Phytotherapy: A Solution to Decrease Antifungal Resistance in the Dental Field
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Mycotic and Antifungal Agents in the Oral Cavity
3.2. Resistance to Antifungals and Their Effect on Human Health
3.3. Drugs That Produce Antifungal Resistance
3.4. Resistance Mechanisms to Anti-Fungal
3.5. Phytotherapy Alternatives to Address the Resistance of Antifungals in the Oral Cavity
3.6. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bravo, I.-M.; Correnti, M.; Escalona, L.; Perrone, M.; Brito, A.; Tovar, V.; Rivera, H. Prevalencia de lesiones bucales en pacientes VIH +, relación con contaje de células CD4+ y carga viral en una población Venezolana. Med. Oral Patol. Oral Cir. Bucal. 2006, 11, 33–39. Available online: http://scieloisciiies/scielophp (accessed on 24 April 2022).
- Cardozo, E.I.; Pardi, G.; Perrone, M.; Salazar, E. Detección De Candida albicans en pacientes con Estomatitis Sub-Protésica, medicados con Anfotericina Tópica. Acta Odontol. Venez. 2003, 41, 188–194. [Google Scholar]
- Salehi, B.; Lopez-Jornet, P.; López, E.P.-F.; Calina, D.; Sharifi-Rad, M.; Ramírez-Alarcón, K.; Forman, K.; Fernández, M.; Martorell, M.; Setzer, W.N.; et al. Plant-Derived Bioactives in Oral Mucosal Lesions: A Key Emphasis to Curcumin, Lycopene, Chamomile, Aloe Vera, Green Tea and Coffee Properties. Biomolecules 2019, 9, 106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torres-Bustamante, D.; Villavicencio-Caparó, E.; Cuenca-León, K. Self-medication in the dental field in an adult population. Arch. Venez. Farmacol. Ter. 2021, 40, 1–4. [Google Scholar] [CrossRef]
- Taheri, J.B.; Azimi, S.; Rafieian, N.; Zanjani, H.A. Herbs in dentistry. Int. Dent. J. 2011, 61, 287–296. [Google Scholar] [CrossRef]
- Villavicencio-Caparó, E.; Alvear-Córdova, M.; Cuenca-León, K.; Calderón-Curipoma, M.; Palacios-Vivar, D.; Alvarado-Cordero, A. Diseños de Estudios Clínicos en Odontología. 2016. Available online: https://oactiva.ucacue.edu.ec/index.php/oactiva/article/view/163/284 (accessed on 20 January 2022).
- Angel, A.M.; Negroni, R.; Galimbert, R. Antifúngicos. Ayer, hoy y mañana. Educ. Contin. 2007, 30, 8–9. [Google Scholar]
- Hidalgo, A.P.C.; Dueñas, O.H.R.; Fandiño, Y.R.M.; Moreno, C.A. Opciones terapéuticas frente a especies de Candida resistentes a las equinocandinas. Univ. Méd. 2018, 59, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Du, H.; Bing, J.; Hu, T.; Ennis, C.L.; Nobile, C.; Huang, G. Candida auris: Epidemiology, biology, antifungal resistance, and virulence. PLoS Pathog. 2020, 16, e1008921. [Google Scholar] [CrossRef]
- López-Ávila, K.; Dzul-Rosado, K.; Lugo-Caballero, C. Mecanismos de resistencia antifúngica de los azoles en Candida. Rev. Biomed. 2016, 27, 127–136. [Google Scholar] [CrossRef] [Green Version]
- Pfaller, M.A. Antifungal Drug Resistance: Mechanisms, Epidemiology, and Consequences for Treatment. Am. J. Med. 2012, 125 (Suppl. S1), S3–S13. [Google Scholar] [CrossRef]
- Castanheira, M.; Woosley, L.N.; Diekema, D.J.; Messer, S.A.; Jones, R.N.; Pfaller, M.A. Low Prevalence of fks1 Hot Spot 1 Mutations in a Worldwide Collection of Candida Strains. Antimicrob. Agents Chemother. 2010, 54, 2655–2659. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rey, O.E.; Mallón, P.M.; Piñón, R.M.; Biedma, M.B.; Carrión, B.A. Oral candidosis in the older patient. Av. Odontoestomatol. 2015, 31, 135–148. [Google Scholar]
- Shields, R.K.; Nguyen, M.H.; Press, E.G.; Updike, C.L.; Clancy, C.J. Caspofungin MICs Correlate with Treatment Outcomes among Patients with Candida glabrata Invasive Candidiasis and Prior Echinocandin Exposure. Antimicrob. Agents Chemother. 2013, 57, 3528–3535. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parra, L.Y.C.; Cárdenas, J.E.P. Mecanismos de resistencia a fluconazol expresados por Candida glabrata: Una situación para considerar en la terapéutica. Investig. Enferm. Imagen Desarro. 2020, 22, 1–12. [Google Scholar] [CrossRef]
- Pérez-Delgado, O.; Vallejos-Campos, E. Actividad antifúngica in vitro del extracto crudo acuoso de Rosmarinus officinalis contra Candida albicans. Selva Andin. Res. Soc. 2019, 10, 45–51. [Google Scholar] [CrossRef] [Green Version]
- Macalupú, S.Z. Situation of anti-fungal resistance of species of the genus Candida in Peru. Rev. Peru. De Med. Exp. Salud Publica 2018, 35, 126–131. [Google Scholar] [CrossRef] [Green Version]
- Costa, C.; Dias, P.J.; Sá-Correia, I.; Teixeira, M.C. MFS multidrug transporters in pathogenic fungi: Do they have real clinical impact? Front. Physiol. 2014, 5, 197. [Google Scholar] [CrossRef] [Green Version]
- Cuenca-Estrella, M. Antifungal drug resistance mechanisms in pathogenic fungi: From bench to bedside. Clin. Microbiol. Infect. 2014, 20, 54–59. [Google Scholar] [CrossRef] [Green Version]
