Lung Hyaluronasome: Involvement of Low Molecular Weight Ha (Lmw-Ha) in Innate Immunity
Abstract
:1. Introduction
2. Physiological Context and HMW-HA
2.1. HMW-HA Synthesis
2.2. Beneficial Roles of HMW-HA
2.3. Therapeutic Use of HMW-HA
3. Pathological Context and LMW-HA
3.1. HA Degradation
3.2. Overall Impact of LMW-HA
4. HMW-HA/LMW-HA Balance in the Lung
5. LMW-HA and Lung Innate Immunity
5.1. Neutrophils
5.2. Macrophages
5.3. Dendritic Cells (DCs)
5.4. Lung Epithelial Cells
6. LMW-HA Signaling Inhibition
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Toole, B.P. Hyaluronan in Morphogenesis. Semin. Cell Dev. Biol. 2001, 12, 79–87. [Google Scholar] [CrossRef] [PubMed]
- Richardson, C.; Plaas, A.; Block, J.A. Intra-Articular Hyaluronan Therapy for Symptomatic Knee Osteoarthritis. Rheum. Dis. Clin. N. Am. 2019, 45, 439–451. [Google Scholar] [CrossRef] [PubMed]
- Garantziotis, S.; Savani, R.C. Hyaluronan Biology: A Complex Balancing Act of Structure, Function, Location and Context. Matrix Biol. 2019, 78–79, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Teder, P.; Vandivier, R.W.; Jiang, D.; Liang, J.; Cohn, L.; Puré, E.; Henson, P.M.; Noble, P.W. Resolution of Lung Inflammation by CD44. Science 2002, 296, 155–158. [Google Scholar] [CrossRef]
- Stern, R. Devising a Pathway for Hyaluronan Catabolism: Are We There Yet? Glycobiology 2003, 13, 105R–115R. [Google Scholar] [CrossRef] [Green Version]
- Weigel, P.H.; Hascall, V.C.; Tammi, M. Hyaluronan Synthases. J. Biol. Chem. 1997, 272, 13997–14000. [Google Scholar] [CrossRef] [Green Version]
- Prehm, P. Hyaluronate Is Synthesized at Plasma Membranes. Biochem. J. 1984, 220, 597–600. [Google Scholar] [CrossRef]
- Menzel, E.J.; Farr, C. Hyaluronidase and Its Substrate Hyaluronan: Biochemistry, Biological Activities and Therapeutic Uses. Cancer Lett. 1998, 131, 3–11. [Google Scholar] [CrossRef]
- Giannotti, M.I.; Rinaudo, M.; Vancso, G.J. Force Spectroscopy of Hyaluronan by Atomic Force Microscopy: From Hydrogen-Bonded Networks toward Single-Chain Behavior. Biomacromolecules 2007, 8, 2648–2652. [Google Scholar] [CrossRef]
- Itano, N.; Sawai, T.; Yoshida, M.; Lenas, P.; Yamada, Y.; Imagawa, M.; Shinomura, T.; Hamaguchi, M.; Yoshida, Y.; Ohnuki, Y.; et al. Three Isoforms of Mammalian Hyaluronan Synthases Have Distinct Enzymatic Properties. J. Biol. Chem. 1999, 274, 25085–25092. [Google Scholar] [CrossRef] [Green Version]
- Yoneda, M.; Yamagata, M.; Suzuki, S.; Kimata, K. Hyaluronic Acid Modulates Proliferation of Mouse Dermal Fibroblasts in Culture. J. Cell Sci. 1988, 90, 265–273. [Google Scholar] [CrossRef] [PubMed]
- Jacobson, A.; Brinck, J.; Briskin, M.J.; Spicer, A.P.; Heldin, P. Expression of Human Hyaluronan Synthases in Response to External Stimuli. Biochem. J. 2000, 348, 29–35. [Google Scholar] [CrossRef] [PubMed]
- Skandalis, S.S.; Karalis, T.; Heldin, P. Intracellular Hyaluronan: Importance for Cellular Functions. Semin. Cancer Biol. 2020, 62, 20–30. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.Y.; Marcellin, E.; Hung, J.; Nielsen, L.K. Hyaluronan Molecular Weight Is Controlled by UDP-N-Acetylglucosamine Concentration in Streptococcus Zooepidemicus. J. Biol. Chem. 2009, 284, 18007–18014. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morrison, H.; Sherman, L.S.; Legg, J.; Banine, F.; Isacke, C.; Haipek, C.A.; Gutmann, D.H.; Ponta, H.; Herrlich, P. The NF2 Tumor Suppressor Gene Product, Merlin, Mediates Contact Inhibition of Growth through Interactions with CD44. Genes Dev. 2001, 15, 968–980. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singleton, P.A. Hyaluronan Regulation of Endothelial Barrier Function in Cancer. Adv. Cancer Res. 2014, 123, 191–209. [Google Scholar]
- Riehl, T.E.; Foster, L.; Stenson, W.F. Hyaluronic Acid Is Radioprotective in the Intestine through a TLR4 and COX-2-Mediated Mechanism. Am. J. Physiol. Gastrointest. Liver Physiol. 2012, 302, G309–G316. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.; Lee, Y.-S.; Hahn, J.-H.; Choe, J.; Kwon, H.J.; Ro, J.Y.; Jeoung, D. Hyaluronic Acid Targets CD44 and Inhibits FcepsilonRI Signaling Involving PKCdelta, Rac1, ROS, and MAPK to Exert Anti-Allergic Effect. Mol. Immunol. 2008, 45, 2537–2547. [Google Scholar] [CrossRef]
- Tian, X.; Azpurua, J.; Hine, C.; Vaidya, A.; Myakishev-Rempel, M.; Ablaeva, J.; Mao, Z.; Nevo, E.; Gorbunova, V.; Seluanov, A. High-Molecular-Mass Hyaluronan Mediates the Cancer Resistance of the Naked Mole Rat. Nature 2013, 499, 346–349. [Google Scholar] [CrossRef] [Green Version]
- Takeda, K.; Sakai, N.; Shiba, H.; Nagahara, T.; Fujita, T.; Kajiya, M.; Iwata, T.; Matsuda, S.; Kawahara, K.; Kawaguchi, H.; et al. Characteristics of High-Molecular-Weight Hyaluronic Acid as a Brain-Derived Neurotrophic Factor Scaffold in Periodontal Tissue Regeneration. Tissue Eng. Part A 2011, 17, 955–967. [Google Scholar] [CrossRef]
