of Aggregates, Icosahedral Structures and Percolation Clusters of Fullerenes in Lipids Bilayers: The Key Role of Lipid Saturation. Biochim. Biophys. Acta Biomembr. 2020, 1862, 183328. [Google Scholar] [CrossRef] [PubMed]
- Nalakarn, P.; Boonnoy, P.; Nisoh, N.; Karttunen, M.; Wong-Ekkabut, J. Dependence of Fullerene Aggregation on Lipid Saturation due to a Balance between Entropy and Enthalpy. Sci. Rep. 2019, 9, 1037. [Google Scholar] [CrossRef] [PubMed]
- Nisoh, N.; Karttunen, M.; Monticelli, L.; Wong-ekkabut, J. Lipid Monolayer Disruption Caused by Aggregated Carbon Nanoparticles. RSC Adv. 2015, 5, 11676–11685. [Google Scholar] [CrossRef]
- Gupta, R.; Rai, B. Molecular Dynamics Simulation Study of Translocation of Fullerene C60 through Skin Bilayer: Effect of Concentration on Barrier Properties. Nanoscale 2017, 9, 4114–4127. [Google Scholar] [CrossRef] [PubMed]
- Sastre, J.; Mannelli, I.; Reigada, R. Effects of Fullerene on Lipid Bilayers Displaying Different Liquid Ordering: A Coarse-Grained Molecular Dynamics Study. Biochim. Biophys. Acta Gen. Subj. 2017, 1861, 2872–2882. [Google Scholar] [CrossRef]
- Xie, L.-Q.; Liu, Y.-Z.; Xi, Z.-H.; Li, H.-Y.; Liang, S.; Zhu, K.-L. Computer Simulations of the Interaction of Fullerene Clusters with Lipid Membranes. Mol. Simul. 2017, 43, 1532–1538. [Google Scholar] [CrossRef]
- Wong-Ekkabut, J.; Baoukina, S.; Triampo, W.; Tang, I.-M.; Tieleman, D.P.; Monticelli, L. Computer Simulation Study of Fullerene Translocation through Lipid Membranes. Nat. Nanotechnol. 2008, 3, 363–368. [Google Scholar] [CrossRef]
- Chen, Y.; Bothun, G.D. Lipid-Assisted Formation and Dispersion of Aqueous and Bilayer-Embedded Nano-C60. Langmuir 2009, 25, 4875–4879. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.; Liang, D.; Contera, S. Effect of Intra-Membrane C60 Fullerenes on the Modulus of Elasticity and the Mechanical Resistance of Gel and Fluid Lipid Bilayers. Nanoscale 2015, 7, 17102–17108. [Google Scholar] [CrossRef]
- Liang, L.; Kang, Z.; Shen, J.-W. Translocation Mechanism of C60 and C60 Derivations across a Cell Membrane. J. Nanopart. Res. 2016, 18, 333. [Google Scholar] [CrossRef]
- van Meer, G.; Voelker, D.R.; Feigenson, G.W. Membrane Lipids: Where They Are and How They Behave. Nat. Rev. Mol. Cell Biol. 2008, 9, 112–124. [Google Scholar] [CrossRef] [PubMed]
- Lingwood, D.; Simons, K. Lipid Rafts as a Membrane-Organizing Principle. Science 2010, 327, 46–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ingólfsson, H.I.; Melo, M.N.; van Eerden, F.J.; Arnarez, C.; Lopez, C.A.; Wassenaar, T.A.; Periole, X.; de Vries, A.H.; Tieleman, D.P.; Marrink, S.J. Lipid Organization of the Plasma Membrane. J. Am. Chem. Soc. 2014, 136, 14554–14559. [Google Scholar] [CrossRef] [PubMed]
- Marrink, S.J.; Risselada, H.J.; Yefimov, S.; Tieleman, D.P.; de Vries, A.H. The MARTINI Force Field: Coarse Grained Model for Biomolecular Simulations. J. Phys. Chem. B 2007, 111, 7812–7824. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wassenaar, T.A.; Ingólfsson, H.I.; Böckmann, R.A.; Tieleman, D.P.; Marrink, S.J. Computational Lipidomics with Insane: A Versatile Tool for Generating Custom Membranes for Molecular Simulations. J. Chem. Theory Comput. 2015, 11, 2144–2155. [Google Scholar] [CrossRef]
- Monticelli, L. On Atomistic and Coarse-Grained Models for C60 Fullerene. J. Chem. Theory Comput. 2012, 8, 1370–1378. [Google Scholar] [CrossRef]
- Abraham, M.J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J.C.; Hess, B.; Lindahl, E. GROMACS: High Performance Molecular Simulations through Multi-Level Parallelism from Laptops to Supercomputers. SoftwareX 2015, 1-2, 19–25. [Google Scholar] [CrossRef] [Green Version]
- Parrinello, M.; Rahman, A. Polymorphic Transitions in Single Crystals: A New Molecular Dynamics Method. J. Appl. Phys. 1981, 52, 7182. [Google Scholar] [CrossRef]