- la Cruz, M.; Tibuurcio, E.; Morales, J.; Bastida, A.; Ulloa, M. Efecto de oligosacáridos y enzimas sobre biopelículas generadas por Candida glabrata en prótesis dentales. Rev. Cienc. Tecnol. Innov. 2019, 17, 67–82. [Google Scholar]
- Cruz Quintana, S.; Diaz Sjostrom, P.; Mazón baldeón, G.; Arias Socarrás, D.; Calderón Paz, P.; Herrera Molina, A. Genoma de Candida albicans y resistencia a las drogas Genome of Candida albicans and drug resistance. Barranquilla 2017, 33, 438–450. [Google Scholar]
- Muñoz, X.L.; Cajas, N.C.; Carranza, L.G.; Núñez, C.V.; Silva, M.I.; Bustamante, E.A. Ocurrencia de levaduras del género Candida y estomatitis protésica antes y después del tratamiento rehabilitador basado en prótesis removible. Rev. Clínica Periodoncia Implantol. Rehabil. Oral 2015, 8, 31–37. [Google Scholar] [CrossRef]
- Odds, F.C.; Bernaerts, R. CHROMagar Candida, a new differential isolation medium for presumptive identification of clinically important Candida species. J. Clin. Microbiol. 1994, 32, 1923–1929. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hassan-Abdallah, A.; Merito, A.; Hassan, S.; Aboubaker, D.; Djama, M.; Asfaw, Z.; Kelbessa, E. Medicinal plants and their uses by the people in the Region of Randa, Djibouti. J. Ethnopharmacol. 2013, 148, 701–713. [Google Scholar] [CrossRef] [PubMed]
- Martínez, C.C.; Gómez, M.D.; Oh, M.S. Use of traditional herbal medicine as an alternative in dental treatment in Mexican dentistry: A review. Pharm. Biol. 2017, 55, 1992–1998. [Google Scholar] [CrossRef] [Green Version]
- Cadena Uguña, K.; Pazán León, P.; Farfán Chacha, M. Efecto antifúngico de diferentes concentraciones del extracto de Uncaria Tomentosa sobre Candida albicans: Estudio in vitro. Odontología 2017, 19, 30–39. [Google Scholar] [CrossRef]
- Alarcón, M.; Fernández, R.; Silva, D.; Reyes, D. Moringa oleifera: Potenciales usos en odontologia. [Moringa oleifera: Potential uses in dentistry]. Salus 2017, 21, 28–34. [Google Scholar]
- Menezes, A.; Rangel, D.; Souza, C. Perfil químico y actividad antifúngica del aceite esencial de la flor de Bauhinia rufa (Bong.) Steud. Rev. Cuba. De Farm. 2020, 53, 1–15. [Google Scholar]
- Mansourian, A.; Boojarpour, N.; Ashnagar, S.; Beitollahi, J.M.; Shamshiri, A. The comparative study of antifungal activity of Syzygium aromaticum, Punica granatum and nystatin on Candida albicans; An in vitro study. J. De Mycol. Med. 2014, 24, e163–e168. [Google Scholar] [CrossRef]
- Thamburan, S.; Klaasen, J.; Mabusela, W.T.; Cannon, J.F.; Folk, W.; Johnson, Q. Tulbaghia alliacea Phytotherapy: A Potential Anti-infective Remedy for Candidiasis. Phytother. Res. 2006, 20, 844–850. [Google Scholar] [CrossRef]
- Tanih, N.F.; Ndip, R.N. Evaluation of the Acetone and Aqueous Extracts of Mature Stem Bark of Sclerocarya birrea for Antioxidant and Antimicrobial Properties. Evid.-Based Complement. Altern. Med. 2012, 2012, 834156. [Google Scholar] [CrossRef] [Green Version]
- Tatsadjieu, L.; Ngang, J.E.; Ngassoum, M.; Etoa, F.-X. Antibacterial and antifungal activity of Xylopia aethiopica, Monodora myristica, Zanthoxylum xanthoxyloıdes and Zanthoxylum leprieurii from Cameroon. Fitoterapia 2003, 74, 469–472. [Google Scholar] [CrossRef]
- Onivogui, G.; Zhang, H.; Mlyuka, E.; Diaby, M.; Song, Y. Chemical Composition, Nutritional Properties and Antioxidant Activity of Monkey Apple (Anisophyllea laurina R. Br. ex Sabine). J. Food Nutr. Res. 2014, 2, 281–287. [Google Scholar] [CrossRef] [Green Version]
- Sule, A.; Ahmed, Q.U.; Latip, J.; Samah, O.A.; Omar, M.N.; Umar, A.; Dogarai, B.B.S. Antifungal activity ofAndrographis paniculataextracts and active principles against skin pathogenic fungal strains in vitro. Pharm. Biol. 2012, 50, 850–856. [Google Scholar] [CrossRef] [PubMed]
- Webster, D.; Taschereau, P.; Belland, R.J.; Sand, C.; Rennie, R.P. Antifungal activity of medicinal plant extracts; preliminary screening studies. J. Ethnopharmacol. 2008, 115, 140–146. [Google Scholar] [CrossRef]
- Shamim, S.; Ahmed, S.W.; Azhar, I. Antifungal activity of Allium, Aloe, and Solanum species. Pharm. Biol. 2004, 42, 491–498. [Google Scholar] [CrossRef]
- Price, K.R.; Rhodes, M.J.C. Analysis of the Major Flavonol Glycosides Present in Four Varieties of Onion (Allium cepa) and Changes in Composition Resulting from Autolysis. J. Sci. Food Agric. 1997, 74, 331–339. [Google Scholar] [CrossRef]
- Silva, F.; Ferreira, S.; Duarte, A.; Mendonça, D.I.; Domingues, F.C. Antifungal activity of Coriandrum sativum essential oil, its mode of action against Candida species and potential synergism with amphotericin B. Phytomedicine 2011, 19, 42–47. [Google Scholar] [CrossRef]
- Begnami, A.; Duarte, M.; Furletti, V.; Rehder, V. Antimicrobial potential of Coriandrum sativum L. against different Candida species in vitro. Food Chem. 2010, 118, 74–77. [Google Scholar] [CrossRef]
- Naeini, A.; Naderi, N.J.; Shokri, H. Analysis and in vitro anti-Candida antifungal activity of Cuminum cyminum and Salvadora persica herbs extracts against pathogenic Candida strains. J. De Mycol. Med. 2013, 24, 13–18. [Google Scholar] [CrossRef]