- Chen, M.; Li, L.; Wang, Z.; Li, P.; Feng, F.; Zheng, X. High Molecular Weight Hyaluronic Acid Regulates, P. Gingivalis-Induced Inflammation and Migration in Human Gingival Fibroblasts via MAPK and NF-ΚB Signaling Pathway. Arch. Oral Biol. 2019, 98, 75–80. [Google Scholar] [CrossRef] [PubMed]
- Knudson, C.B. Hyaluronan Receptor-Directed Assembly of Chondrocyte Pericellular Matrix. J. Cell Biol. 1993, 120, 825–834. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nishida, Y.; Knudson, C.B.; Nietfeld, J.J.; Margulis, A.; Knudson, W. Antisense Inhibition of Hyaluronan Synthase-2 in Human Articular Chondrocytes Inhibits Proteoglycan Retention and Matrix Assembly. J. Biol. Chem. 1999, 274, 21893–21899. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hashizume, M.; Mihara, M. High Molecular Weight Hyaluronic Acid Inhibits IL-6-Induced MMP Production from Human Chondrocytes by up-Regulating the ERK Inhibitor, MKP-1. Biochem. Biophys. Res. Commun. 2010, 403, 184–189. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Balaji, S.; Steen, E.H.; Blum, A.J.; Li, H.; Chan, C.K.; Manson, S.R.; Lu, T.C.; Rae, M.M.; Austin, P.F.; et al. High-Molecular Weight Hyaluronan Attenuates Tubulointerstitial Scarring in Kidney Injury. JCI Insight 2020, 5, 136345. [Google Scholar] [CrossRef]
- Jou, I.-M.; Wu, T.-T.; Hsu, C.-C.; Yang, C.-C.; Huang, J.-S.; Tu, Y.-K.; Lee, J.-S.; Su, F.-C.; Kuo, Y.-L. High Molecular Weight Form of Hyaluronic Acid Reduces Neuroinflammatory Response in Injured Sciatic Nerve via the Intracellular Domain of CD44. J. Biomed. Mater. Res. B Appl. Biomater. 2021, 109, 673–680. [Google Scholar] [CrossRef]
- Torretta, S.; Marchisio, P.; Rinaldi, V.; Carioli, D.; Nazzari, E.; Pignataro, L. Endoscopic and Clinical Benefits of Hyaluronic Acid in Children with Chronic Adenoiditis and Middle Ear Disease. Eur. Arch. Otorhinolaryngol. 2017, 274, 1423–1429. [Google Scholar] [CrossRef]
- Wang, C.-T.; Lin, Y.-T.; Chiang, B.-L.; Lin, Y.-H.; Hou, S.-M. High Molecular Weight Hyaluronic Acid Down-Regulates the Gene Expression of Osteoarthritis-Associated Cytokines and Enzymes in Fibroblast-like Synoviocytes from Patients with Early Osteoarthritis. Osteoarthr. Cartil. 2006, 14, 1237–1247. [Google Scholar] [CrossRef] [Green Version]
- Xu, C.; Shi, Q.; Zhang, L.; Zhao, H. High Molecular Weight Hyaluronan Attenuates Fine Particulate Matter-Induced Acute Lung Injury through Inhibition of ROS-ASK1-P38/JNK-Mediated Epithelial Apoptosis. Environ. Toxicol. Pharmacol. 2018, 59, 190–198. [Google Scholar] [CrossRef]
- Shi, Q.; Zhao, L.; Xu, C.; Zhang, L.; Zhao, H. High Molecular Weight Hyaluronan Suppresses Macrophage M1 Polarization and Enhances IL-10 Production in PM2.5-Induced Lung Inflammation. Molecules 2019, 24, 1766. [Google Scholar] [CrossRef] [Green Version]
- Yasuda, T. Hyaluronan Inhibits Prostaglandin E2 Production via CD44 in U937 Human Macrophages. Tohoku J. Exp. Med. 2010, 220, 229–235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Šafránková, B.; Hermannová, M.; Nešporová, K.; Velebný, V.; Kubala, L. Absence of Differences among Low, Middle, and High Molecular Weight Hyaluronan in Activating Murine Immune Cells In Vitro. Int. J. Biol. Macromol. 2018, 107, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Galdi, F.; Pedone, C.; McGee, C.A.; George, M.; Rice, A.B.; Hussain, S.S.; Vijaykumar, K.; Boitet, E.R.; Tearney, G.J.; McGrath, J.A.; et al. Inhaled High Molecular Weight Hyaluronan Ameliorates Respiratory Failure in Acute COPD Exacerbation: A Pilot Study. Respir. Res. 2021, 22, 30. [Google Scholar] [CrossRef] [PubMed]
- Jiang, D.; Liang, J.; Noble, P.W. Hyaluronan in Tissue Injury and Repair. Ann. Rev. Cell Dev. Biol. 2007, 23, 435–461. [Google Scholar] [CrossRef] [Green Version]
- Bourguignon, L.Y.W.; Ramez, M.; Gilad, E.; Singleton, P.A.; Man, M.-Q.; Crumrine, D.A.; Elias, P.M.; Feingold, K.R. Hyaluronan-CD44 Interaction Stimulates Keratinocyte Differentiation, Lamellar Body Formation/Secretion, and Permeability Barrier Homeostasis. J. Investig. Dermatol. 2006, 126, 1356–1365. [Google Scholar] [CrossRef] [Green Version]
- Maytin, E.V.; Chung, H.H.; Seetharaman, V.M. Hyaluronan Participates in the Epidermal Response to Disruption of the Permeability Barrier in Vivo. Am. J. Pathol. 2004, 165, 1331–1341. [Google Scholar] [CrossRef] [Green Version]
- Graça, M.F.P.; Miguel, S.P.; Cabral, C.S.D.; Correia, I.J. Hyaluronic Acid-Based Wound Dressings: A Review. Carbohydr. Polym. 2020, 241, 116364. [Google Scholar] [CrossRef]
- Tamer, T.M. Hyaluronan and Synovial Joint: Function, Distribution and Healing. Interdiscip. Toxicol. 2013, 6, 111–125. [Google Scholar] [CrossRef]