- Bussi, G.; Donadio, D.; Parrinello, M. Canonical Sampling through Velocity Rescaling. J. Chem. Phys. 2007, 126, 014101. [Google Scholar] [CrossRef] [Green Version]
- de Jong, D.H.; Baoukina, S.; Ingólfsson, H.I.; Marrink, S.J. Martini Straight: Boosting Performance Using a Shorter Cutoff and GPUs. Comput. Phys. Commun. 2016, 199, 1–7. [Google Scholar] [CrossRef]
- Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual Molecular Dynamics. J. Mol. Graph. 1996, 14, 33–38. [Google Scholar] [CrossRef]
- Gowers, R.; Linke, M.; Barnoud, J.; Reddy, T.; Melo, M.; Seyler, S.; Domański, J.; Dotson, D.; Buchoux, S.; Kenney, I.; et al. MDAnalysis: A Python Package for the Rapid Analysis of Molecular Dynamics Simulations. In Proceedings of the 15th Python in Science Conference, Austin, TX, USA, 11–17 July 2016. [Google Scholar]
- Michaud-Agrawal, N.; Denning, E.J.; Woolf, T.B.; Beckstein, O. MDAnalysis: A Toolkit for the Analysis of Molecular Dynamics Simulations. J. Comput. Chem. 2011, 32, 2319–2327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, S.; Rosenberg, J.M.; Bouzida, D.; Swendsen, R.H.; Kollman, P.A. THE Weighted Histogram Analysis Method for Free-Energy Calculations on Biomolecules. I. The Method. J. Comput. Chem. 1992, 13, 1011–1021. [Google Scholar] [CrossRef]
- Hub, J.S.; de Groot, B.L.; van der Spoel, D. g_wham—A Free Weighted Histogram Analysis Implementation Including Robust Error and Autocorrelation Estimates. J. Chem. Theory Comput. 2010, 6, 3713–3720. [Google Scholar] [CrossRef] [Green Version]
- Zachowski, A. Phospholipids in Animal Eukaryotic Membranes: Transverse Asymmetry and Movement. Biochem. J. 1993, 294, 1–14. [Google Scholar] [CrossRef]
- Zhang, S.; Mu, Y.; Zhang, J.Z.H.; Xu, W. Effect of Self-Assembly of Fullerene Nano-Particles on Lipid Membrane. PLoS ONE 2013, 8, e77436. [Google Scholar] [CrossRef] [Green Version]
System | Concentration of Fullerene (%) | Plasma Membrane Structure | Aggregation |
---|---|---|---|
1 | 0% | Bilayer | - |
2 | Unbiased 5% | Undulation | Cluster |
3 | Unbiased 10% | Undulation | Cluster |
4 | Unbiased 20% | Membrane deformation | Cluster |
5 | Unbiased 30% | Membrane deformation | Cluster |
6 | Biased 5% | Undulation | Cluster |
7 | Biased 10% | Undulation | Cluster |
8 | Biased 19% | Undulation | Cluster |
9 | Biased 20% | Vesicle in membrane | Cluster |
10 | Biased 30% | Vesicle in membrane | Cluster |
Unbiased 5% | Biased 5% | Unbiased 10% | Biased 10% | ||||
---|---|---|---|---|---|---|---|
Top 5 Smallest | |||||||
DAPE DUPE PUPC DAPS DAPC | 0.005 0.021 0.024 0.024 0.028 | DAPE DUPE DAPC PUPC PUPS | 0.004 0.015 0.024 0.025 0.026 | DAPE PAPC PUPE DUPE PUPS | 0.010 0.023 0.030 0.037 0.039 | DAPE PAPC PUPE PUPS DUPE | 0.017 0.022 0.026 0.041 0.042 |
Top 5 Largest | |||||||
CHOL PIPC PIPX DPSM POPE | 0.406 0.183 0.174 0.158 0.143 | CHOL PIPX PIPC POPX POPC | 0.367 0.185 0.154 0.149 0.121 | CHOL POPX PIPC PIPX POPE | 0.350 0.150 0.144 0.123 0.117 | CHOL POPX DPSM PIPX PNSM | 0.308 0.138 0.127 0.117 0.110 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nisoh, N.; Jarerattanachat, V.; Karttunen, M.; Wong-ekkabut, J. Fullerenes’ Interactions with Plasma Membranes: Insight from the MD Simulations. Biomolecules 2022, 12, 639. https://doi.org/10.3390/biom12050639
Nisoh N, Jarerattanachat V, Karttunen M, Wong-ekkabut J. Fullerenes’ Interactions with Plasma Membranes: Insight from the MD Simulations. Biomolecules. 2022; 12(5):639. https://doi.org/10.3390/biom12050639
Chicago/Turabian StyleNisoh, Nililla, Viwan Jarerattanachat, Mikko Karttunen, and Jirasak Wong-ekkabut. 2022. "Fullerenes’ Interactions with Plasma Membranes: Insight from the MD Simulations" Biomolecules 12, no. 5: 639. https://doi.org/10.3390/biom12050639
APA StyleNisoh, N., Jarerattanachat, V., Karttunen, M., & Wong-ekkabut, J. (2022). Fullerenes’ Interactions with Plasma Membranes: Insight from the MD Simulations. Biomolecules, 12(5), 639. https://doi.org/10.3390/biom12050639