Design, Synthesis and Characterization of [G10a]-Temporin SHa Dendrimers as Dual Inhibitors of Cancer and Pathogenic Microbes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Procedure for Synthesis of Peptide Dendrimers
2.2.1. Synthesis of Temporin SHa Peptide and Its Analog [G10a]-SHa
2.2.2. Synthesis of Jeff-[G10a]2-SHa Conjugate
2.2.3. Synthesis of [G10a]2-SHa Dendrimer
2.2.4. Synthesis of [G10a]3-SHa Dendrimer
2.3. Peptide Purification
2.4. CD Analysis
2.5. Stability and pH Study
2.6. Dynamic Light Scattering (DLS)
2.7. Atomic Force Microscopy (AFM) Imaging
2.8. Antimicrobial Assay
2.9. Antiproliferative Assay
2.10. Hemolysis Assay
3. Results
3.1. Amphiphilicity of Dendrimeric Peptides
3.2. Secondary Structures Determination
3.3. Hydrodynamic Diameter, Surface Charge, Polydispersity Index and Morphology of [G10a]2-SHa
3.4. Hydrodynamic Diameter, Surface Charge, Polydispersity Index and Morphology of [G10a]3-SHa
3.5. Hydrodynamic Diameter, Surface Charge, Polydispersity Index and Morphology of Jeff-[G10a]2-SHa
3.6. Stability and pH Study
3.7. Antibacterial Activities of the Dendrimers
3.8. Antiproliferative Activity of the Dendrimer Peptides
3.9. Hemolytic Activity of the Dendrimer Peptides
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lau, J.L.; Dunn, M.K. Therapeutic peptides: Historical perspectives, current development trends, and future directions. Bioorg. Med. Chem. 2018, 26, 2700–2707. [Google Scholar] [CrossRef] [PubMed]
- Sakurai, Y.; Kajimoto, K.; Hatakeyama, H. Advances in an active and passive targeting to tumor and adipose tissues. Expert Opin. Drug Deliv. 2015, 12, 41–52. [Google Scholar] [CrossRef] [PubMed]
- Dong, X.; Sun, C.; Yang, H.; Yang, L.; Zhang, S. Influence of Mg 2 SiO 4 addition on crystal structure and microwave properties of Mg 2 Al 4 Si 5 O 18 ceramic system. J. Mater. Sci. Mater. Electron. 2018, 29, 17967–17973. [Google Scholar] [CrossRef]
- Vanzolini, T.; Bruschi, M.; Rinaldi, A.C.; Magnani, M. Multitalented Synthetic Antimicrobial Peptides and Their Antibacterial, Antifungal and Antiviral Mechanisms. Int. J. Mol. Sci. 2022, 23, 545. [Google Scholar] [CrossRef] [PubMed]
- Sapra, R.; Verma, R.P.; Maurya, G.P.; Dhawan, S.; Babu, J.; Haridas, V. Designer peptide and protein dendrimers: A cross-sectional analysis. Chem. Rev. 2019, 119, 11391–11441. [Google Scholar] [CrossRef]
- Franiak-Pietryga, I.; Ziemba, B.; Messmer, B.; Skowronska-Krawszyk, D. Dendrimers as drug nanocarriers: The future of gene therapy and targeted therapies in cancer. Dendrimers Fundam. Appl. 2018, 25, 7. [Google Scholar]
- Zhang, C.; Pan, D.; Luo, K.; She, W.; Guo, C.; Yang, Y.; Gu, Z. Peptide dendrimer–doxorubicin conjugate-based nanoparticles as an enzyme-responsive drug delivery system for cancer therapy. Adv. Healthcare Mater. 2014, 3, 1299–1308. [Google Scholar] [CrossRef]