- Dias De Castro, R.; Lima, E.O. Brazilian archives of biology and technology Anti-Candida Activity and Chemical Composition of Cinnamomum zeylanicum Blume Essential Oil. Arch. Biol. Technol. 2013, 56, 749–755. [Google Scholar] [CrossRef]
- Nejad, B.S.; Rajabi, M.; Mamoudabadi, A.Z.; Zarrin, M. In Vitro Anti-Candida Activity of the Hydroalcoholic Extracts of Heracleum persicum Fruit against Phatogenic Candida Species. Jundishapur J. Microbiol. 2014, 7, e8703. [Google Scholar] [CrossRef] [Green Version]
- Zollo, P.H.A.; Abondo, R.; Biyiti, L.; Menut, C.; Bessière, J.M. Aromatic Plants of Tropical Central Africa XXXVIII: Chemical Composition of the Essential Oils from FourAframomumSpecies Collected in Cameroon (1). J. Essent. Oil Res. 2002, 14, 95–98. [Google Scholar] [CrossRef]
- Watcho, P.; Kamtchouing, P.; Sokeng, S.; Moundipa, P.F.; Tantchou, J.; Essame, J.L.; Koueta, N. Reversible Antispermatogenic and Antifertility Activities of Mondia whitei L. in Male Albino Rat. Phytother. Res. 2001, 15, 26–29. [Google Scholar] [CrossRef]
- Adekunle, A.; Ikumapayi, A. Antifungal property and phytochemical screening of the crude extracts of Funtumia elastica and Mallotus oppositifolius. West Indian Med. J. 2006, 55, 219–223. [Google Scholar] [CrossRef]
- Borah, B.; Phukon, P.; Hazarika, M.P.; Ahmed, R.; Sarmah, D.K.; Wann, S.B.; Das, A.; Bhau, B.S. Calamus leptospadix Griff. a high saponin yielding plant with antimicrobial property. Ind. Crop. Prod. 2016, 82, 127–132. [Google Scholar] [CrossRef]
- Khosravi, A.; Shokri, H.; Kermani, S.; Dakhili, M.; Madani, M.; Parsa, S. Antifungal properties of Artemisia sieberi and Origanum vulgare essential oils against Candida glabrata isolates obtained from patients with vulvovaginal candidiasis. J. De Mycol. Med. 2011, 21, 93–99. [Google Scholar] [CrossRef]
- Lubian, C.; Teixeira, J.; Lund, R.; Nascente, P.; Del Pino, F. Atividade antifúngica do extrato aquoso de Arctium minus (Hill) Bernh. (Asteraceae) sobre espécies orais de Candida. Rev. Bras. Plant. Med. 2010, 12, 157–162. [Google Scholar] [CrossRef] [Green Version]
- Erdemoglu, N.; Turan, N.N.; Akkol, E.K.; Sener, B.; Abacıoglu, N. Estimation of anti-inflammatory, antinociceptive and antioxidant activities on Arctium minus (Hill) Bernh. ssp. minus. J. Ethnopharmacol. 2009, 121, 318–323. [Google Scholar] [CrossRef]
- Woods-Panzaru, S.; Nelson, D.; McCollum, G.; Ballard, L.M.; Millar, B.C.; Maeda, Y.; Goldsmith, C.E.; Rooney, P.J.; Loughrey, A.; Rao, J.R.; et al. An examination of antibacterial and antifungal properties of constituents described in traditional Ulster cures and remedies. Ulst. Med. J. 2009, 78, 13–15. [Google Scholar]
- Nchu, F.; Aderogba, M.; Mdee, L.; Eloff, J. Isolation of anti-Candida albicans compounds from Markhamia obtusifolia (Baker) Sprague (Bignoniaceae). S. Afr. J. Bot. 2010, 76, 54–57. [Google Scholar] [CrossRef] [Green Version]
- Pereira, A.M.S.; Hernandes, C.; Pereira, S.I.; Bertoni, B.W.; França, S.C.; Pereira, P.S.; Taleb-Contini, S.H. Evaluation of anticandidal and antioxidant activities of phenolic compounds from Pyrostegia venusta (Ker Gawl.) Miers. Chem.-Biol Interact. 2014, 224, 136–141. [Google Scholar] [CrossRef] [PubMed]
- Mafioleti, L.; Junior, I.F.D.S.; Colodel, E.M.; Flach, A.; Martins, D.T.D.O. Evaluation of the toxicity and antimicrobial activity of hydroethanolic extract of Arrabidaea chica (Humb. & Bonpl.) B. Verl. J. Ethnopharmacol. 2013, 150, 576–582. [Google Scholar] [CrossRef] [PubMed]
- Yamashita, M.; Kaneko, M.; Tokuda, H.; Nishimura, K.; Kumeda, Y.; Iida, A. Synthesis and evaluation of bioactive naphthoquinones from the Brazilian medicinal plant, Tabebuia avellanedae. Bioorg. Med. Chem. 2009, 17, 6286–6291. [Google Scholar] [CrossRef] [PubMed]
- Clavin Kouokam, J.; Jahns, T.; Becker, H. Antimicrobial Activity of the Essential Oil and Some Isolated Sulfur-Rich Compounds from Scorodophloeus zenkeri. Plant. Med. 2002, 68, 1082–1087. [Google Scholar] [CrossRef] [PubMed]
- Teinkela, J.E.M.; Nguedia, J.C.A.; Meyer, F.; Donfack, E.V.; Ndjakou, B.L.; Ngouela, S.; Tsamo, E.; Adiogo, D.; Azebaze, A.G.B.; Wintjens, R. In vitroantimicrobial and anti-proliferative activities of plant extracts fromSpathodea campanulata, Ficus bubu, and Carica papaya. Pharm. Biol. 2015, 54, 1086–1095. [Google Scholar] [CrossRef] [PubMed]
- Giordani, R.; Siepaio, M.; Moulin-Traffort, J.; Régli, P. Antifungal action of Carica papaya latex: Isolation of fungal cell wall hydrolysing enzymes. Mycoses 1991, 34, 469–477. [Google Scholar] [CrossRef]
- Teodoro, G.R.; Brighenti, F.L.; Delbem, A.C.B.; Delbem, Á.C.B.; Khouri, S.; Gontijo, A.V.L.; Pascoal, A.C.; Salvador, M.J.; Koga-Ito, C.Y. Antifungal activity of extracts and isolated compounds from Buchenavia tomentosa on Candida albicans and non-albicans. Futur. Microbiol. 2015, 10, 917–927. [Google Scholar] [CrossRef]