- Dicker, K.T.; Gurski, L.A.; Pradhan-Bhatt, S.; Witt, R.L.; Farach-Carson, M.C.; Jia, X. Hyaluronan: A Simple Polysaccharide with Diverse Biological Functions. Acta Biomater. 2014, 10, 1558–1570. [Google Scholar] [CrossRef] [Green Version]
- Wohlrab, J.; Wohlrab, D.; Neubert, R.H.H. Comparison of Noncross-Linked and Cross-Linked Hyaluronic Acid with Regard to Efficacy of the Proliferative Activity of Cutaneous Fibroblasts and Keratinocytes in Vitro. J. Cosmet. Dermatol. 2013, 12, 36–40. [Google Scholar] [CrossRef]
- Duran-Reynals, F. The effect of extracts of certain organs from normal and immunized animals on the infecting power of vaccine virus. J. Exp. Med. 1929, 50, 327–340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stern, R.; Asari, A.A.; Sugahara, K.N. Hyaluronan Fragments: An Information-Rich System. Eur. J. Cell Biol. 2006, 85, 699–715. [Google Scholar] [CrossRef] [PubMed]
- Afify, A.M.; Stern, M.; Guntenhöner, M.; Stern, R. Purification and Characterization of Human Serum Hyaluronidase. Arch. Biochem. Biophys. 1993, 305, 434–441. [Google Scholar] [CrossRef] [PubMed]
- Frost, G.I.; Csóka, A.B.; Wong, T.; Stern, R.; Csóka, T.B. Purification, Cloning, and Expression of Human Plasma Hyaluronidase. Biochem. Biophys. Res. Commun. 1997, 236, 10–15. [Google Scholar] [CrossRef] [PubMed]
- Lepperdinger, G.; Strobl, B.; Kreil, G. HYAL2, a Human Gene Expressed in Many Cells, Encodes a Lysosomal Hyaluronidase with a Novel Type of Specificity. J. Biol. Chem. 1998, 273, 22466–22470. [Google Scholar] [CrossRef] [Green Version]
- Strobl, B.; Wechselberger, C.; Beier, D.R.; Lepperdinger, G. Structural Organization and Chromosomal Localization of Hyal2, a Gene Encoding a Lysosomal Hyaluronidase. Genomics 1998, 53, 214–219. [Google Scholar] [CrossRef]
- Lin, Y.; Kimmel, L.H.; Myles, D.G.; Primakoff, P. Molecular Cloning of the Human and Monkey Sperm Surface Protein PH-20. Proc. Natl. Acad. Sci. USA 1993, 90, 10071–10075. [Google Scholar] [CrossRef] [Green Version]
- Kaneiwa, T.; Mizumoto, S.; Sugahara, K.; Yamada, S. Identification of Human Hyaluronidase-4 as a Novel Chondroitin Sulfate Hydrolase That Preferentially Cleaves the Galactosaminidic Linkage in the Trisulfated Tetrasaccharide Sequence. Glycobiology 2010, 20, 300–309. [Google Scholar] [CrossRef]
- Monzón, M.E.; Manzanares, D.; Schmid, N.; Casalino-Matsuda, S.M.; Forteza, R.M. Hyaluronidase Expression and Activity Is Regulated by Pro-Inflammatory Cytokines in Human Airway Epithelial Cells. Am. J. Respir. Cell Mol. Biol. 2008, 39, 289–295. [Google Scholar] [CrossRef] [Green Version]
- Nikitovic, D.; Berdiaki, A.; Galbiati, V.; Kavasi, R.-M.; Papale, A.; Tsatsakis, A.; Tzanakakis, G.N.; Corsini, E. Hyaluronan Regulates Chemical Allergen-Induced IL-18 Production in Human Keratinocytes. Toxicol. Lett. 2015, 232, 89–97. [Google Scholar] [CrossRef]
- Bourguignon, L.Y.W.; Singleton, P.A.; Diedrich, F.; Stern, R.; Gilad, E. CD44 Interaction with Na+-H+ Exchanger (NHE1) Creates Acidic Microenvironments Leading to Hyaluronidase-2 and Cathepsin B Activation and Breast Tumor Cell Invasion. J. Biol. Chem. 2004, 279, 26991–27007. [Google Scholar] [CrossRef] [PubMed]
- Stern, R. Hyaluronan Catabolism: A New Metabolic Pathway. Eur. J. Cell Biol. 2004, 83, 317–325. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, H.; Nagaoka, A.; Kusaka-Kikushima, A.; Tobiishi, M.; Kawabata, K.; Sayo, T.; Sakai, S.; Sugiyama, Y.; Enomoto, H.; Okada, Y.; et al. KIAA.A1199, a Deafness Gene of Unknown Function, Is a New Hyaluronan Binding Protein Involved in Hyaluronan Depolymerization. Proc. Natl. Acad. Sci. USA 2013, 110, 5612–5617. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Vega, S.; Yoshida, H.; Okada, Y. Expression and Characterization of Hyaluronan-Binding Protein Involved in Hyaluronan Depolymerization: HYBID, Alias KIAA1199 and CEMIP. Methods Mol. Biol. 2020, 2132, 129–138. [Google Scholar] [CrossRef]
- Yoshida, H.; Aoki, M.; Komiya, A.; Endo, Y.; Kawabata, K.; Nakamura, T.; Sakai, S.; Sayo, T.; Okada, Y.; Takahashi, Y. HYBID (Alias KIAA1199/CEMIP) and Hyaluronan Synthase Coordinately Regulate Hyaluronan Metabolism in Histamine-Stimulated Skin Fibroblasts. J. Biol. Chem. 2020, 295, 2483–2494. [Google Scholar] [CrossRef]
- Soltés, L.; Mendichi, R.; Kogan, G.; Schiller, J.; Stankovska, M.; Arnhold, J. Degradative Action of Reactive Oxygen Species on Hyaluronan. Biomacromolecules 2006, 7, 659–668. [Google Scholar] [CrossRef]
- Chen, H.; Qin, J.; Hu, Y. Efficient Degradation of High-Molecular-Weight Hyaluronic Acid by a Combination of Ultrasound, Hydrogen Peroxide, and Copper Ion. Molecules 2019, 24, 617. [Google Scholar] [CrossRef] [Green Version]