- Lu, Y.; Fei-Zhang, T.; Shi, Y.; Zhou, H.; Chen, Q.; Wei, B.; Wang, X.; Yang, T.; Chinn, Y.; Kang, J.; et al. PFR peptide, one of the antimicrobial peptides identified from the derivatives of lactoferrin, induces necrosis in leukemia cells. Sci. Rep. 2016, 6, 20823. [Google Scholar] [CrossRef]
- Raja, Z.; Andre, S.; Abbassi, F.; Humblot, V.; Lequin, O.; Bouceba, T.; Correia, I.; Casale, S.; Foulon, T.; Sereno, D.; et al. Insight into the mechanism of action of temporin-SHa, a new broad-spectrum antiparasitic and antibacterial agent. PLoS ONE 2017, 12, e0174024. [Google Scholar] [CrossRef] [Green Version]
- Abbassi, F.; Galanth, C.; Amiche, M.; Saito, K.; Piesse, C.; Zargarian, L.; Hani, K.; Nicolas, P.; Lequin, O.; Ladram, A. Solution structure and model membrane interactions of temporins-SH, antimicrobial peptides from amphibian skin. A NMR spectroscopy and differential scanning calorimetry study. Biochemistry 2008, 47, 10513–10525. [Google Scholar] [CrossRef]
- Urbán, E.; Nagy, E.; Pal, T.; Sonnevend, A.; Conlon, J.M. Activities of four frog skin-derived antimicrobial peptides (temporin-1DRa, temporin-1Va and the melittin-related peptides AR-23 and RV-23) against anaerobic bacteria. Int. J. Antimicrob. Agents 2007, 29, 317–321. [Google Scholar] [CrossRef] [PubMed]
- Mangoni, M.L.; Saugar, J.M.; Dellisanti, M.; Barra, D.; Simmaco, M.; Rivas, L. Temporins, small antimicrobial peptides with leishmanicidal activity. J. Biol. Chem. 2005, 280, 984–990. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eggimann, G.A.; Sweeney, K.; Bolt, H.L.; Rozatian, N.; Cobb, S.L.; Denny, P.W. The role of phosphoglycans in the susceptibility of Leishmania mexicana to the temporin family of anti-microbial peptides. Molecules 2015, 20, 2775–2785. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shaheen, F.; Haque, M.N.; Ahmed, A.; Simjee, S.U.; Ganesan, A.; Jabeen, A.; Shah, Z.A.; Choudhary, M.I. Synthesis of breast cancer targeting conjugate of temporin-SHa analog and its effect on pro-and anti-apoptotic protein expression in MCF-7 cells. Peptides 2018, 106, 68–82. [Google Scholar] [CrossRef] [Green Version]
- Maharjan, R.; Khan, A.I.; Haque, M.N.; Maresca, M.; Choudhary, M.I.; Shaheen, F.; Simjee, S.U. Serum Stable and Low Hemolytic Temporin-SHa Peptide Analogs Disrupt Cell Membrane of Methicillin-Resistant Staphylococcus aureus (MRSA). Probiotics Antimicrob. Proteins 2022, 14, 391–405. [Google Scholar] [CrossRef] [PubMed]
- Olleik, H.; Baydoun, E.; Perrier, J.; Hijazi, A.; Raymond, J.; Manzoni, M.; Dupuis, L.; Pauleau, G.; Goudard, Y.; de La Villéon, B. Temporin-SHa and its analogs as potential candidates for the treatment of Helicobacter pylori. Biomolecules 2019, 9, 598. [Google Scholar] [CrossRef] [Green Version]
- Townsend, J.B.; Shaheen, F.; Liu, R.; Lam, K.S. Jeffamine derivatized TentaGel beads and poly (dimethylsiloxane) microbead cassettes for ultrahigh-throughput in situ releasable solution-phase cell-based screening of one-bead-one-compound combinatorial small molecule libraries. J. Comb. Chem. 2010, 12, 700–712. [Google Scholar] [CrossRef] [Green Version]