- Masoko, P.; Picard, J.; Howard, R.L.; Mampuru, L.J.; Eloff, J.N. In vivo antifungal effect of Combretum and Terminalia species extracts on cutaneous wound healing in immunosuppressed rats. Pharm. Biol. 2010, 48, 621–632. [Google Scholar] [CrossRef] [Green Version]
- Katerere, D.; Gray, A.I.; Nash, R.J.; Waigh, R.D. Antimicrobial activity of pentacyclic triterpenes isolated from African Combretaceae. Phytochemistry 2003, 63, 81–88. [Google Scholar] [CrossRef]
- Dawe, A.; Pierre, S.; Tsala, D.E.; Habtemariam, S. Phytochemical Constituents of Combretum Loefl. (Combretaceae). Pharm. Crops 2013, 4, 38–59. [Google Scholar] [CrossRef]
- Shai, L.; McGaw, L.; Eloff, J. Extracts of the leaves and twigs of the threatened tree Curtisia dentata (Cornaceae) are more active against Candida albicans and other microorganisms than the stem bark extract. S. Afr. J. Bot. 2009, 75, 363–366. [Google Scholar] [CrossRef] [Green Version]
- Oyedemi, S.O.; Oyedemi, B.O.; Arowosegbe, S.; Afolayan, A.J. Phytochemicals Analysis and Medicinal Potentials of Hydroalcoholic Extract from Curtisia dentata (Burm.f) C.A. Sm Stem Bark. Int. J. Mol. Sci. 2012, 13, 6189–6203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eidi, S.; Azadi, H.G.; Rahbar, N.; Mehmannavaz, H.R. Evaluation of antifungal activity of hydroalcoholic extracts of Citrullus colocynthis fruit. J. Herb. Med. 2015, 5, 36–40. [Google Scholar] [CrossRef]
- Dzoyem, J.P.; Tangmouo, J.G.; Lontsi, D.; Etoa, F.X.; Lohoue, P.J. In Vitro Antifungal Activity of Extract and Plumbagin from The Stem Bark of Diospyros crassiflora Hiern (Ebenaceae). Phytother. Res. 2007, 21, 671–674. [Google Scholar] [CrossRef] [PubMed]
- Araújo, M.G.D.F.; Hilário, F.; Nogueira, L.G.; Vilegas, W.; Dos Santos, L.C.; Bauab, T.M. Chemical Constituents of the Methanolic Extract of Leaves of Leiothrix spiralis Ruhland and Their Antimicrobial Activity. Molecules 2011, 16, 10479–10490. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rajeh, M.A.B.; Zuraini, Z.; Sasidharan, S.; Latha, L.Y.; Amutha, S. Assessment of Euphorbia hirta L. Leaf, Flower, Stem and Root Extracts for Their Antibacterial and Antifungal Activity and Brine Shrimp Lethality. Molecules 2010, 15, 6008–6018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alviano, W.S.; Mendonça-Filho, R.R.; Alviano, D.S.; Bizzo, H.R.; Souto-Padrón, T.; Rodrigues, M.L.; Bolognese, A.M.; Alviano, C.S.; Souza, M.M.G. Antimicrobial activity of Croton cajucara Benth linalool-rich essential oil on artificial biofilms and planktonic microorganisms. Oral Microbiol. Inmunol. 2005, 20, 101–105. [Google Scholar] [CrossRef]
- Soliman, S.; Alnajdy, D.; El-Keblawy, A.; Mosa, K.A.; Khoder, G.; Noreddin, A.M. Plants’ natural products as alternative promising anti-Candida drugs. Pharmacogn. Rev. 2017, 11, 104–122. [Google Scholar] [CrossRef] [Green Version]
- Achi, O.K. Composition and antibacterial activities of Tetrapleura tetraptera Taub. Pod Extracts. Res. J. Microbiol. 2006, 1, 416–422. [Google Scholar]
- Das Neves, M.V.M.; Da Silva, T.M.S.; Lima, E.D.O.; Da Cunha, E.V.L.; Oliveira, E.D.J. Isoflavone formononetin from red propolis acts as a fungicide against Candida sp. Braz. J. Microbiol. 2016, 47, 159–166. [Google Scholar] [CrossRef] [Green Version]
- Favre-Godal, Q.; Dorsaz, S.; Queiroz, E.F.; Marcourt, L.; Ebrahimi, S.N.; Allard, P.-M.; Voinesco, F.; Hamburger, M.; Gupta, M.P.; Gindro, K.; et al. Anti-Candida Cassane-Type Diterpenoids from the Root Bark of Swartzia simplex. J. Nat. Prod. 2015, 78, 2994–3004. [Google Scholar] [CrossRef] [PubMed]
- Jothy, S.L.; Zakariah, Z.; Chen, Y.; Sasidharan, S. In Vitro, in Situ and in Vivo Studies on the Anticandidal Activity of Cassia fistula Seed Extract. Molecules 2012, 17, 6997–7009. [Google Scholar] [CrossRef] [PubMed]
- Jo Thy Lachumy, S.; Zuraini, Z.; Sasidharan, S. Antimicrobial activity and toxicity of methanol extract of Cassia fistula seeds. Res. J. Pharm. Biol. Chem. Sci. 2010, 1, 391–398. [Google Scholar]
- Martins, N.; Ferreira, I.C.; Henriques, M.; Silva, S. In vitro anti-Candida activity of Glycyrrhiza glabra L. Ind. Crop. Prod. 2016, 83, 81–85. [Google Scholar] [CrossRef] [Green Version]
- Timothy, S.Y.; Wazis, C.H.; Adati, R.G.; Maspalma, I.D. Antifungal Activity of Aqueous and Ethanolic Leaf Extracts of Cassia Alata Linn. J. Appl. Pharm. Sci. 2012, 2, 182–185. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Lou, J.; Luo, C.; Zhou, L.; Wang, M.; Wang, L. Phenolic Compounds from Halimodendron halodendron (Pall.) Voss and Their Antimicrobial and Antioxidant Activities. Int. J. Mol. Sci. 2012, 13, 11349–11364. [Google Scholar] [CrossRef] [Green Version]
- Šiler, B.; Živković, S.; Banjanac, T.; Cvetković, J.; Živković, J.N.; Ćirić, A.; Soković, M.; Mišić, D. Centauries as underestimated food additives: Antioxidant and antimicrobial potential. Food Chem. 2014, 147, 367–376. [Google Scholar] [CrossRef]