- Konno, K.; Arai, H.; Motomiya, M.; Nagai, H.; Ito, M.; Sato, H.; Satoh, K. A Biochemical Study on Glycosaminoglycans (Mucopolysaccharides) in Emphysematous and in Aged Lungs. Am. Rev. Respir Dis. 1982, 126, 797–801. [Google Scholar] [CrossRef]
- Vignola, A.M.; Chanez, P.; Campbell, A.M.; Souques, F.; Lebel, B.; Enander, I.; Bousquet, J. Airway Inflammation in Mild Intermittent and in Persistent Asthma. Am. J. Respir. Crit. Care Med. 1998, 157, 403–409. [Google Scholar] [CrossRef]
- Scheibner, K.A.; Lutz, M.A.; Boodoo, S.; Fenton, M.J.; Powell, J.D.; Horton, M.R. Hyaluronan Fragments Act as an Endogenous Danger Signal by Engaging TLR2. J. Immunol. 2006, 177, 1272–1281. [Google Scholar] [CrossRef] [Green Version]
- Taylor, K.R.; Yamasaki, K.; Radek, K.A.; Di Nardo, A.; Goodarzi, H.; Golenbock, D.; Beutler, B.; Gallo, R.L. Recognition of Hyaluronan Released in Sterile Injury Involves a Unique Receptor Complex Dependent on Toll-like Receptor 4, CD44, and MD-2. J. Biol. Chem. 2007, 282, 18265–18275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Płóciennikowska, A.; Hromada-Judycka, A.; Borzęcka, K.; Kwiatkowska, K. Co-Operation of TLR4 and Raft Proteins in LPS-Induced pro-Inflammatory Signaling. Cell Mol. Life Sci. 2015, 72, 557–581. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Campo, G.M.; Avenoso, A.; Campo, S.; D’Ascola, A.; Nastasi, G.; Calatroni, A. Molecular Size Hyaluronan Differently Modulates Toll-like Receptor-4 in LPS-Induced Inflammation in Mouse Chondrocytes. Biochimie 2010, 92, 204–215. [Google Scholar] [CrossRef] [PubMed]
- Campo, G.M.; Avenoso, A.; D’Ascola, A.; Prestipino, V.; Scuruchi, M.; Nastasi, G.; Calatroni, A.; Campo, S. Inhibition of Hyaluronan Synthesis Reduced Inflammatory Response in Mouse Synovial Fibroblasts Subjected to Collagen-Induced Arthritis. Arch. Biochem. Biophys. 2012, 518, 42–52. [Google Scholar] [CrossRef] [PubMed]
- Gariboldi, S.; Palazzo, M.; Zanobbio, L.; Selleri, S.; Sommariva, M.; Sfondrini, L.; Cavicchini, S.; Balsari, A.; Rumio, C. Low Molecular Weight Hyaluronic Acid Increases the Self-Defense of Skin Epithelium by Induction of Beta-Defensin 2 via TLR2 and TLR4. J. Immunol. 2008, 181, 2103–2110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stern, R.; Jedrzejas, M.J. Hyaluronidases: Their Genomics, Structures, and Mechanisms of Action. Chem Rev. 2006, 106, 818–839. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Østerholt, H.C.D.; Dannevig, I.; Wyckoff, M.H.; Liao, J.; Akgul, Y.; Ramgopal, M.; Mija, D.S.; Cheong, N.; Longoria, C.; Mahendroo, M.; et al. Antioxidant Protects against Increases in Low Molecular Weight Hyaluronan and Inflammation in Asphyxiated Newborn Pigs Resuscitated with 100% Oxygen. PLoS ONE 2012, 7, e38839. [Google Scholar] [CrossRef] [Green Version]
- Mascarenhas, M.M.; Day, R.M.; Ochoa, C.D.; Choi, W.-I.; Yu, L.; Ouyang, B.; Garg, H.G.; Hales, C.A.; Quinn, D.A. Low Molecular Weight Hyaluronan from Stretched Lung Enhances Interleukin-8 Expression. Am. J. Respir. Cell Mol. Biol. 2004, 30, 51–60. [Google Scholar] [CrossRef] [Green Version]
- Nettelbladt, O.; Bergh, J.; Schenholm, M.; Tengblad, A.; Hällgren, R. Accumulation of Hyaluronic Acid in the Alveolar Interstitial Tissue in Bleomycin-Induced Alveolitis. Am. Rev. Respir. Dis. 1989, 139, 759–762. [Google Scholar] [CrossRef]
- Nettelbladt, O.; Tengblad, A.; Hällgren, R. Lung Accumulation of Hyaluronan Parallels Pulmonary Edema in Experimental Alveolitis. Am. J. Physiol. 1989, 257, L379–L384. [Google Scholar] [CrossRef]
- Nettelbladt, O.; Lundberg, K.; Tengblad, A.; Hällgren, R. Accumulation of Hyaluronan in Bronchoalveolar Lavage Fluid Is Independent of Iron-, Complement- and Granulocyte-Depletion in Bleomycin-Induced Alveolitis in the Rat. Eur. Respir. J. 1990, 3, 765–771. [Google Scholar] [PubMed]
- Zhong, X.; Bai, J.; Shi, H.; Wu, C.; Liang, G.; Feng, Z. An experimental study on airway inflammation and remodeling in a rat model of chronic bronchitis and emphysema. Zhonghua Jie He He Hu Xi Za Zhi 2003, 26, 750–755. [Google Scholar] [PubMed]
- Dentener, M.A.; Vernooy, J.H.J.; Hendriks, S.; Wouters, E.F.M. Enhanced Levels of Hyaluronan in Lungs of Patients with COPD: Relationship with Lung Function and Local Inflammation. Thorax 2005, 60, 114–119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McKee, C.M.; Penno, M.B.; Cowman, M.; Burdick, M.D.; Strieter, R.M.; Bao, C.; Noble, P.W. Hyaluronan (HA) Fragments Induce Chemokine Gene Expression in Alveolar Macrophages. The Role of HA Size and CD44. J. Clin. Investig. 1996, 98, 2403–2413. [Google Scholar] [CrossRef] [Green Version]
- Adam, D.; Perotin, J.-M.; Lebargy, F.; Birembaut, P.; Deslée, G.; Coraux, C. Regeneration of airway epithelium. Rev. Mal. Respir. 2014, 31, 300–311. [Google Scholar] [CrossRef] [Green Version]