- Ali, H.; Jabeen, A.; Maharajan, R.; Haque, M.N.; Aamra, H.; Nazir, S.; Khan, S.; Olleik, H.; Maresca, M.; Shaheen, F. Furan-conjugated tripeptides as potent antitumor drugs. Biomolecules 2020, 10, 1684. [Google Scholar] [CrossRef]
- Olleik, H.; Yahiaoui, S.; Roulier, B.; Courvoisier-Dezord, E.; Perrier, J.; Pérès, B.; Hijazi, A.; Baydoun, E.; Raymond, J.; Boumendjel, A.; et al. Aurone derivatives as promising antibacterial agents against resistant Gram-positive pathogens. Eur. J. Med. Chem. 2019, 165, 133–141. [Google Scholar] [CrossRef]
- Olleik, H.; Yahiaoui, S.; Roulier, B.; Courvoisier-Dezord, E.; Perrier, J.; Peres, B.; Hijazi, A.; Baydoun, E.; Raymond, J.; Boumendjel, A.; et al. Comparative structure–activity analysis of the antimicrobial activity, cytotoxicity, and mechanism of action of the fungal cyclohexadepsipeptides enniatins and beauvericin. Toxins 2019, 11, 514. [Google Scholar] [CrossRef] [Green Version]
- Olleik, H.; Yacoub, T.; Hoffer, L.; Gnansounou, S.M.; Benhaiem-Henry, K.; Nicoletti, C.; Mekhalfi, M.; Pique, V.; Perrier, J.; Hijazi, A.; et al. Synthesis and evaluation of the antibacterial activities of 13-substituted berberine derivatives. Antibiotics 2020, 9, 381. [Google Scholar] [CrossRef] [PubMed]
- Benkhaled, B.T.; Hadiouch, S.; Olleik, M.; Perrier, J.; Yasacco, C.; Guillaneuf, Y.; Gigmas, D.; Maresca, M.; Lefay, C. Elaboration of antimicrobial polymeric materials by dispersion of well-defined amphiphilic methacrylic SG1-based copolymers. Polym. Chem. 2018, 9, 3127–3141. [Google Scholar] [CrossRef]
- Borie, C.; Mondal, S.; Arif, T.; Briand, M.; Lingua, H.; Dumur, F.; Gigmes, D.; Stocker, P.; Barbarat, B.; Robert, V.; et al. Enediynes bearing polyfluoroaryl sulfoxide as new antiproliferative agents with dual targeting of microtubules and DNA. Eur. J. Med. Chem. 2018, 148, 306–313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carboué, Q.; Maresca, M.; Herbette, G.; Roussos, S.; HAmrouni, R.; Bombarda, I. Naphtho-gamma-pyrones produced by Aspergillus tubingensis G131: New source of natural nontoxic antioxidants. Biomolecules 2019, 10, 29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hadiouch, S.; Maresca, M.; Gigmes, D.; Machado, G.; Maurel-Pantel, A.; Frik, S.; Saunier, J.; Deniset-Besseau, A.; Yagoubi, N.; Michalek, L.; et al. A versatile and straightforward process to turn plastics into antibacterial materials. Polym. Chem. 2022, 13, 69–79. [Google Scholar] [CrossRef]
- Medlej, M.K.; Batoul, C.; Olleik, H.; Li, S.; Hijazi, A.; Nasser, G.; Maresca, M.; Pochat-Bohatier, C. Antioxidant activity and biocompatibility of fructo-polysaccharides extracted from a wild species of Ornithogalum from Lebanon. Antioxidants 2021, 10, 68. [Google Scholar] [CrossRef]