- Chen, J.; Mangelinckx, S.; Adams, A.; Li, W.L.; Wang, Z.T.; De Kimpe, N. Chemical constituents from the aerial parts of Gynura bicolor. Nat. Prod. Commun. 2012, 7, 1563–1564. [Google Scholar] [CrossRef] [Green Version]
- Safaei-Ghomi, J.; Ahd, A.A. Antimicrobial and antifungal properties of the essential oil and methanol extracts of Eucalyptus largiflorens and Eucalyptus intertexta. Pharmacogn. Mag. 2010, 6, 172–175. [Google Scholar] [CrossRef] [Green Version]
- Tyagi, A.K.; Malik, A. Antimicrobial potential and chemical composition of Eucalyptus globulus oil in liquid and vapour phase against food spoilage microorganisms. Food Chem. 2011, 126, 228–235. [Google Scholar] [CrossRef]
- Prabhakar, K.; Kumar, L.S.; Rajendran, S.; Chandrasekaran, M.; Bhaskar, K.; Sajit Khan, A.K. Antifungal Activity of Plant Extracts against Candida Species from Oral Lesions. Indian J. Pharm. Sci. 2008, 70, 801–803. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carlini, E.A.; Duarte-Almeida, J.M.; Tabach, R. Assessment of the Toxicity of the Brazilian Pepper Trees Schinus terebinthifolius Raddi (Aroeira-da-praia) and Myracrodruon urundeuva Allemão (Aroeira-do-sertão). Phytotherapy Res. 2012, 27, 692–698. [Google Scholar] [CrossRef] [PubMed]
- Tangarife-Castaño, V.; Correa-Royero, J.B.; Roa-Linares, V.C.; Pino-Benitez, N.; Betancur-Galvis, L.A.; Durán, D.C.; Stashenko, E.E.; Mesa-Arango, A.C. Anti-dermatophyte, anti-Fusariumand cytotoxic activity of essential oils and plant extracts of Pipergenus. J. Essent. Oil Res. 2014, 26, 221–227. [Google Scholar] [CrossRef]
- Pessini, G.L.; Filho, B.P.D.; Nakamura, C.V.; Cortez, D.A.G. Antifungal Activity of the Extracts and Neolignans from Piper regnellii (Miq.) C. DC. var. pallescens (C. DC.) Yunck. J. Braz. Chem. Soc. 2005, 16, 1130–1133. [Google Scholar] [CrossRef]
- Jafri, H.; Ahmad, I. Thymus vulgaris essential oil and thymol inhibit biofilms and interact synergistically with antifungal drugs against drug resistant strains of Candida albicans and Candida tropicalis. J. De Mycol. Médicale 2020, 30, 100911. [Google Scholar] [CrossRef]
- Silva-Rocha, W.P.; Lemos, V.L.d.; Ferreira, M.R.A.; Soares, L.A.L.; Svidzisnki, T.I.E.; Milan, E.P.; Chaves, G.M. Effect of the crude extract of Eugenia uniflora in morphogenesis and secretion of hydrolytic enzymes in Candida albicans from the oral cavity of kidney transplant recipients. BMC Complement. Altern. Med. 2015, 15, 6. [Google Scholar] [CrossRef] [Green Version]
- Gerson, M.; Anderson, C.; de Sousa, C.A.; Lucía, B.Z.A.N.A. Plantas medicinales. Cienc. Saude Colect. 2018, 23, 3735–3744. [Google Scholar]
- Quintana, S.M.C.; Sjostrom, P.D.; Socarrás, D.A.; Baldeón, G.M.M. Microbiota de los ecosistemas de la cavidad bucal. [Microbiota of oral cavity ecosystems]. Rev. Cuba. De Estomatol. 2017, 54, 88–94. [Google Scholar]
- Peres NT, D.A.; Maranhão FC, A.; Rossi, A.; Martinez-Rossi, N.M. Dermatophytes: Host-pathogen interaction and antifungal resistance. An. Bras. De Dermatol. 2010, 85, 657–667. [Google Scholar]
- Pontón, J.; Quindós, G. Mechanisms of resistance to antifungal therapy. Med. Clin. 2006, 126, 56–60. [Google Scholar] [CrossRef]
- Donnelly, R.F.; McCarron, P.; Tunney, M. Antifungal photodynamic therapy. Microbiol. Res. 2008, 163, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Bulacio, L.; Ramadán, S.; Dalmaso, H.; Luque, A.; Sortino, M. Optimization of variables in photodynamic antifungal assays against Candida species. Rev. Argent. Microbiol. 2021, 53, 287–291. [Google Scholar] [CrossRef] [PubMed]
- Rivera-Toledo, E.; Jiménez-Delgadillo, A.U.; Manzano-Gayosso, P. Antifúngicos poliénicos. Mecanismo de acción y aplicaciones. Rev. Fac. Med. 2020, 63, 7–17. [Google Scholar] [CrossRef]
- Menon, S.; Liang, X.; Vartak, R.; Patel, K.; Di Stefano, A.; Cacciatore, I.; Marinelli, L.; Billack, B. Antifungal Activity of Novel Formulations Based on Terpenoid Prodrugs against C. albicans in a Mouse Model. Pharmaceutics 2021, 13, 633. [Google Scholar] [CrossRef]
- Wiederhold, N.P. Review of the Novel Investigational Antifungal Olorofim. J. Fungi 2020, 6, 122. [Google Scholar] [CrossRef]
- Arastehfar, A.; Lass-Flörl, C.; Garcia-Rubio, R.; Daneshnia, F.F.; Ilkit, M.; Boekhout, T.; Gabaldon, T.; Perlin, D.S. The Quiet and Underappreciated Rise of Drug-Resistant Invasive Fungal Pathogens. J. Fungi 2020, 6, 138. [Google Scholar] [CrossRef]
- Baculima-Alvarracin, M.; Cuenca-León, K.; Pacheco-Quito, E.-M. Antimicrobial Nanoparticles in Dentistry: State of the art. Arch. Venez. Farmacol. Ter. 2021, 40, 1–9. [Google Scholar] [CrossRef]
- Varoni, E.M.; Lodi, G.; Sardella, A.; Carrassi, A.; Iriti, M. Plant polyphenols and oral health: Old phytochemicals for new fields. Curr. Med. Chem. 2012, 19, 1706–1720. [Google Scholar] [CrossRef]