- Cantor, J.O.; Shteyngart, B.; Cerreta, J.M.; Liu, M.; Armand, G.; Turino, G.M. The Effect of Hyaluronan on Elastic Fiber Injury in Vitro and Elastase-Induced Airspace Enlargement in Vivo. Proc. Soc. Exp. Biol. Med. 2000, 225, 65–71. [Google Scholar] [CrossRef] [PubMed]
- Cantor, J.O.; Cerreta, J.M.; Armand, G.; Osman, M.; Turino, G.M. The Pulmonary Matrix, Glycosaminoglycans and Pulmonary Emphysema. Connect. Tissue Res. 1999, 40, 97–104. [Google Scholar] [CrossRef]
- Zhao, H.; Ma, Y.; Zhang, L. Low-Molecular-Mass Hyaluronan Induces Pulmonary Inflammation by up-Regulation of Mcl-1 to Inhibit Neutrophil Apoptosis via PI3K/Akt1 Pathway. Immunology 2018, 155, 387–395. [Google Scholar] [CrossRef] [Green Version]
- Horton, M.R.; Burdick, M.D.; Strieter, R.M.; Bao, C.; Noble, P.W. Regulation of Hyaluronan-Induced Chemokine Gene Expression by IL-10 and IFN-Gamma in Mouse Macrophages. J. Immunol. 1998, 160, 3023–3030. [Google Scholar]
- Jiang, D.; Liang, J.; Li, Y.; Noble, P.W. The Role of Toll-like Receptors in Non-Infectious Lung Injury. Cell Res. 2006, 16, 693–701. [Google Scholar] [CrossRef]
- Rayahin, J.E.; Buhrman, J.S.; Zhang, Y.; Koh, T.J.; Gemeinhart, R.A. High and Low Molecular Weight Hyaluronic Acid Differentially Influence Macrophage Activation. ACS Biomater. Sci. Eng. 2015, 1, 481–493. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, D.; Liang, J.; Fan, J.; Yu, S.; Chen, S.; Luo, Y.; Prestwich, G.D.; Mascarenhas, M.M.; Garg, H.G.; Quinn, D.A.; et al. Regulation of Lung Injury and Repair by Toll-like Receptors and Hyaluronan. Nat. Med. 2005, 11, 1173–1179. [Google Scholar] [CrossRef] [PubMed]
- Horton, M.R.; Olman, M.A.; Noble, P.W. Hyaluronan Fragments Induce Plasminogen Activator Inhibitor-1 and Inhibit Urokinase Activity in Mouse Alveolar Macrophages: A Potential Mechanism for Impaired Fibrinolytic Activity in Acute Lung Injury. Chest 1999, 116, 17S. [Google Scholar] [CrossRef]
- Noble, P.W.; McKee, C.M.; Cowman, M.; Shin, H.S. Hyaluronan Fragments Activate an NF-Kappa B/I-Kappa B Alpha Autoregulatory Loop in Murine Macrophages. J. Exp. Med. 1996, 183, 2373–2378. [Google Scholar] [CrossRef] [Green Version]
- Yamawaki, H.; Hirohata, S.; Miyoshi, T.; Takahashi, K.; Ogawa, H.; Shinohata, R.; Demircan, K.; Kusachi, S.; Yamamoto, K.; Ninomiya, Y. Hyaluronan Receptors Involved in Cytokine Induction in Monocytes. Glycobiology 2009, 19, 83–92. [Google Scholar] [CrossRef]
- Black, K.E.; Collins, S.L.; Hagan, R.S.; Hamblin, M.J.; Chan-Li, Y.; Hallowell, R.W.; Powell, J.D.; Horton, M.R. Hyaluronan Fragments Induce IFNβ via a Novel TLR4-TRIF-TBK1-IRF3-Dependent Pathway. J. Inflamm. 2013, 10, 23. [Google Scholar] [CrossRef] [Green Version]
- Sokolowska, M.; Chen, L.-Y.; Eberlein, M.; Martinez-Anton, A.; Liu, Y.; Alsaaty, S.; Qi, H.-Y.; Logun, C.; Horton, M.; Shelhamer, J.H. Low Molecular Weight Hyaluronan Activates Cytosolic Phospholipase A2α and Eicosanoid Production in Monocytes and Macrophages. J. Biol. Chem. 2014, 289, 4470–4488. [Google Scholar] [CrossRef] [Green Version]
- McKee, C.M.; Lowenstein, C.J.; Horton, M.R.; Wu, J.; Bao, C.; Chin, B.Y.; Choi, A.M.; Noble, P.W. Hyaluronan Fragments Induce Nitric-Oxide Synthase in Murine Macrophages through a Nuclear Factor KappaB-Dependent Mechanism. J. Biol. Chem. 1997, 272, 8013–8018. [Google Scholar] [CrossRef] [Green Version]
- Horton, M.R.; Shapiro, S.; Bao, C.; Lowenstein, C.J.; Noble, P.W. Induction and Regulation of Macrophage Metalloelastase by Hyaluronan Fragments in Mouse Macrophages. J. Immunol. 1999, 162, 4171–4176. [Google Scholar]
- Hodge-Dufour, J.; Noble, P.W.; Horton, M.R.; Bao, C.; Wysoka, M.; Burdick, M.D.; Strieter, R.M.; Trinchieri, G.; Puré, E. Induction of IL-12 and Chemokines by Hyaluronan Requires Adhesion-Dependent Priming of Resident but Not Elicited Macrophages. J. Immunol. 1997, 159, 2492–2500. [Google Scholar]
- Termeer, C.C.; Hennies, J.; Voith, U.; Ahrens, T.; Weiss, J.M.; Prehm, P.; Simon, J.C. Oligosaccharides of Hyaluronan Are Potent Activators of Dendritic Cells. J. Immunol. 2000, 165, 1863–1870. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Termeer, C.; Benedix, F.; Sleeman, J.; Fieber, C.; Voith, U.; Ahrens, T.; Miyake, K.; Freudenberg, M.; Galanos, C.; Simon, J.C. Oligosaccharides of Hyaluronan Activate Dendritic Cells via Toll-like Receptor 4. J. Exp. Med. 2002, 195, 99–111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boodoo, S.; Spannhake, E.W.; Powell, J.D.; Horton, M.R. Differential Regulation of Hyaluronan-Induced IL-8 and IP-10 in Airway Epithelial Cells. Am. J. Physiol. Lung Cell Mol. Physiol. 2006, 291, L479–L486. [Google Scholar] [CrossRef] [PubMed]