- Varini, K.; Benzaria, A.; Taieb, N.; Scala, C.D.; Azmi, A.; Graoudi, S.; Maresca, M. Mislocalization of the exitatory amino-acid transporters (EAATs) in human astrocytoma and non-astrocytoma cancer cells: Effect of the cell confluence. J. Biomed. Sci. 2012, 19, 10. [Google Scholar] [CrossRef] [Green Version]
- Haudecoeur, R.; Carotti, M.; Gouron, A.; Maresca, M.; Buitrago, E.; Harde, R.; Bergantino, E.; Jamet, H.; Belle, C.; Reglier, M.; et al. 2-Hydroxypyridine-n-oxide-embedded aurones as potent human tyrosinase inhibitors. ACS Med. Chem. Lett. 2017, 8, 55–60. [Google Scholar] [CrossRef] [Green Version]
- Alberto, R.-F.R.; Martiniano, B.; Saul, R.-H.; Jazmin, G.-M.; Mara, G.-S.; Ruben, E.-P.A.; Jonathan, F.-V.M.; Vicente, M.-M.J.; Jose, C.-B. In silico and in vivo studies of gp120-HIV-derived peptides in complex with G4-PAMAM dendrimers. RSC Adv. 2020, 10, 20414–20426. [Google Scholar] [CrossRef]
- Li, X.; Zhu, D.; Wang, X. Evaluation on dispersion behavior of the aqueous copper nano-suspensions. J. Colloid Interface Sci. 2007, 310, 456–463. [Google Scholar] [CrossRef]
- Mozhdehi, D.; Luginbuhl, K.M.; Simon, J.R.; Dzuricky, M.; Berger, R.; Varol, H.S.; Huang, F.C.; Buehne, K.L.; Mayne, N.R.; Weitzhandler, I.; et al. Genetically encoded lipid–polypeptide hybrid biomaterials that exhibit temperature-triggered hierarchical self-assembly. Nat. Chem. 2018, 10, 496–505. [Google Scholar] [CrossRef] [PubMed]
- Taylor, P.A.; Jayaraman, A. Molecular Modeling and Simulations of Peptide–Polymer Conjugates. Annu. Rev. Chem. Biomol. Eng. 2020, 11, 257–276. [Google Scholar] [CrossRef] [PubMed]
- Wiśniewska, M.; Ostolska, I. Poly (L-lysine)-poly (ethylene glycol) layers with different structure and their influence on silica suspension stability. Mater. Sci. Technol. 2019, 35, 742–746. [Google Scholar] [CrossRef]
Peptides | Sequence |
---|---|
Temporin SHa | H-Phe1-Leu2-Ser3-Gly4-Ile5-Val6-Gly7-Met8-Leu9- Gly10-Lys11-Leu12-Phe13-NH2 |
[G10a] SHa | H-Phe1-Leu2-Ser3-Gly4-Ile5-Val6-Gly7-Met8-Leu9- D-Ala10-Lys11-Leu12-Phe13-NH2 |
[G10a]2 SHa | |
[G10a]3 SHa | |
Jeff-[G10a]2 SHa conjugate |
Peptide Dendrimers | Observed Mass | Net Charge (pH 7.0) | m/z | Retention Time (min) | Overall Yield (%) |
---|---|---|---|---|---|
[G10a]-SHa | 1393.82 | +2 | 1394.96 [M + H]+ | 3.489 | 81.6 |
[G10a]2-SHa | 2900.67 | +4 | 1451.05 [M + 2H]2+ | 9.61 | 9.2 |
[G10a]3-SHa | 4406.65 | +6 | 1098.3 [M + 2H + Na]3+ | 3.056 | 9.8 |
Jeff-[G10a]2-SHa | ~3294.44 | +2 * | 1106.64 [M + 3H]3+ | 3.057 | 4.8 |
Peptide | Secondary Structure | Z-Average (d.nm) | Pdi Values | Zeta Potential (mV) | Optical Rotation |
---|---|---|---|---|---|
[G10a]-SHa | α-helical | 63.25 | 0.628 | −34.1 | −178.46 |
[G10a]2-SHa | α-helical | 149.5 | 0.39 | −55.0 | −387.69 |
[G10a]3-SHa | α-helical | 46.13 | 0.462 | −71.2 | −229.1 |
Jeff-[G10a]2-SHa | Triple helical | 174.1 | 0.277 | −41.7 | +213.0 |
Peptides | Gram Negative | Gram Positive | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