- Milutinovici, R.-A.; Chioran, D.; Buzatu, R.; Macasoi, I.; Razvan, S.; Chioibas, R.; Corlan, I.V.; Tanase, A.; Horia, C.; Popovici, R.A.; et al. Vegetal Compounds as Sources of Prophylactic and Therapeutic Agents in Dentistry. Plants 2021, 10, 2148. [Google Scholar] [CrossRef]
- Laurent, M.; Gogly, B.; Tahmasebi, F.; Paillaud, E. Oropharyngeal candidiasis in elderly patients. Geriatr. Psychol. Neuropsychiatr. Du Vieil. 2011, 9, 21–28. [Google Scholar] [CrossRef]
- Contaldo, M.; di Stasio, D.; Romano, A.; Fiori, F.; della Vella, F.; Rupe, C.; Lajolo, C.; Petruzzi, M.; Serpico, R.; Lucchese, A. Oral candidiasis and novel therapeutic strategies: Antifungals, phytotherapy, probiotics, and photodynamic therapy. Curr. Drug Deliv. 2022, 19, 1. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, G.L.S.; de Lima Pérez, A.L.A.; Rocha, Í.M.; Pinheiro, M.A.; De Castro, R.D.; Carlo, H.; de Oliveira Lima, E.; Castellano, L. Does Scientific Evidence for the Use of Natural Products in the Treatment of Oral Candidiasis Exist? A Systematic Review. Evid.-Based Complement. Altern. Med. 2015, 2015, 147804. [Google Scholar] [CrossRef] [PubMed]
Inside the Structure | Mechanism of Action | |
---|---|---|
Polyene | Antifungal classification: a look inside the structure Nystatin, natamycin, and amphotericin B | Antifungals that act on the cytoplasmatic membrane |
Azoles | Imidazole: miconazole, clotrimazole, and ketoconazole Triazoles: fluconazole and itraconazole (ketoconazole) | Antifungals that act on the cytoplasmatic membrane |
Allylamines | Terbinafine and naftifine | Antifungals that act on the cytoplasmatic membrane |
Lipopeptides | Papulacandins and glycosylated triterpenes echinocandins: caspofungin, anidulafungin, and micafungin | Antifungals that act on the cell wall |
Pyrimidines | Flucytosine | Antifungals that act on the cell nucleus |
Other | Ciclopirox potassium iodide, tolnaftate, and griseofulvin | Antifungals that act on the cell nucleus |
Plant Family | Plant Common Name | Botanical Name | Type of Extract | Fungus on Which It Acts | Active Components | Reference |
---|---|---|---|---|---|---|
Anacardiaceae | Marula | S. birrea | Aqueous extracts | C. parapsilosis | Tannic acid, quercetin, phenols, flavonoid, and flavonols | [31] |
Annonaceae | Candida lusitaniae | X. aethiopica | Aqueous extracts | C. albicans | B-pinene, terpinen-4-ol, sabinene, a-phellandrene, a-terpineol, and trans-b-ocimene | [32] |
C. glabrata | ||||||
C. guilliermondii | ||||||
C. krusei | ||||||
C. parapsilosis | ||||||
C. tropicalis | ||||||
C. albicans | ||||||
False nutmeg or calabash nutmeg | M. myristica | Aqueous extracts | C. krusei | a-phellandrene, p-cymene, a-pinene, cis- sabinol, and limonene | [32] | |
Sugar apple or custard apple | Z. leprieurii | Aqueous extracts | C. albicans | Trans-b-ocimene, a-terpinolene, 3-d-carene, limonene, myrcene, a-pinene, and p-cymene | [32] | |
Ethiopian pepper | Z. xanthoxyloıdes | Aqueous extracts | C. albicans | a-pinene, trans-b-ocimene, citronellol, sabinene, myrcene, limonene, and cytronellyl acetate, a- phellandrene | [32] | |
C. krusei | ||||||
C. parapsilosis | ||||||
C. tropicalis | ||||||
C. albicans | ||||||
C. krusei | ||||||
C. parapsilosis | ||||||
C. tropicalis | ||||||
C. albicans | ||||||
C. krusei | ||||||
C. parapsilosis | ||||||
C. tropicalis | ||||||
Anisophylleaceae | Monkey apple | A. laurina | Aqueous extracts | C. albicans | Flavonoids, phenolics, citric acid, malic acid, tartaric acid, fumaric acids, oxalates, phytic acid, and tannins | [33] |
Acanthaceae | False waterwillow | A. paniculataa | Methanolic extracts | C. krusei C. albicans C. tropicalis | 3-O-β-d-glucosyl-14-deoxyandrographiside, 14-deoxyandrographolide,14-deoxy-11,12-didehydroandrographolide, and 14-deoxyandrographolide | [34] |
Acoraceae | Sweet flag or calamus | A. calamus | Aqueous extracts | C. albicans C. krusei C. lusitaniae C. parapsilosis | Triploid and tetraploid flavonoids and lectins | [35] |
Amaryllidaceae | Garlic | A. sativum | Alcoholic extracts | C. albicans | Not reported | [36] |
Onion | A. cepa | Alcoholic extracts | C. albicans | Tannins and flavonoids such as quercetin | [36,37] | |
Apiaceae | Coriander | C. sativum | Aqueous and alcoholic extracts | C. albicans | Linalol, 1-decanol, 2e-decenol, 2z-dodecenol, aldehydes, and 3-hexenol | [38,39] |
atcc 90028 | ||||||
Cumin | C. cyminum | Aqueous extracts | C. albicans | Pinene, cineol, and linalool | [40] | |
Fennel | F. vulgare | Aqueous extracts | C. albicans | Trans-anethol, limonene, and fenchone | [41] | |
Persian hogweed | H. persicum | Hydroalcoholic Extracts | C. albicans | Anethol and terpinolene | [42] | |
Anise | P. anisum | Alcoholic extracts | C. albicans | Anethol and coumarins | [43] | |
Apocynaceae | White’s ginger | M. whitei | Hydroalcoholic Extracts | C. guilliermondii | Alkaloids, anthocyanins, anthraquinones, flavonoids, phenols, and saponins | [44] |
C. albicans | ||||||
C. lusitaniae | ||||||
C. tropicalis | ||||||