- Ochoa, C.; Garg, H.; Hales, C.; Quinn, D. Low Molecular Weight Hyaluronan, via AP-1 and NF-ΚB Signalling, Induces IL-8 in Transformed Bronchial Epithelial Cells. Swiss Med. Wkly. 2011, 141. [Google Scholar] [CrossRef]
- Cassatella, M.A. Neutrophil-Derived Proteins: Selling Cytokines by the Pound. Adv. Immunol. 1999, 73, s0065–s2776. [Google Scholar]
- Jaillon, S.; Galdiero, M.R.; Del Prete, D.; Cassatella, M.A.; Garlanda, C.; Mantovani, A. Neutrophils in Innate and Adaptive Immunity. Semin. Immunopathol. 2013, 35, 377–394. [Google Scholar] [CrossRef]
- Leonard, E.J.; Yoshimura, T. Neutrophil Attractant/Activation Protein-1 (NAP-1 [Interleukin-8]). Am. J. Respir. Cell Mol. Biol. 1990, 2, 479–486. [Google Scholar] [CrossRef]
- Kunkel, S.L.; Standiford, T.; Kasahara, K.; Strieter, R.M. Interleukin-8 (IL-8): The Major Neutrophil Chemotactic Factor in the Lung. Exp. Lung Res. 1991, 17, 17–23. [Google Scholar] [CrossRef]
- Riise, G.C.; Ahlstedt, S.; Larsson, S.; Enander, I.; Jones, I.; Larsson, P.; Andersson, B. Bronchial Inflammation in Chronic Bronchitis Assessed by Measurement of Cell Products in Bronchial Lavage Fluid. Thorax 1995, 50, 360–365. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Teder, P.; Judd, N.P.; Noble, P.W.; Doerschuk, C.M. CD44 Deficiency Leads to Enhanced Neutrophil Migration and Lung Injury in Escherichia Coli Pneumonia in Mice. Am. J. Pathol. 2002, 161, 2219–2228. [Google Scholar] [CrossRef] [Green Version]
- Di Stefano, A.; Caramori, G.; Gnemmi, I.; Contoli, M.; Bristot, L.; Capelli, A.; Ricciardolo, F.L.M.; Magno, F.; D’Anna, S.E.; Zanini, A.; et al. Association of Increased CCL5 and CXCL7 Chemokine Expression with Neutrophil Activation in Severe Stable COPD. Thorax 2009, 64, 968–975. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Korkmaz, B.; Hajjar, E.; Kalupov, T.; Reuter, N.; Brillard-Bourdet, M.; Moreau, T.; Juliano, L.; Gauthier, F. Influence of Charge Distribution at the Active Site Surface on the Substrate Specificity of Human Neutrophil Protease 3 and Elastase. A Kinetic and Molecular Modeling Analysis. J. Biol. Chem. 2007, 282, 1989–1997. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hajjar, E.; Korkmaz, B.; Reuter, N. Differences in the Substrate Binding Sites of Murine and Human Proteinase 3 and Neutrophil Elastase. FEBS Lett. 2007, 581, 5685–5690. [Google Scholar] [CrossRef] [Green Version]
- Scott, J.P.; Holt, D.W.; Wallwork, J. Neutrophil Elastase and Obliterative Bronchiolitis. Transpl. Int. 1994, 7, S402–S403. [Google Scholar] [CrossRef]
- Tornling, G.; Eklund, A.; Engström-Laurent, A.; Hällgren, R.; Unge, G.; Westman, B. Hyaluronic Acid in Bronchoalveolar Lavage in Rats Exposed to Quartz. Br. J. Ind. Med. 1987, 44, 443–445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Finlay, G.A.; O’Donnell, M.D.; O’Connor, C.M.; Hayes, J.P.; FitzGerald, M.X. Elastin and Collagen Remodeling in Emphysema. A Scanning Electron Microscopy Study. Am. J. Pathol. 1996, 149, 1405–1415. [Google Scholar]
- Scuri, M.; Abraham, W.M. Hyaluronan Blocks Human Neutrophil Elastase (HNE)-Induced Airway Responses in Sheep. Pulm. Pharmacol. Ther. 2003, 16, 335–340. [Google Scholar] [CrossRef]
- Cantor, J.O.; Cerreta, J.M.; Armand, G.; Turino, G.M. Further Investigation of the Use of Intratracheally Administered Hyaluronic Acid to Ameliorate Elastase-Induced Emphysema. Exp. Lung Res. 1997, 23, 229–244. [Google Scholar] [CrossRef]
- Cantor, J.O. Potential Therapeutic Applications of Hyaluronan in the Lung. Int. J. Chron. Obstruct. Pulmon. Dis. 2007, 2, 283–288. [Google Scholar]
- Liang, J.; Jiang, D.; Jung, Y.; Xie, T.; Ingram, J.; Church, T.; Degan, S.; Leonard, M.; Kraft, M.; Noble, P.W. Role of Hyaluronan and Hyaluronan-Binding Proteins in Human Asthma. J. Allergy Clin. Immunol. 2011, 128, 403–411. [Google Scholar] [CrossRef] [Green Version]
- Noble, P.W.; Lake, F.R.; Henson, P.M.; Riches, D.W. Hyaluronate Activation of CD44 Induces Insulin-like Growth Factor-1 Expression by a Tumor Necrosis Factor-Alpha-Dependent Mechanism in Murine Macrophages. J. Clin. Investig. 1993, 91, 2368–2377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lagente, V.; Le Quement, C.; Boichot, E. Macrophage Metalloelastase (MMP-12) as a Target for Inflammatory Respiratory Diseases. Expert Opin. Ther. Targets 2009, 13, 287–295. [Google Scholar] [CrossRef] [PubMed]
- Pandey, M.S.; Harris, E.N.; Weigel, J.A.; Weigel, P.H. The Cytoplasmic Domain of the Hyaluronan Receptor for Endocytosis (HARE) Contains Multiple Endocytic Motifs Targeting Coated Pit-Mediated Internalization. J. Biol. Chem. 2008, 283, 21453–21461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pandey, M.S.; Harris, E.N.; Weigel, P.H. HARE-Mediated Endocytosis of Hyaluronan and Heparin Is Targeted by Different Subsets of Three Endocytic Motifs. Int. J. Cell Biol. 2015, 2015, 524707. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pandey, M.S.; Miller, C.M.; Harris, E.N.; Weigel, P.H. Activation of ERK and NF-ΚB during HARE-Mediated Heparin Uptake Require Only One of the Four Endocytic Motifs. PLoS ONE 2016, 11, e0154124. [Google Scholar] [CrossRef] [Green Version]