A. baumannii (DSM 30007) | E. cloacae (DSM 30054) | E. coli (ATCC 8739) | P. aeruginosa (ATCC 9027) | H. pylori (ATCC 43504) | K. pneumonia (DSM 26371) | B. subtilis (ATCC 6633) | E. faecalis (DSM 2570) | E. faecium (DSM 20477) | S. aureus (ATCC 6538) | |
[G10a]-SHa | 12.5 | >100 | 100 | >100 | 3.12 | 100 | 3.12 | 25 | >100 | 3.12 |
[G10a]2-SHa | 12.5 | >100 | >100 | >100 | 6.25 | >100 | 3.12 | 12.5 | 6.25 | 3.12 |
[G10a]3-SHa | 3.12 | >100 | 25 | >100 | 25 | >100 | 3.12 | 25 | 6.25 | 6.25 |
Jeff-[G10a]2-SHa | 12.5 | >100 | >100 | >100 | 25 | >100 | 3.12 | 25 | 12.5 | 6.25 |
Temporin-SHa | 6.25 | 50 | 50 | 50 | 3.12 | 50 | 1.56 | 12.5 | 6.25 | 3.12 |
Peptides | Breast Cancer (MCF-7) | Liver Cancer (HepG-2) | Lung Cancer (A549) | Ovarian Cancer (A2780) | Pancreatic Cancer (MiaPaCa) | Prostate Cancer (PC-3) | Skin Cancer (MNT-1) | Human Normal Fibroblast (IMR-90) |
---|---|---|---|---|---|---|---|---|
I. [G10a]-SHa | 15.05 ± 8.51 | 31.63 ± 1.56 | 14.52 ± 1.44 | 14.75 ± 7.35 | 22.36 ± 6.07 | 13.04 ± 1.99 | 15.25 ± 0.80 | 37.20 ± 2.88 |
II. [G10a]2-SHa | 5.69 ± 1.46 | 14.31 ± 1.37 | 3.79 ± 1.61 | 4.42 ± 0.06 | 8.71 ± 0.35 | 6.31 ± 0.66 | 4.72 ± 0.36 | 22.27 ± 0.40 |
III. [G10a]3-SHa | 3.77 ± 0.12 | 5.49 ± 0.37 | 3.74 ± 3.46 | 2.31 ± 0.08 | 6.94 ± 0.27 | 1.84 ± 0.17 | 2.24 ± 0.05 | 13.94 ± 0.42 |
IV. Jeff-[G10a]2-SHa | 35.71 ± 8.50 | >100 | 70.71 ± 5.39 | 33.92 ± 5.90 | 57.45 ± 6.03 | 57.99 ± 5.04 | 57.03 ± 6.09 | 66.24 ± 4.15 |
V. SHa | 20.36 ± 5.64 | >100 | >100 | >100 | >100 | >100 | >100 | >100 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, A.I.; Nazir, S.; Ullah, A.; Haque, M.N.u.; Maharjan, R.; Simjee, S.U.; Olleik, H.; Courvoisier-Dezord, E.; Maresca, M.; Shaheen, F. Design, Synthesis and Characterization of [G10a]-Temporin SHa Dendrimers as Dual Inhibitors of Cancer and Pathogenic Microbes. Biomolecules 2022, 12, 770. https://doi.org/10.3390/biom12060770
Khan AI, Nazir S, Ullah A, Haque MNu, Maharjan R, Simjee SU, Olleik H, Courvoisier-Dezord E, Maresca M, Shaheen F. Design, Synthesis and Characterization of [G10a]-Temporin SHa Dendrimers as Dual Inhibitors of Cancer and Pathogenic Microbes. Biomolecules. 2022; 12(6):770. https://doi.org/10.3390/biom12060770
Chicago/Turabian StyleKhan, Arif Iftikhar, Shahzad Nazir, Aaqib Ullah, Muhammad Nadeem ul Haque, Rukesh Maharjan, Shabana U. Simjee, Hamza Olleik, Elise Courvoisier-Dezord, Marc Maresca, and Farzana Shaheen. 2022. "Design, Synthesis and Characterization of [G10a]-Temporin SHa Dendrimers as Dual Inhibitors of Cancer and Pathogenic Microbes" Biomolecules 12, no. 6: 770. https://doi.org/10.3390/biom12060770
APA StyleKhan, A. I., Nazir, S., Ullah, A., Haque, M. N. u., Maharjan, R., Simjee, S. U., Olleik, H., Courvoisier-Dezord, E., Maresca, M., & Shaheen, F. (2022). Design, Synthesis and Characterization of [G10a]-Temporin SHa Dendrimers as Dual Inhibitors of Cancer and Pathogenic Microbes. Biomolecules, 12(6), 770. https://doi.org/10.3390/biom12060770