Arecaceae | Silk rubber | Funtumia elastic | Aqueous and ethanol extracts | C. albicans | Anthocyanins, butacyanin, flavonoids, steroids, and tannins | [45] |
Asteraceae | Dhangri bet or rab bet | C. leptospadix | Ethanol extracts | C. albicans | Ursolic acid (triterpenoid saponin) | [46] |
Wormwood | A. sieberi | Aqueous extracts | C. glabrata | Β-thujone, camphor, and α-thujone | [47] | |
Wild rhubarb or lesser burdock | A. minus | Ethanol extract | C. albicans C. dubliniensis C. glabrata C. krusei C. stellatoidea C. tropicalis | Flavonoids (isoquercitrin and rutin), and five minor flavonoids (astragali, kaempferol 3-o-rhamnoglucoside, quercetin 7-o-glucoside, an isomer of quercitrin, and quercetin 3-o-arabinoside), and arctiine | [48,49] | |
Field wormwood | A. campestris | Aqueous extracts | C. glabrata C. lusitaniae C. tropicalis C. krusei C. parapsilosis | Triploid and tetraploid flavonoids and lectins | [35] | |
Fringed sagebrush or pasture sage | A. frigida | Aqueous extracts | C. parapsilosis C. lusitaniae C. krusei C. tropicalis C. glabrata | Triploid and tetraploid flavonoids and lectins | [35] | |
Tall goldenrod or giant goldenrod | S. Gigantea | Aqueous extracts | C. tropicalis | Triploid and tetraploid flavonoids and lectins | [35] | |
C. lusitaniae | ||||||
C. albicans | ||||||
C. krusei | ||||||
C. glabrata | ||||||
Yarrow | A. biebersteinii | Aqueous extracts | C. albicans | Limonene | [50] | |
Betulaceae | Green alder | A. viridis | Aqueous extracts | C. albicans | Triploid and tetraploid flavonoids and lectins | [35] |
C. glabrata | ||||||
C. parapsilosis | ||||||
C. krusei | ||||||
C. lusitaniae | ||||||
Yellow birch | B. alleghaniensis | Aqueous extracts | C. parapsilosis | Scalene triterpene and tetracosan aliphatic hydrocarbon | [35] | |
C. albicans | Triploid and tetraploid flavonoids and lectins | |||||
C. krusei | ||||||
C. lusitaniae | ||||||
C. glabrata | ||||||
Bignoniaceae | Golden bellbean | M. obtusifolia | Ethanol extracts | C. albicans | Ursolic acid, pomolic acid, and 2-epi-tormentic acid | [51] |
Flame vine | P. venusta | Ethanolic extracts | C. krusei | Isoverbascoside, verbascoside, and quercetin3-o-x-l rhamnopyranosyl-(1-6)-b-d-galactopiranoside | [52] | |
atcc 6258 | ||||||
C. krusei | ||||||
usp 2223 | ||||||
C. albicans | ||||||
atcc 10231 | ||||||
C. albicans usp | ||||||
C. albicans | ||||||
C. parapsilosis usp 1933 | ||||||
C. tropicalis usp | ||||||
C. guilliermondii usp 2234 | ||||||
Cricket vine | A. chica cerrado | Acetone extracts | C. glabrata | Phenolics, flavonoids, anthocyanins, β-carotene, and lycopene | [53] | |
C. rugosa | ||||||
C. albicans | ||||||
Caesalpiniaceae | Pink trumpet tree or lavender trumpet tree | T. avellanedae | Hydroalcoholic extracts | C. albicans | Naphthoquinones based on the naphtho [2,3-b]furan-4,9-dione skeleton such as (-)-5-hydroxy-2-(1′-hydoxyethyl)naphtho [2,3-b]furan-4,9-dione | [54] |
Divida | S. zenkeri | Hydroethanolic extracts | C. guilliermondii | 2,4,5,7-tetrathiaoctane | [55] | |
C. parapsilosis | ||||||
C. tropicalis | ||||||
C. glabrata | ||||||
C. krusei | ||||||
C. lusitaniae | ||||||
C. albicans | ||||||
Caricaceae | Papaya | C. papaya | Aqueous extracts | C. albicans | N-acetyl-beta-D-glucosaminidase | [56,57] |
Combretaceae | Tanibuca | B. tomentosa | Methanol extracts | C. albicans | Gallic acid | [58] |
C. tropicalis | ||||||
C. krusei | ||||||
C. glabrata | ||||||
C. parapsilosis | ||||||
C. dubliniensis | ||||||
Bushwillow | C. albopunctatum | Hydroalcoholic extracts | C. albicans | Terpenoids, flavonoids, phenanthrenes, and stilbenoids Pentacyclic triterpenes, hydroxymberbic acid 2500, and arjunolic acid | [59,60,61] | |
C. imberbe | ||||||
C. nelsonii | ||||||
Curtisiaceae | Assegai tree | C. dentata | Hydroalcoholic extracts | C. albicans | Phenols, flavonoids, tannic acid, saponins, steroids, and alkaloids | [62,63] |
Cucurbitaceae | Bitter apple or bitter cucumber | C. colocynthis | Acetone extracts | C. albicans | Glycosides and resins | [64] |
C. glabrata | ||||||
C. krusei | ||||||
C. parapsilosis | ||||||
C. guilliermondii | ||||||
Candia tropicalis | ||||||
C. dubliniensis | ||||||
Ebenaceae | Gabon ebony | D. crassiflora | Hydroalcoholic extracts | C. glabrata | Isoarborinol methyl ether (cylindrine) | [65] |
C. albicans | ||||||
C. krusei | ||||||
C. tropicalis | ||||||
Evergreen tree | D. canaliculata | Hydroalcoholic extracts | C. albicans | Plumbagin and two known pentacyclic triterpenes (lupeol and lupenone) | [65] | |
C. kefyr | ||||||
C. parapsilosis | ||||||
Eriocaulaceae | Leiothrix | L. spiralis | Methanolic extract | C. albicans | flavonoids luteolin-6-C-β-D-glucopyranoside, 7-methoxyluteolin-6-C-β-D-glucopyranoside, 7-methoxyluteolin-8-C-β-D-glucopyranoside, 4′-methoxyluteolin-6-C-β-D-glucopyranoside, and 6-hydroxy-7-methoxyluteolin and the xanthones 8-carboxymethyl-1,5,6-trihydroxy-3-methoxyxanthone, 8-carboxy-methyl-1,3,5,6-tetrahydroxyxanthone | [66] |