- Pandey, M.S.; Baggenstoss, B.A.; Washburn, J.; Harris, E.N.; Weigel, P.H. The Hyaluronan Receptor for Endocytosis (HARE) Activates NF-ΚB-Mediated Gene Expression in Response to 40-400-KDa, but Not Smaller or Larger, Hyaluronans. J. Biol. Chem. 2013, 288, 14068–14079. [Google Scholar] [CrossRef] [Green Version]
- Arbour, N.C.; Lorenz, E.; Schutte, B.C.; Zabner, J.; Kline, J.N.; Jones, M.; Frees, K.; Watt, J.L.; Schwartz, D.A. TLR4 Mutations Are Associated with Endotoxin Hyporesponsiveness in Humans. Nat. Genet. 2000, 25, 187–191. [Google Scholar] [CrossRef]
- Puchelle, E.; Gautry, P.; Brocard, O.; Bordigoni, P.; Olive, D. [Rheologic anomalies of bronchial secretion and mucociliary function in children with cystic fibrosis]. Arch. Fr. Pediatr. 1979, 36, 959–960. [Google Scholar]
- Rogers, D.F. Mucus Pathophysiology in COPD: Differences to Asthma, and Pharmacotherapy. Monaldi Arch. Chest Dis. 2000, 55, 324–332. [Google Scholar]
- Puchelle, E.; Bajolet, O.; Abély, M. Airway Mucus in Cystic Fibrosis. Paediatr. Respir. Rev. 2002, 3, 115–119. [Google Scholar] [CrossRef]
- Casalino-Matsuda, S.M.; Monzon, M.E.; Day, A.J.; Forteza, R.M. Hyaluronan Fragments/CD44 Mediate Oxidative Stress-Induced MUC5B up-Regulation in Airway Epithelium. Am. J. Respir. Cell Mol. Biol. 2009, 40, 277–285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lieb, T.; Forteza, R.; Salathe, M. Hyaluronic Acid in Cultured Ovine Tracheal Cells and Its Effect on Ciliary Beat Frequency in Vitro. J. Aerosol. Med. 2000, 13, 231–237. [Google Scholar] [CrossRef] [PubMed]
- Zahm, J.-M.; Milliot, M.; Breesin, A.; Coraux, C.; Birembaut, P. The Effect of Hyaluronan on Airway Mucus Transport and Airway Epithelial Barrier Integrity: Potential Application to the Cytoprotection of Airway Tissue. Matrix Biol. 2011, 30, 389–395. [Google Scholar] [CrossRef] [PubMed]
- Forteza, R.; Lieb, T.; Aoki, T.; Savani, R.C.; Conner, G.E.; Salathe, M. Hyaluronan Serves a Novel Role in Airway Mucosal Host Defense. FASEB J. 2001, 15, 2179–2186. [Google Scholar] [CrossRef]
- Manzanares, D.; Monzon, M.-E.; Savani, R.C.; Salathe, M. Apical Oxidative Hyaluronan Degradation Stimulates Airway Ciliary Beating via RHAMM and RON. Am. J. Respir Cell Mol. Biol. 2007, 37, 160–168. [Google Scholar] [CrossRef] [Green Version]
- Hall, C.L.; Wang, C.; Lange, L.A.; Turley, E.A. Hyaluronan and the Hyaluronan Receptor RHAMM Promote Focal Adhesion Turnover and Transient Tyrosine Kinase Activity. J. Cell Biol. 1994, 126, 575–588. [Google Scholar] [CrossRef]
- Kobayashi, K.; Hernandez, L.D.; Galán, J.E.; Janeway, C.A.; Medzhitov, R.; Flavell, R.A. IRAK-M Is a Negative Regulator of Toll-like Receptor Signaling. Cell 2002, 110, 191–202. [Google Scholar] [CrossRef] [Green Version]
- Lesley, J.; Gál, I.; Mahoney, D.J.; Cordell, M.R.; Rugg, M.S.; Hyman, R.; Day, A.J.; Mikecz, K. TSG-6 Modulates the Interaction between Hyaluronan and Cell Surface CD44. J. Biol. Chem. 2004, 279, 25745–25754. [Google Scholar] [CrossRef] [Green Version]
- Mittal, M.; Tiruppathi, C.; Nepal, S.; Zhao, Y.-Y.; Grzych, D.; Soni, D.; Prockop, D.J.; Malik, A.B. TNFα-Stimulated Gene-6 (TSG6) Activates Macrophage Phenotype Transition to Prevent Inflammatory Lung Injury. Proc. Natl. Acad. Sci. USA 2016, 113, E8151–E8158. [Google Scholar] [CrossRef] [Green Version]
- Lauer, M.E.; Dweik, R.A.; Garantziotis, S.; Aronica, M.A. The Rise and Fall of Hyaluronan in Respiratory Diseases. Int J. Cell Biol. 2015, 2015, 712507. [Google Scholar] [CrossRef] [Green Version]
- Adam, D.; Roux-Delrieu, J.; Luczka, E.; Bonnomet, A.; Lesage, J.; Mérol, J.-C.; Polette, M.; Abély, M.; Coraux, C. Cystic Fibrosis Airway Epithelium Remodelling: Involvement of Inflammation. J. Pathol. 2015, 235, 408–419. [Google Scholar] [CrossRef] [PubMed]
- Sen, C.; Freund, D.; Gomperts, B.N. Three-Dimensional Models of the Lung: Past, Present and Future: A Mini Review. Biochem. Soc. Trans. 2022, BST20190569. [Google Scholar] [CrossRef] [PubMed]
- Mrabat, H.; Beagle, J.; Hang, Z.; Garg, H.G.; Hales, C.A.; Quinn, D.A. Inhibition of HA Synthase 3 MRNA Expression, with a Phosphodiesterase 3 Inhibitor, Blocks Lung Injury in a Septic Ventilated Rat Model. Lung 2009, 187, 233–239. [Google Scholar] [CrossRef] [PubMed]
- Ernst, G.; Lompardía, S.; Cordo Russo, R.; Gentilini, V.; Venturiello, S.; Galíndez, F.; Grynblat, P.; Hajos, S.E. Corticosteroid Administration Reduces the Concentration of Hyaluronan in Bronchoalveolar Lavage in a Murine Model of Eosinophilic Airway Inflammation. Inflamm. Res. 2012, 61, 1309–1317. [Google Scholar] [CrossRef] [PubMed]