C. krusei | ||||||
C. parapsilosis | ||||||
Candia tropicalis | ||||||
Euphorbiaceae | Pillpod sandmat | E. hirta | Hydroalcoholic extracts | C. albicans | Β-amirine and 24-methylenecycloarthenol | [67] |
Red sacaca | C. cajucara | Methanolic extracts | C. albicans atcc 51501 | Linalool | [68] | |
Prostrate spurge or blue weed | E. prostrata | Methanolic extracts | C. albicans | Flavonoids such as apygenin-7-glycoside, luteolin-7-glycoside, and quercetin phenolic compounds such as ellagic acid, gallic acid, and tannin | [69] | |
Fabaceae | Prekese | T. tetraptera | Hydroalcoholic extracts | C. glabrata | Oleanolic glycosides and cinnamic acids | [70] |
C. krusei | ||||||
C. tropicalis | ||||||
C. albicans | ||||||
C. guilliermondii | ||||||
Candia lusitaniae | ||||||
C. parapsilosis | ||||||
Red propolis | D. ecastaphyllum | Hydroalcoholic extracts | C. albicans | Formononetin | [71] | |
atcc 76645 | ||||||
C. albicans | ||||||
lmp-20 | ||||||
C. tropicalis | ||||||
Naranjito | S. simplex | Hydroalcoholic extracts | C. albicans | Diterpenes | [72] | |
Golden shower tree | C. fistula | Hydroalcoholic extracts | C. albicans | Cassico acid (rhein) and other phenolic compounds | [73,74] | |
C. glabrata | ||||||
C. tropicalis | ||||||
Licorice | G. glabra | Methanolic extracts | C. albicans | Formononetin, liquiritigenin, and apigenin | [75] | |
C. glabrata | ||||||
C. parapsilosis | ||||||
Senna | C. alata | Methanol extracts | C. albicans | Chrysoeriol and stearic acid | [76] | |
Salt-tree | H. halodendron | Aqueous and ethanolic extracts | C. albicans | Salicylic acid, p-hydroxybenzoic acid (ferulic acid), and 4-hydroxy3-methoxy cinnamic acid Phenolic extracts Ferulic and sinapic acids | [77] | |
Gentianaceae | Common centaury | C. erythraea | Ethanolic extracts | C. albicans | Secoiridoid glycosides, a group of monoterpenoid compounds, and phenolics (xanthones and flavonoids) | [78] |
Lesser centaury | C. pulchellum | Ethanolic extracts | C. albicans | |||
Spiked centaury | C. spicatum | Ethanolic extracts | C. albicans | |||
Slender centaury | C. tenuiflorum | Ethanolic extracts | C. albicans | |||
Lauraceae | Cinnamon | C. zeylanicum | Ethanolic extracts | C. albicans atcc 10231 | Cinnamaldehyde, benzaldehyde, and cinnamyl acetate | [79] |
C. albicans atcc 90028 1120 | ||||||
C. albicans | ||||||
C. glabrata | ||||||
C. parapsilosis | ||||||
C. guilliermondii | ||||||
C. krusei | ||||||
C. lusitaniae | ||||||
C. tropicalis | ||||||
Myrtaceae | Gum coolibah | E. intertexta | Methanol extracts | C. albicans | 1,8-cineole | [80] |
Eucalyptus | E. globulus | Hydroalcoholic extracts | C. albicans | Cineole, limonene, p-cymene γ-terpinene, α-pinene, and α-phellarene | [81] | |
Clove | S. aromaticum | Hydroalcoholic extracts | C. albicans | Eugenol and thymol | [82] | |
Piperaceae | Pepper | P. bredemeyeri | Hydroalcoholic extracts | C. albicans | Trans-β-caryophyllene, caryophyllene oxide, β-pinene, and α-pinene | [83,84] |
Wild pepper | P. capense | Ethanolic extracts | C. albicans | Trans-β-caryophyllene. In addition, caryophyllene oxide, β-pinene and α-pinene | [84] | |
C. guilliermondii | ||||||
C. krusei | ||||||
C. parapsilosis | ||||||
C. lusitaniae | ||||||
Black pepper | P. nigrum | Bha | C. albicans | Trans-β-caryophyllene. In addition, caryophyllene oxide, β-pinene and α-pinene | [84] | |
Ethanolic extracts | ||||||
Lacquered pepper | P. regnellii | Ethyl acetate | C. albicans C. krusei | Ethyl acetate | [84,85] | |
Ethanolic extracts | ||||||
West African pepper | P. guineense | Ethanolic extracts | C. parapsilosis | Beta-caryophylleneTrans-β-caryophyllene. In addition, caryophyllene oxide, β-pinene and α-pinene | [84] | |
C. albicans | ||||||
C. glabrata | ||||||
C. tropicalis | ||||||
C. lusitaniae |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cuenca-León, K.; Pacheco-Quito, E.-M.; Granda-Granda, Y.; Vélez-León, E.; Zarzuelo-Castañeda, A. Phytotherapy: A Solution to Decrease Antifungal Resistance in the Dental Field. Biomolecules 2022, 12, 789. https://doi.org/10.3390/biom12060789
Cuenca-León K, Pacheco-Quito E-M, Granda-Granda Y, Vélez-León E, Zarzuelo-Castañeda A. Phytotherapy: A Solution to Decrease Antifungal Resistance in the Dental Field. Biomolecules. 2022; 12(6):789. https://doi.org/10.3390/biom12060789
Chicago/Turabian StyleCuenca-León, Katherine, Edisson-Mauricio Pacheco-Quito, Yanela Granda-Granda, Eleonor Vélez-León, and Aránzazu Zarzuelo-Castañeda. 2022. "Phytotherapy: A Solution to Decrease Antifungal Resistance in the Dental Field" Biomolecules 12, no. 6: 789. https://doi.org/10.3390/biom12060789
APA StyleCuenca-León, K., Pacheco-Quito, E. -M., Granda-Granda, Y., Vélez-León, E., & Zarzuelo-Castañeda, A. (2022). Phytotherapy: A Solution to Decrease Antifungal Resistance in the Dental Field. Biomolecules, 12(6), 789. https://doi.org/10.3390/biom12060789