- Meszaros, M.; Kis, A.; Kunos, L.; Tarnoki, A.D.; Tarnoki, D.L.; Lazar, Z.; Bikov, A. The Role of Hyaluronic Acid and Hyaluronidase-1 in Obstructive Sleep Apnoea. Sci. Rep. 2020, 10, 19484. [Google Scholar] [CrossRef] [PubMed]
- Gao, F.; Koenitzer, J.R.; Tobolewski, J.M.; Jiang, D.; Liang, J.; Noble, P.W.; Oury, T.D. Extracellular Superoxide Dismutase Inhibits Inflammation by Preventing Oxidative Fragmentation of Hyaluronan. J. Biol. Chem. 2008, 283, 6058–6066. [Google Scholar] [CrossRef] [Green Version]
- Delbrel, E.; Uzunhan, Y.; Soumare, A.; Gille, T.; Marchant, D.; Planès, C.; Boncoeur, E. ER Stress Is Involved in Epithelial-To-Mesenchymal Transition of Alveolar Epithelial Cells Exposed to a Hypoxic Microenvironment. Int. J. Mol. Sci. 2019, 20, 1299. [Google Scholar] [CrossRef] [Green Version]
- Hashimoto, R.; Gupte, S.A. G6PD Is a Critical Enabler of Hypoxia-Induced Accumulation of Macrophages and Platelets in Mice Lungs and Contributor to Lung Inflammation. Vascul. Pharmacol. 2022, 144, 106976. [Google Scholar] [CrossRef]
- Heinz, A. Elastases and Elastokines: Elastin Degradation and Its Significance in Health and Disease. Crit. Rev. Biochem. Mol. Biol. 2020, 55, 252–273. [Google Scholar] [CrossRef]
- Schmelzer, C.E.H.; Duca, L. Elastic Fibers: Formation, Function, and Fate during Aging and Disease. FEBS J. 2021. [Google Scholar] [CrossRef]
- Kratochvil, M.J.; Kaber, G.; Cai, P.C.; Burgener, E.B.; Barlow, G.L.; Nicolls, M.R.; Ozawa, M.G.; Regula, D.P.; Pacheco-Navarro, A.E.; Milla, C.E.; et al. Biochemical and Biophysical Characterization of Respiratory Secretions in Severe SARS-CoV-2 (COVID-19) Infections. medRxiv 2019. [Google Scholar] [CrossRef]
Target Cell | LMW-HA (kDa) | Receptor | Pathways | Inflammatory Effector | References |
---|---|---|---|---|---|
Neutrophils | |||||
100–200 | Not determined | Not determined | NE | [76,77] | |
200 | Not determined | PI3K/Akt1 | IL-6 | [78] | |
200 | Not determined | PI3K/Akt1 | KC | [78] | |
200 | Not determined | PI3K/Akt1 | MMP-9 | [78] | |
200 | Not determined | PI3K/Akt1 | MPO | [78] | |
200 | Not determined | PI3K/Akt1 | Mcl-1 | [78] | |
Macrophages | |||||
200 | TLR2 | NF-κB | MIP-1α/β | [60,79] | |
80 | TLR2 and TLR4 | Not determined | IL-8 | [74,80] | |
100–150 | TLR2 and TLR4 | NF-κB | CXCL2 | [80] | |
5 | TLR2 and TLR4 | Not determined | TNF-α | [81,82] | |
5–200 | Not determined | NF-κB | NO | [81] | |
Not determined | TLR2 and TLR4 | Not determined | IL-1β | [81] | |
60-200 | Not determined | NF-κB | MMP-9 | [82] | |
Not determined | Not determined | Not determined | PAI-1 | [83] | |
Not determined | Not determined | Not determined | uPA | [83] | |
80 | TLR4 | NF-κB | IFN-β | [84] | |
100–150 | CD44-TLR4 | Not determined | IL-6 | [85] | |
100–150 | CD44-TLR4 | ERK1/2 and p38MAPK | MCP-1 | [85] | |
200 | TLR4 | IRF3 | IFN-β | [86] | |
200 | cPLA2α Phosphorylation | ERK1/2, p38MAPK and JNK | COX2 | [87] | |
200 | cPLA2α Phosphorylation | ERK1/2, p38MAPK and JNK | PGE2 | [87] | |
200 | Not determined | NF-κB | iNOS | [88] | |
200 | Not determined | Not determined | MMP-12 | [89] | |
280 | CD44 | Not determined | IL-12 | [90] | |
Dendritic Cells | |||||
80–200 | TLR4 | Not determined | IL-12 | [91,92] | |
80–200 | TLR4 | Not determined | TNF-α | [91,92] | |
80–200 | TLR4 | Not determined | IL-1β | [91,92] | |
Lung Epithelial Cells | |||||
Not determined | TLR4 | Not determined | IL-6 | [61] | |
Not determined | CD44/TLR4/MD2/ MyD88 | NF-κB | MIP-2 | [61] | |
Not determined | CD44/TLR4/MD2/ Ras | NF-κB | MMP-13 | [61] | |
Not determined | CD44/TLR4/MD2/ Ras | NF-κB | TGF-β2 | [61] | |
200 | Not determined | ERK1/2, AP-1, NF-κB and JNK | IL-8 | [93,94] | |
200 | Not determined | NF-κB | IP-10 | [93] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hoarau, A.; Polette, M.; Coraux, C. Lung Hyaluronasome: Involvement of Low Molecular Weight Ha (Lmw-Ha) in Innate Immunity. Biomolecules 2022, 12, 658. https://doi.org/10.3390/biom12050658
Hoarau A, Polette M, Coraux C. Lung Hyaluronasome: Involvement of Low Molecular Weight Ha (Lmw-Ha) in Innate Immunity. Biomolecules. 2022; 12(5):658. https://doi.org/10.3390/biom12050658
Chicago/Turabian StyleHoarau, Antony, Myriam Polette, and Christelle Coraux. 2022. "Lung Hyaluronasome: Involvement of Low Molecular Weight Ha (Lmw-Ha) in Innate Immunity" Biomolecules 12, no. 5: 658. https://doi.org/10.3390/biom12050658
APA StyleHoarau, A., Polette, M., & Coraux, C. (2022). Lung Hyaluronasome: Involvement of Low Molecular Weight Ha (Lmw-Ha) in Innate Immunity. Biomolecules, 12(5), 658. https://doi.org/10.3390/biom12050658